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Institute of Mathematics, Faculty of Science, P.J. Šafárik University
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Abstract

The H-force number of a hamiltonian graph G is the smallest number k with the property that there

exists a set W ⊆ V (G) with |W | = k such that each cycle passing through all vertices of W is

a hamiltonian cycle. In this paper, we determine the H-force numbers of generalized dodecahedra.
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Throughout this paper we consider graphs without loops or multiple edges; for terminology not

defined here we refer to [3].

Let G = (V,E) be a hamiltonian graph and let W be a nonempty subset of V (G). A cycle in G
is a W -cycle if it contains all vertices of W . The set W enforces a hamiltonian cycle in G (or, W
is an H-force set) if each W -cycle of G is hamiltonian. The H-force number of G, denoted h(G),
is the cardinality of the smallest H-force set in G.

The H-force number of a graph was introduced in [4] as a possible tool which unifies several

concepts in theory of hamiltonian graphs and allows to develop a kind of hierarchic partition in this

graph family. Note that there are several different approaches which develop such a hierarchy like

pancyclicity or hamiltonian-connectedness, the other way how to study the quality of a hamiltonian

graph is to study the existence of hamiltonian cycles passing through particular edges, see [5], [8].

One possible approach how to classify hamiltonian graphs concerns the notion of k-hamiltonicity:
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given an n-vertex graph G and an integer k, 1 ≤ k ≤ n − 3, G is k-hamiltonian if, for all sets

U ⊆ V , 0 ≤ |U | ≤ k, the graph G − U (obtained from G by deleting all vertices of U ) is

hamiltonian. In particular, a graph is 1-hamiltonian if it is hamiltonian and the graph that results

from deletion of any vertex is also hamiltonian. There are several sufficient conditions for graphs

to be 1-hamiltonian, in many cases similar to the classical conditions for hamiltonicity (see [1],

[2] or [7]). Note that if a graph is k-hamiltonian for k ≥ 1, then its H-force number is equal to

its order, and vice versa; thus, it is interesting to explore graphs with H-force number being less

than their orders. The graphs with small H-force number were studied in [4], which provided the

complete characterization of graphs with H-force number 2 (or 3 in the case of 3-connected graphs,

and 4 for 3-connected planar graphs, respectively). In general, determining the H-force number

of a hamiltonian graph is a difficult problem, even for special graphs. The aim of this paper is

to determine the H-force numbers of generalized dodecahedra, i.e. the 3-connected planar cubic

graphs consisting of two k-gonal faces separated by the strip of 2k pentagons.

Given an integer k, the graph Gk is constructed in the following way: take three cycles

CO = v1v2 . . . vkv1, CM = vk+1vk+2vk+3 . . . v3kvk+1, and CI = v3k+1v3k+2 . . . v4kv3k+1 drawn

in the plane such that CM lies in the interior of CO and CI lies in the interior of CM (we refer

to CO, CM , CI as the outer, middle and inner cycle of Gk, the above described labelling of ver-

tices will be called primary in the sequel). Next, for each i = 1, . . . , k, add new edges vivk+2i−1,

vk+2iv3k+i. This can be done is such a way that the resulting graph Gk is plane; it contains two

k-gons separated by two layers of 2k pentagons in total, is 3-connected and cubic, and has 4k
vertices and 6k edges.

Theorem 1. Let Gk be a generalized dodecahedron, then

(i) h(G3) = 9;

(ii) h(G5) = 15;

(iii) h(Gk) =
11k
3

if k ≡ 0 (mod 3), k ≥ 6;

(iv) h(Gk) = 4k − 2 if k ≡ 1 (mod 3);

(v) h(Gk) =
11k−7

3
if k ≡ 2 (mod 3), k ≥ 8.

Three edges a, b, c ∈ E(Gk) are concurrent if a ∈ E(CO), b ∈ E(CM), c ∈ E(CI) and they

belong to two adjacent pentagons with b being their common edge. This term will be also used for

any two edges of a concurrent triple.

