Sultra Civil Engineering Journal (SCiEJ)

Volume 2 Issue 1, Maret 2021

E-ISSN: 2716-1714

Sarana publikasi bagi para akademisi, peneliti, praktisi, dan atau perorangan/kelompok lainnya (umum) di bidang ilmu Teknik Sipil.

Analisis Produktivitas Tukang Batu Bata Pada Proyek Pembangunan Asrama Puteri Mandala Wangi 2 di Kota Kendari

Al Mustahyun^{1*}, Sunaryo², La Ode Musa Rachmat³, Sufrianto⁴

ARTICLE INFO

Keywords:

Productivity, Bricklayers, Projects

How to cite:

Al Mustahyun, Sunaryo, La Ode Musa Rachmat,' Sufrianto (2021). Analisis Produktivitas Tukang Batu Bata Pada Proyek Pembangunan Asrama Puteri Mandala Wangi 2 di Kota Kendari

Sultra Civil Engineering Journal, Vol. 2(1)

Abstracting and Indexing:

Google Scholar

ABSTRACT

Productivity is one of the fundamental factors that influences the ability of performance in the construction industry. Increased productivity will reduce work time, and will reduce costs, especially labor costs so that the minimum labor cost is obtained (labor costs) to get competitive prices both for auction and implementation. The purpose of this study is to analyze the labor productivity time in completing 1 m^2 of masonry bricks and to analyze the productivity value of brick masons in completing work activities in the construction project of the Mandala Wangi 2 female dormitory. The results showed that the time required to complete 1 m^2 of brick laying work was 41.13 minutes on average. The productivity of the artisans working on the 1st floor is an average of 1.45 m^2/hr . Meanwhile, the productivity of craftsmen working on the 2nd floor is an average of 1.47 m2/hr.

Copyright © 2021 SCiEJ. All rights reserved.

1. Pendahuluan

Secara umum definisi produktivitas adalah rasio antara input dan output dimana input diekspresikan sebagai orang-jam (OJ) atau orang-hari (OH), sedangkan output adalah kuantitas hasil kerja yang satuannya bervariasi tergantung jenis pekerjaan yang diukur. Dalam hal ini apabila penyelesaian suatu jenis pekerjaan yang sama produktivitasnya dihitung dengan cara yang berbeda, tentu hasilnya tidak dapat langsung dibandingkan. Untuk itu diperlukan suatu standar pengukuran yang dapat dijadikan acuan bagi para penyedia dan pengguna jasa. (Khubab Basari 2014) Berpijak dari beberapa definisi di atas, maka jelaslah bahwa secara mudahnya, produktivitas ini dapat diartikan sebagai *output* dibagi dengan *input*.

Dalam suatu proyek konstruksi manusia berperan penting dalam segi hal pelaksanaaan proyek konstruksi salah satunya tenaga kerja konstruksi. Tenaga kerja konstruksi merupakan salah satu penentu besarnya produktivitas sebuah proyek konstruksi. Tenaga kerja juga mempengaruhi persaingan dibidang konstruksi. Oleh karena itu, perlu dilakukan sebuah studi lebih dalam mengenai produktivtas tenaga kerja pada pekerjaan dinding bata merah. Produktivitas tenaga kerja perlu di analisis, dengan demikian tenaga kerja dapat melakukan

¹Program Studi Teknik Sipil, Fakultas Teknik, Universitas Sulawesi Tenggara

²Program Studi Teknik Sipil, Fakultas Teknik, Universitas Sulawesi Tenggara

³Program Studi Teknik Sipil, Fakultas Teknik, Universitas Sulawesi Tenggara

⁴Program Studi Teknik Sipil, Fakultas Teknik, Universitas Sulawesi Tenggara

^{*}Corresponding Author: alteknik2015@gmail.com

aktivitasnya sebagaimana diharapkan. Maka dari itu, penulis tertarik melakukan penelitian mengenai produktivitas tenaga kerja dalam menyelesaikan pasangan bata pada proyek pembangunan asrama putri mandala wangi 2.

Faktor Pemilik Pekerjaan/owner yaitu Pemilik proyek atau pemberi tugas adalah orang atau badan yang memiliki proyek dan memberikan pekerjaan kepada pihak penyedia jasa dan yang membayar biaya pekerjaan tersebut (Ervianto, 2005 Dalam Pratama AB). Produktivitas pekerja menentukan keberhasilan pelaksanaan jadwal proyek konstruksi, karena akan berdampak kepada kesesuaian perencanaan jadwal konstruksi dengan progres pekerjaan konstruksi dilapangan, dimana jadwal konstruksi dengan progress pekerjaan konstruksi akan berpengaruh pada durasi dan biaya proyek. Besarnya produktivitas menunjukkan kemampuan tenaga kerja dalam menyelesaikan kuantitas pekerjaan yang ditentukan.(Indriani Muslim, 2019) sebuah pekerjaan proyek bangunan konstruksi adalah sumber daya manusia. Sumber daya merupakan faktor penentu dalam keberhasilan suatu proyek konstruksi. Sumber daya yang berpengaruh dalam proyek terdiri dari man, materials, machine, money dan method (Musthofa, 2015).