From the geometrical point of view, when constructing Gk, we can arrange cycles CM , CO

and CI in such a way that their drawings are regular polygons, their circumscribed circles are

concentric and each half line originating from the common centre of circles intersects either no

vertex (and in this case it intersects three edges, one of each polygon, that accord to a concurrent

triple in Gk) or exactly two vertices of the polygons (according to adjacent vertices of Gk), see

Fig. 1.

Note that, in Gk, there exists an automorphism that maps any vertex vi ∈ V (CI) ∪ V (CO) to

arbitrary vertex vj ∈ V (CI) ∪ V (CO) as well as an automorphism that maps any vℓ ∈ V (CM) to

any vm ∈ V (CM).
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Fig. 1

Let vrvr+1, vsvs+1, vtvt+1 ∈ E(Gk) be three concurrent edges (for the case vsvt ∈ E(Gk)
see Fig. 2A, analogously the case vrvs ∈ E(Gk)). If we replace the path vr, vr+1 by the path

vr, vr∗
1
, vr+1, the path vs, vs+1 by the path vs, vs∗

1
, vs∗

2
, vs+1, the path vt, vt+1 by the path vt, vt∗

1
, vt+1,

and add two new edges vr∗
1
vs∗

1
, vs∗

2
vt∗

1
then we obtain the graph Gk+1. We say that we enlarge the

graph Gk to Gk+1 on the concurrent triple vrvr+1, vsvs+1, vtvt+1. Repeating this operation, Gk can

be enlarged to Gk+2, Gk+3, etc. (Note that V (Gk) ⊆ V (Gk+1) ⊆ V (Gk+2) ⊆ V (Gk+3) ⊆ . . . )

In the sequel, a cycle C of a graph G misses exactly the vertices of a set S ⊂ V (G), |S| ≤
|V (G)| − 3, if V (C) = V (G) \ S. Note, that if C is nonhamiltonian cycle of G then any H-force

set of G contains a vertex of G− C.

Fig. 2A Fig. 2B

Lemma 2. Let a, b, c be three concurrent edges of Gk and let Gk+1 (Gk+3) be enlarged from Gk on

this triple. If C is a cycle of Gk containing all three edges a, b, c (any two of them), then in Gk+1

(Gk+3) there is a cycle C∗ missing exactly the same vertices as C in Gk; moreover, C∗ contains

three (two) concurrent edges as well.

Fig. 3A Fig. 3B
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Proof. Let C be a cycle of Gk, let S ⊂ V (Gk) be the set of vertices missed by C, let vrvr+1 ∈
E(CI), vsvs+1 ∈ E(CM), vtvt+1 ∈ E(CO) be concurrent edges, and let Gk+1 and Gk+3 be enlarged

from Gk on the mentioned triple of edges (see Fig. 2A, 2B and 3A, 3B, respectively).

1. If C contains all three concurrent edges vrvr+1, vsvs+1, vtvt+1, then replace in C the path

vr, vr+1 by the path vr, vr∗
1
, vr+1, the path vs, vs+1 by the path vs, vs∗

1
, vs∗

2
, vs+1, and the path

vt, vt+1 by the path vt, vt∗
1
, vt+1 to create the cycle C∗ in Gk+1 containing all four new vertices

and thus missing exactly the vertices of S (Fig. 2B). Moreover C∗ contains three concurrent

edges of Gk+1 (for example vrvr∗
1
, vsvs∗

1
, vtvt∗

1
).

2. (a) If C contains exactly two concurrent edges vsvs+1, vtvt+1 (similarly for vrvr+1, vsvs+1 ∈
E(C)) then replace in C the path vs, vs+1 by the path vs, vs∗

1
, vr∗

1
, vr∗

2
, vr∗

3
, vs∗

5
, vs∗

6
, vs+1

and the path vt, vt+1 by the path vt, vt∗
1
, vs∗

2
, vs∗

3
, vs∗

4
, vt∗

2
, vt∗

3
, vt+1 to create the cycle C∗

in Gk+3 containing all 12 new vertices and thus missing exactly the vertices of S (Fig.

3B). Moreover C∗ contains two concurrent edges of Gk+3 (for example vsvs∗
1
, vtvt∗

1
).

(b) If C contains exactly two concurrent edges vrvr+1, vtvt+1 then replace in C the path

vr, vr+1 by the path vr, vr∗
1
, vs∗

1
, vs∗

2
, vs∗

3
, vr∗

2
, vr∗

3
, vr+1 and the path vt, vt+1 by the path

vt, vt∗
1
, vt∗

2
, vs∗

4
, vs∗

5
, vs∗

6
, vt∗

3
, vt+1 to create the cycle C∗ in Gk+3 containing all 12 new

vertices and thus missing exactly the vertices of S. Moreover C∗ contains two concur-

rent edges of Gk+3 (for example vrvr∗
1
, vtvt∗

1
).

Now, the vertices in Gk+1 and Gk+3 can be relabelled to obtain primary labelling.

In the next, dH(x, y) denotes the distance of x, y with respect to the graph H .

Lemma 3. Let k ≡ 0 (mod 3), k ≥ 6, and let vi, vj ∈ V (CM)∩V (Gk) such that 2 6= dCM
(vi, vj) ≡

±2 (mod 6). Then there exists a cycle in Gk that misses exactly the vertices vi, vj .

Proof. Because of symmetry of Gk and the condition 2 6= dCM
(vi, vj) ≡ ±2 (mod 6) we can

assume that i = k + 1 and k + 5 ≤ j ≤ 2k. For j − i = j − k − 1 ≡ ±2 (mod 6) we prove that

there exists a cycle in Gk that misses exactly two vertices vi, vj . Note that any such cycle contains

the following two pairs of concurrent edges: v1v2, vk+2vk+3 and vkv1, v3k−1v3k.

For k = 6 is i = 7, j = 11 and a desired cycle in G6 is shown on Fig. 4.

For k ≥ 9 we consider a cycle C ′ in Gk−3 that misses exactly two vertices vk−2, vj−3 ∈ V (Gk−3)∩
V (CM) with the distance (on the cycle CM in Gk−3) j − 3− (k − 2) = j − k − 1 ≡ ±2 (mod 6)
for j ≤ 2k− 2 or distance 2k− 6− (j− k− 1) ≡ ∓2 (mod 6) for 2k− 1 ≤ j ≤ 2k. The cycle C ′

contains concurrent edges vk−3v1, v3k−10v3k−9 and by previous lemma we obtain a desired cycle in

Gk.

Later we use this lemma in the following way: If W is an H-force set in Gk, k ≡ 0 (mod 3),
that does not contain a vertex vi ∈ V (CM), then every vertex vj ∈ V (CM) with 2 6= dCM

(vi, vj) ≡
±2 (mod 6) belongs to W .
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Fig. 4 Fig. 5

Lemma 4. Let k ≡ 2 (mod 3), k ≥ 8, and let vi, vj, vℓ ∈ V (CM)∩ V (Gk) such that these vertices

split CM into three paths of lengths at least 4 and congruent to 4, 4 and 2 modulo 6. Then there

exists a cycle in Gk that misses exactly the vertices vi, vj, vℓ.

Proof. Because of symmetry of Gk we can assume that k+1 = i < j < ℓ. The vertices vi, vj, vℓ ∈
V (CM) split the cycle CM into three paths of lengths pi := j − i ≡ 4 (mod 6), pj := ℓ − j ≡
4 (mod 6), and pℓ := 3k + 1− ℓ ≡ 2 (mod 6), pℓ 6= 2.

For k = 8 is i = 7, j = 11, ℓ = 15, and a desired cycle in G8 is shown on Fig. 5.

For k ≥ 11 one of pi, pj, pℓ must be at least 10.

1. If pi ≥ 10 then we consider a cycle C ′ in Gk−3 that misses exactly three vertices vk−2 =
vi−3, vj−9, vℓ−9 splitting the middle cycle of Gk−3 into three paths of length pi − 6, pj, pℓ
(congruent to 4, 4, and 2 modulo 6). The cycle C ′ must contain concurrent edges v1v2 and

vk−1vk. Through enlargement the graph Gk−3 to Gk on the triple given by mentioned two

edges we obtain, by Lemma 2, a desired cycle in Gk.