Dalam kenyataannya, batu bata adalah bahan bangunan yang digunakan untuk membuat dinding atau tembok. Sebagai bahan dasarnya adalah tanah liat atau tanah lempung yang kemudian dicetak dan dibakar pada suhu tertentu sehingga berubah sifat menjadi keras seperti batu serta tidak akan lunak kembali bila terkena air. Salah satu kelebihannya adalah kuat dan awet. (Lilis trianingsih, 2014).

2. Tinjauan Pustaka

Reksohadiprojo dan Sukanto (2003) dalam Afriani (2018), secara umum, produktivitas dapat diukur dengan menghitung rasio keluaran terhadap masukan. Untuk menghitung produktivitas adalah sebagai berikut:

Method Productivity Delay Model (MPDM) adalah modifikasi waktu tradisional dan konsep penelitian untuk segala aktivitas atau gerakan dalam pelaksanaan pekerjaan agar aktivitas atau gerakan yang tidak diperlukan dapat dihilangkan dan pelaksanaan pekerjaan dapat ditingkatkan. Berdasarkan Methode productivity Delay Model (MPDM) dari Halpin dan Riggs (1992) dalam Afirani (2018), dikenal pendekatan untuk perhitungan produktivitas yaitu sebagai berikut:

Keterangan:

Een = Perkiraan penundaan akibat lingkungan
Eeq = Perkiraan penundaan akibat peralatan
Ela = Perkiraan penundaan akibat tenaga kerja
Emt = Perkiraan penundaan akibat material
Emm = Perkiraan penundaan akibat manajemen

Pengukuran produktivitas tenaga kerja sulit dilakukan secara akurat, memerlukan tenaga dan biaya yang besar (Olomolaiye et al, 1998). Untuk mencapai nilai produktivitas yang diharapkan, perencanaan durasi harus dilakukan dengan mempertimbangkan jumlah kelompok kerja yang ada sehingga perencanaan yang dihasilkan dapat sesuai dengan kemampuan tenaga kerja yang ada. Ukuran produktivitas yang sering diamati adalah berkaitan dengan tenaga kerja. Pengertian tenaga kerja menurut Undang- Undang Republik Indonesia No. 13 Tahun 2003 adalah setiap orang yang mampu melakukan pekerjaan guna menghasilkan barang dan/atau jasa baik untuk memenuhi kebutuhan sendiri maupun masyarakat. (Seri Perundang- undangan, Undang - undang Republik Indonesia Nomor 13 Tahun 2003 Tentang Ketenagakerjaan).

3. Metode Penelitian

Penelitian ini dilakukan di Lorong Salangga, Jalan HEA Mokodompit, Kecamatan Kambu Kota Kendari, Provinsi Sulawesi Tenggara. Dalam penelitian ini memberlakukan dua jenis variabel yang menjadi objek penelitian yaitu Inpendent Variabel yang mempengaruhi dan mempunyai suatu hubungan dengan variabel yang lain. Dalam penelitian ini adalah lama waktu yang dibutuhkan dalam menyelesaikan 1m² pekerjaan pasangan bata. Dependent variabel yaitu variabel yang menjadi akibat dari variabel bebas. Dependent variabel penelitian ini adalah Luas pasangan dinding batu bata/jam dan besar produktivitas rata rata tukang batu bata.

4. Hasil dan Pembahasan

Perhitungan untuk setiap aktivitas pekerjaan pemasangan batu bata untuk satu siklus yaitu ditampilkan pada tabel 1.

Tabel 1. Contoh Perhitungan Waktu pekerjaan pemasangan batu bata untuk tukang

No	Aktivitas	Siklus	Durasi(dtk)
1	Mengambil dan memasang bata	1	56
2	Mengaduk dan meratakan semen		60
3	Mengambil dan memasang bata		53
4	Mengaduk dan meratakan semen		75
5	Mengambil dan memasang bata		58
6	Mengaduk dan meratakan semen		68
7	Mengambil dan memasang bata		60
8	Mengaduk dan meratakan semen		77
9	Mengambil dan memasang bata		70
10	Mengaduk dan meratakan semen		58
11	Mengambil dan memasang bata		57
12	Mengaduk dan meratakan semen		65
13	Istirahat		130
14	Mengaduk dan meratakan semen		60
15	Mengambil dan memasang bata		55
16	Mengaduk dan meratakan semen		61
17	Mengambil dan memasang bata		68
18	Mengaduk dan meratakan semen		58
19	Mengambil dan memasang bata		50
20	Mengaduk dan meratakan semen		64
21	Mengambil dan memasang bata		52
22	Mengaduk dan meratakan semen		59
23	Mengambil dan memasang bata		70
24	Mengaduk dan meratakan semen] [68
25	Mengambil dan memasang bata		61