2. If pi = 4 and pj ≥ 10 then we consider a cycle C ′ in Gk−3 that misses exactly three vertices

vi−3, vj−3, vℓ−9 splitting the middle cycle of Gk−3 into three paths of length pi, pj − 6, pℓ
(congruent to 4, 4, and 2 modulo 6). The cycle C ′ must contain following two concurrent

edges: vj−2vj−1 and the corresponding edge from the outer cycle of Gk−3. By Lemma 2 we

obtain a desired cycle in Gk.

3. If pi = pj = 4 and pℓ ≥ 10 then we consider a cycle C ′ in Gk−3 that misses exactly

three vertices vi−3, vj−3, vℓ−3 splitting the middle cycle of Gk−3 into three paths of length

pi, pj, pℓ − 6 (congruent to 4, 4, and 2 modulo 6). The cycle C ′ must contain following two

concurrent edges: vℓ−2vℓ−1 and the corresponding edge from the outer cycle of Gk−3. By

Lemma 2 we obtain a desired cycle in Gk.

In a similar way, one can prove

Lemma 5. Let k ≡ 2 (mod 3) and let R ⊆ V (Gk) be

1. the set of two vertices vi ∈ V (CM) and vj ∈ V (CI) where vi is adjacent to a vertex on CO

and 2 6= d(vi, vj) 6≡ 1 (mod 3) (see Fig. 6), or
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2. the set of three vertices vi, vj, vℓ ∈ V (CO) such that these vertices split CO into three paths

of lengths congruent to 1, 1 and 0 modulo 3 (see Fig. 7), or

3. the set of three vertices vi, vj ∈ V (CO) and vℓ ∈ V (CM) where both vj and vℓ are adjacent

to vi (see Fig. 8).

Then there exists a cycle in Gk that misses exactly the vertices of R.

Fig. 6 Fig. 7 Fig. 8

Lemma 6. Let k ≡ 0 (mod 3) and let R ⊆ V (Gk) be

1. the set of one vertex of CO (see Fig. 9), or

2. the set of two adjacent vertices of CM (see Fig. 10).

Then there exists a cycle in Gk that misses exactly the vertices of R.

Fig. 9 Fig. 10

Lemma 7. Let k ≡ 1 (mod 3) and let R ⊆ V (Gk) be

1. a cycle that misses exactly one vertex of CM (see Fig. 11), and

2. a cycle that misses exactly two vertices vi ∈ V (CO) and vj ∈ V (CI) with d(vi, vj) = 4 (see

Fig. 12), and

3. a cycle that misses exactly two vertices vi, vj ∈ V (CO) with dCO
(vi, vj) 6≡ 2 (mod 3) (see

Fig. 13).

Then there exists a cycle in Gk that misses exactly the vertices of R.
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Fig. 11 Fig. 12 Fig. 13

Lemma 8. Let k ≥ 3 and let R ⊆ V (Gk) be

1. the set of two vertices vi ∈ V (CM) and vj ∈ V (CO) where vi is adjacent to a vertex of CO

and d(vi, vj) ≥ 3 (see Fig. 14), or

2. the set of two vertices vi ∈ V (CO) and vj ∈ V (CI) with d(vi, vj) 6= 4 (see Fig. 15A, 15B),

or

3. the set of two vertices vi, vj ∈ V (CM) with 1 6= dCM
(vi, vj) ≡ 1 (mod 2) (see Fig. 16), or

4. the set of three vertices vi, vj ∈ V (CM) and vℓ ∈ V (CO) where both vj and vℓ are adjacent

to vi (see Fig. 17).

Then there exists a cycle in Gk that misses exactly the vertices of R.

Fig. 14 Fig. 15A Fig. 15B

Fig. 16 Fig. 17
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In the following, we will use the necessary condition for hamiltonicity of plane graphs:

Theorem 9 (Grinberg [6]). Let G be a plane hamiltonian graph and C be a hamiltonian cycle in

G. Let gi be the number of i-gonal faces in the exterior of C and fi be the number of i-gonal faces

in the interior of C. Then
∑

i≥3

(i− 2)(fi − gi) = 0.

Proof of Theorem 1.

For 1 ≤ j ≤ 2k, denote the edges of Gk not belonging to the cycles CO, CM , or CI , as follows

aj =

{

vk+jv j+1

2

, if j odd,

vk+jv3k+ j

2

, if j even.

Case (ii) The result for dodecahedron (k = 5) was proved in [4]. A smallest H-force set is

V (G5)− {v6, v8, v10, v12, v14}.

Case (v) Let k ≡ 2 (mod 3), k ≥ 8.

Let S = {vk+1, v3k+1, v3k+3, v3k+6, v3k+9, ..., v3k+k−2, v4k}. First, we show that the set Z =
V (Gk) \ S is an H-force set, that is, for any nonempty subset T of S, there is no cycle that misses

exactly the vertices of T (i.e. there is no nonhamiltonian Z-cycle in Gk). In the second step we

prove that Z is a smallest H-force set, which will mean h(Gk) = |Z| = 11k−7

3
.

1. Let T = {vj}, vj ∈ V (CM). We prove that in the graph Gk, there is no cycle that misses

exactly one vertex vj ∈ V (CM). Suppose there exists such cycle. Then the graph Gk − vj is

hamiltonian and, in this graph, fi + gi 6= 0 holds only for i ∈ {5, 9, k}; moreover,

f5 + g5 = 2k − 3, f9 + g9 = 1, fk + gk = 2.

Then 0 =
∑

(i− 2)(fi − gi) = 3(f5 − g5) + (k − 2)(fk − gk) + 7(f9 − g9) ≡ ±7 (mod 3),
a contradiction.

2. Let T = {vj}, vj ∈ V (CO) ∪ V (CI). We prove that in the graph Gk, there is no cycle that

misses exactly one vertex of CO (similarly for CI). Suppose that Gk − vj is hamiltonian. In

this graph we have fi + gi 6= 0 only for i ∈ {5, k, k + 4}, and furthermore,

f5 + g5 = 2k − 2, fk + gk = 1, fk+4 + gk+4 = 1.

Hence 0 =
∑

(i− 2)(fi − gi) = 3(f5 − g5) + (k − 2)(fk − gk) + (k + 2)(fk+4 − gk+4) ≡
±(k + 2) ≡ ±1 (mod 3), a contradiction.

3. Let vk+1 ∈ T . We prove that no cycle in the graph Gk misses the vertex vk+1 and some other

vertex from S. Suppose to the contrary that there is a Z-cycle C of Gk with vk+1 6∈ V (C).

(a) Let v3k+1v4k ∈ E(C) and let aj /∈ E(C), for all j with 3 ≤ j ≤ 2k−1, j ≡ 0 (mod 3).
All edges of C are in this case uniquely determined, but ultimately we obtain two

disjoined cycles, a contradiction.
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(b) Let v3k+1v4k ∈ E(C) and let j be the smallest integer with 3 ≤ j ≤ 2k − 1, j ≡
0 (mod 3) and aj ∈ E(C). The structure of layers of 5-gons of Gk yields that all edges

of C are uniquely determined. For j odd, C contains the path v3k−1, v3k, v4k, v3k+1, vk+2,
vk+3, vk+4, v3k+2, v3k+3, v3k+4, vk+8, . . . , v3k+ j−1

2

, vk+j−1, vk+j, v j+1

2

, v j−1

2

, . . . , v4, vk+7,

vk+6, vk+5, v3, v2, v1, vk. Subsequently C does not contain any other aj with 3 ≤
j ≤ 2k − 1, j ≡ 0 (mod 3) and does not contain the edges vk+jvk+j+1 (since C
contains the path vk+j−1, vk+j, v j+1

2

) and v j+1

2

v j+3

2

as well (since C contains the path

vk+j, v j+1

2

, v j−1

2

). Therefore C contains the edges vk+j+3vk+j+2 (since aj+1 =

vk+j+3v3k+ j+3

2

/∈ E(C)), vk+j+1vk+j+2 (since vk+jvk+j+1 /∈ E(C)), and vk+j+2v j+3

2

(since v j+1

2

v j+3

2

/∈ E(C)), a contradiction (analogously for j even).

(c) Let v3k+1v4k /∈ E(C). Similarly as in the cases (a) and (b), there is no supposed Z-

cycle in Gk.

4. Let v3k+1, v4k ∈ T and vk+1 /∈ T (i.e. vk+1 ∈ V (C)). Analogously to the previous case 3,

the edges of C are uniquely determined and they induce two disjoined cycles, if aj /∈ E(C),
for all j with 3 ≤ j ≤ 2k − 1, j ≡ 0 (mod 3), a contradiction. Otherwise, for the smallest

integer j with 3 ≤ j ≤ 2k − 1, j ≡ 0 (mod 3) such that aj ∈ E(C), the cycle C does not

contain the vertex v j+3

2

∈ Z, if j ≡ 3 (mod 6), or the vertex v
3k+

j

2
+1

∈ Z, if j ≡ 0 (mod 6),

a contradiction.

5. Let v3k+1 ∈ T and v4k, vk+1 /∈ T (i.e. v4k, vk+1 ∈ V (C)). Analogously to the previous cases

3 and 4, if aj /∈ E(C), for all j with 3 ≤ j ≤ 2k − 1, j ≡ 0 (mod 3), then necessarily

v1v2, v1vk, v1vk+1 ∈ E(C), a contradiction.

Otherwise, for the smallest integer j with 3 ≤ j ≤ 2k − 1, j ≡ 0 (mod 3) and aj ∈ E(C),
the cycle C does not contain vertex vk+j+3 or vertex v3k−1 belonging to Z, a contradiction.

Especially for j = 3, let t with t ≡ 0 (mod 3), j < t < 2k, be the smallest integer with

at /∈ E(C). Then the cycle C does not contain vertex v t
2

(if t even) or vertex v3k+ t−1

2

or vertex vk+t+3 (if t odd), a contradiction. If there is no such t (i.e. if all edges at with

t ≡ 0 (mod 3), j < t < 2k, belong to E(C)) then W = V (G) \ {v3k+1} and there is no cycle

in Gk missing exactly one vertex, a contradiction.

Thus, we just proved that Z is an H-force set.

Now, let W be a smallest H-force set in Gk. We will show that |W | ≥ |Z|.

1. Let (V (CO) ∪ V (CI)) ⊆ W . Without loss of generality, let vk+1 /∈ W (otherwise, because

of symmetry of Gk, all vertices of CM belong to W , thus W = V (G)). As there exists

(by Lemma 8 (3)) a cycle that misses exactly two vertices vk+1, vj ∈ V (CM) with 1 6=
dCM

(vk+1, vj) ≡ 1 (mod 2), all these vertices vj belong necessarily to W .

(a) Suppose vk+2 /∈ W . Possibly except of vk+3 and v3k, the set W contains all vertices of

V (CM) (again by Lemma 8 (3)), thus |W | ≥ 4k − 4 ≥ |Z|.
(b) Suppose vk+5 /∈ W . By Lemma 8 (3), for vi = v5, the set W contains the vertices

vk+2 and v3k. As there exists (by Lemma 4) a cycle that misses exactly three vertices

vi, vj, vℓ ∈ V (CM) splitting CM into three paths of lengths at least 4 and congruent

to 4, 4 and 2 modulo 6, the set W contains all vertices vk+m ∈ V (CM) where m 6≡
5 (mod 6), 1 ≤ m ≤ 2k, or m /∈ {k + 1, k + 3, k + 7, 3k − 1}. By repeated use of
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Lemma 4 (for vi = v3k−1, vj = v3, vℓ = v7), the set W contains at least one of these

three vertices as well. Thus |W | ≥ 11k−7

3
= |Z|.

(c) Let vk+2, v3k ∈ W and let vj /∈ W where 2 6= dCM
(vk+1, vj) ≡ 2 (mod 6). Then by

Lemma 4, vk+m ∈ W for m ≡ 5 (mod 6), 5 ≤ m ≤ j − k− 4 and for m ≡ 1 (mod 6),
j − k + 4 ≤ m ≤ 2k − 3. For each mentioned m, the vertices vk+m−2 and vk+m+2

lie on CM at distance 4, thus, one vertex of each pair vk+m−2, vk+m+2 must belong to

W (otherwise we have two vertices from CM at distance 4 and not belonging to W -

already considered in (b)). Ultimately we have |W | ≥ 11k−4

3
≥ |Z|.

(d) Let vk+2, v3k, vk+5, v3k−3 ∈ W and let vj ∈ W for 2 6= dCM
(vk+1, vj) ≡ 2 (mod 6).

The vertices vk+m−2 and vk+m+2 for m ≡ 2 (mod 6), 9 ≤ m ≤ 2k−7 lie on CM at dis-

tance 4, thus, similarly as in the previous case, one vertex of each pair vk+m−2, vk+m+2

must belong to W . From the same reason, one of the vertices vk+3, v3k−1 belongs to W
as well. Ultimately we have |W | ≥ 11k−1

3
≥ |Z|.

2. Let (V (CM) ∪ V (CI)) ⊆ W . Without loss of generality, let v1 /∈ W (otherwise, because of

symmetry of Gk, all vertices of CO belong to W , thus W = V (G)).

(a) Suppose vj /∈ W where dCO
(v1, vj) ≡ 1 (mod 3). As there exists (by Lemma 4)

a cycle that misses exactly three vertices vi, vj, vℓ ∈ V (CM) splitting CO into three

paths of lengths congruent to 1, 1 and 0 modulo 3, the set W contains all vertices

vm ∈ V (CO) where m 6≡ 0 (mod 3), 1 < m < j, and all vertices vm ∈ V (CO) where

m 6≡ 1 (mod 3), j < m < k. Thus |W | ≥ 11k−4

3
≥ |Z|.

(b) Suppose that all vj ∈ V (CO) with dCO
(v1, vj) ≡ 1 (mod 3) belong to W . The re-

maining vertices of CO are pairwise adjacent, thus, at least half of them belongs to

W (otherwise we have two adjacent vertices from CO not belonging to W - already

considered in (a)) and we obtain |W | ≥ 11k−1

3
≥ |Z|.

3. Let V (CM) ⊆ W and let vertices vi ∈ V (CO) and vj ∈ V (CI) do not belong to W . Then

by Lemma 8 (2) we have |W | ≥ 4k − 4 ≥ |Z|.

4. Let vk+1 /∈ W . Then by Lemma 8 (1), v3, . . . , vk−1 ∈ W . Furthermore, by Lemma 8 (3), the

set W contains also the vertices vk+m for m even and 4 ≤ m ≤ 2k − 2. Finally, by Lemma

5 (1), W contains the vertices v3k+m for m 6≡ 0 (mod 3) and 2 ≤ m ≤ k − 1 as well.

(a) Suppose v1 /∈ W . Then using Lemma 5 (3) and Lemma 8 (1),(2),(4) we obtain |W | ≥
4k − 4.

(b) Suppose v1 ∈ W and v2 /∈ W . Then using Lemma 8 (1),(2) we get |W | ≥ 4k − 8.

(c) Suppose vk+2 /∈ W . Then using Lemma 8 (1),(3) we obtain |W | ≥ 4k − 8.

Due to symmetry of Gk, the vertices vk ∈ V (CO) and v3k ∈ V (CM) belong to W as well,

i.e. V (CO) ⊆ W .

(d) Suppose W does not contain a vertex vj ∈ V (CI). Then by Lemma 5 (1), all vertices

vℓ ∈ CM with 2 6= d(vj, vℓ) 6≡ 1 (mod 3) belong to W . The remaining vertices (i.e.

{v3k+m : m ≡ 0 (mod 3), 2 ≤ m ≤ k − 1} ∪ {v3k+1, v4k} \ {vj} ⊆ V (CI) and

{vk+m : m ≡ 2j − 6k − 1 + 6t (mod 2k), 0 ≤ t ≤ 2k+2

6
} \ {vk+1} ⊆ V (CM)) form

pairs in the distance 5. By Lemma 5 (1), one vertex of each pair must belong to W ,

thus |W | ≥ 11k−7

3
≥ |Z|.
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We showed, that the smallest H-force set of Gk contains at least 11k−7

3
vertices.

Case (i) For k = 3 it is easy to check that h(G3) = 9, the set V (G3) \ {v4, v6, v8} is a smallest

H-force set in G3.

Case (iii) Let k ≡ 0 (mod 3), k ≥ 6. Let W be an arbitrary H-force set in Gk.

In Gk, there exists a cycle that misses exactly one vertex of CO (by Lemma 6 (1)). Hence, all

vertices of CI and CO belong to W .

Without loss of generality, let vk+1 /∈ W . We already know, that there exist cycles in Gk

missing exactly two vertices

(a) vk+1 and vj ∈ V (CM) with dCM
(vk+1, vj) ≡ 1 (mod 2) (by Lemma 8 (3) and 6 (2)), or

(b) vk+1 and vj ∈ V (CM) with 2 6= dCM
(vk+1, vj) ≡ ±2 (mod 6) (by Lemma 3).

Hence, for S = {vk+1}∪{vj : dCM
(vk+1, vj) ≡ 0 (mod 6)} we just found out that V (Gk)\S ⊆

W . Now we prove that V (Gk) \ S is an H-force set.

In Gk, there is no cycle that misses exactly one vertex vk+1. Assume to the contrary that the

graph Gk − vk+1 is hamiltonian. We have fi + gi 6= 0 only for i ∈ {5, 9, k}, moreover

f5 + g5 = 2k − 3, f9 + g9 = 1, fk + gk = 2.

If fk−gk = 0, then 0 =
∑

(i−2)(fi−gi) = 3(f5−g5)+(k−2)(fk−gk)+7(f9−g9) ≡ ±7 (mod 3),
a contradiction.

Otherwise fk − gk = ±2 and 0 =
∑

(i − 2)(fi − gi) = 3(f5 − g5) ± 2(k − 2) ± 7. Thus

±2(k − 2)± 7 ≡ 0 (mod 3) and the equality from the Grinberg’s theorem is fulfilled only if both

k-gons with 9-gon appear in the same region determined by a hamiltonian cycle of Gk − vk+1. On

the other hand, edges v1v2, vkv1 belong to any hamiltonian cycle and obviously separate one k-gon

and the 9-gon, a contradiction.

Similarly as in the case (v), there is no cycle in Gk missing vertex vk+1 and some other vertices

from S.

Case (iv) Let k ≡ 1 (mod 3), k ≥ 4. Let W be an arbitrary H-force set in Gk.

In Gk, there exists a cycle that misses exactly one vertex of CM (by Lemma 7 (1)). Hence, all

vertices of CM belong to W .

Without loss of generality, let v1 /∈ W . In Gk there exist cycles missing exactly two vertices

(a) v1 and vj ∈ V (CI) (by Lemma 7 (2) and 8 (2)), or

(b) v1 and vj ∈ V (CO) with dCO
(v1, vj) 6≡ 2 (mod 3) (by Lemma 7 (3)).

Hence, for S = {v1}∪{vj : dCO
(v1, vj) ≡ 2 (mod 3)} we just found out that V (Gk)\S ⊆ W .

If there is some vj ∈ S \ {v1} that does not belong to W , then, according to previous obser-

vations, all other vertices of S \ {v1} belong necessarily to W because their distance from vj is

congruent to 0 or 1 modulo 3.

In Gk, there is no cycle that misses exactly one vertex v1 ∈ V (CO). Assume to the contrary

that the graph Gk − v1 is hamiltonian. We have fi + gi 6= 0 only for i ∈ {5, k, k + 4}, moreover

f5 + g5 = 2k − 2, fk + gk = 1, fk+4 + gk+4 = 1.
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then 0 =
∑

(i− 2)(fi− gi) = 3(f5− g5)+ (k− 2)(fk− gk)+ (k+2)(fk+4− gk+4) ≡ ±(k− 2) ≡
∓1 (mod 3), a contradiction.

Moreover, there is no cycle that misses exactly the vertices v1 and v3, because v2 is a pendant

vertex in Gk − v1 − v3.
Hence, the set V (Gk) \ {v1, v3} is a smallest H-force set. ✷
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