26	Mengaduk dan meratakan semen	77
27	Mengambil dan memasang bata	50
28	Mengaduk dan meratakan semen	52
29	Mengambil dan memasang bata	56
30	Mengaduk dan meratakan semen	63
31	Mengaduk dan meratakan semen	56
32	Mengambil dan memasang bata	50
33	Cerita	240
34	Mengaduk dan meratakan semen	68
35	Mengambil dan memasang bata	58
36	Mengaduk dan meratakan semen	51
37	Mengambil dan memasang bata	64
38	Mengaduk dan meratakan semen	55
39	Mengambil dan memasang bata	60
40	Mengaduk dan meratakan semen	57
41	Mengambil dan memasang bata	55
42	Mengaduk dan meratakan semen	67
43	Mengambil dan memasang bata	50
	Total Siklus I	2842

Tabel 2. Perhitungan Waktu Total Produksi Tukang

Tukang			Waktu (Detik		
_		1	2	3	
	Waktu (Detik)	2842	2536	2409	7787
1	Keterangan	Delay	Non Delay	Non Delay	
2	Waktu (Detik)	2484	2465	2399	7348
2	Keterangan	Delay	Non Delay	Non Delay	
	Waktu (Detik)	2649	2553	2618	7820
3	Keterangan	Non Delay	Non Delay	Non Delay	
	Waktu (Detik)	2662	2797	2051	7510
4	Keterangan	Non Delay	Non Delay	Non Delay	
	Waktu (Detik)	2708	2319	2493	7520
5	Keterangan	Delay	Non Delay	Non Delay	
		Total (Detik)	•	•	37985

Tabel 3. Perhitungan Informasi Penundaan Tukang

Tukang	Siklus		Penundaan				
			Een	Eeq	Eela	Emt	Emm
		Kejadian	-	-	2	-	-
		Total Penambahan waktu	-	-	370	-	-
	I	Kemungkinan Kejadian	-	-	1	-	-
		Relative Severty	-	-	0.260	-	-
		Perkiraan % waktu					
		Penundaan persiklus produksi	-	-	0.003	-	-

		Kejadian	-	-	2	-	-
		Total Penambahan waktu	-	-	100	-	-
1	II	Kemungkinan Kejadian	-	-	1	-	-
		Relative Severty	-	-	0.079	-	-
		Perkiraan % waktu					
		Penundaan persiklus produksi	-	-	0.001	-	-
		Kejadian	-	-	1	-	-
		Total Penambahan waktu	-	-	80	-	-
	III	Kemungkinan Kejadian	-	-	0.5	-	-
		Relative Severty	-	-	0.033	-	-
		Perkiraan % waktu					
		Penundaan persiklus produksi	-	-	0.0002	-	-
		Kejadian	-	-	1	-	-
	I	Total Penambahan waktu	-	-	60	-	-
		Kemungkinan Kejadian	-	-	0.5	-	-
		Relative Severty	-	-	0.0083	-	-
		Perkiraan % waktu			4		
2		Penundaan persiklus produksi	-	-	0.4170	-	-
		Kejadian	-	-	-	-	-
	Ш	Total Penambahan waktu	-	-	-	-	-
		Kemungkinan	-	-	-	-	-
		Kejadian					
		Relative Severty	-	-	-	-	-
		Perkiraan % waktu					
		Penundaan persiklus produksi	-	-	-	-	-
		Kejadian	_	-	_		-
	Ш	Total Penambahan	-	-	-	-	-
		waktu Kemungkinan	_	_	_		_
		Kejadian	_	_	-	-	-
		Relative Severty	-	-	-	-	-
		Perkiraan % waktu					
		Penundaan persiklus produksi	-	-	-	-	-
		Kejadian	-	-	-	-	-
	I	Total Penambahan waktu	-	-	-	-	-

	1		1		ı — —	1	
		Kemungkinan Kejadian	_	_	-	-	-
		Relative Severty	-	-	-	-	-
		Perkiraan % waktu					
3		Penundaan persiklus produksi Kejadian	-	-		-	-
					_	_	
	II	Total Penambahan waktu	-	-	-	-	-
		Kemungkinan Kejadian	-	-	-	-	-
		Relative Severty	-	-	-	-	-
		Perkiraan % waktu					
		Penundaan persiklus produksi	-	-	-	-	-
		Kejadian	-	-	-	-	-
	III	Total Penambahan waktu	-	-	-	-	-
		Kemungkinan Kejadian	-	-	-	-	-
		Relative Severty	-	-	-	-	-
		Perkiraan % waktu					
		Penundaan persiklus produksi	-	-	-	-	-
		Kejadian	-	-	-	-	-
	ı	Total Penambahan waktu	-	-	-	-	-
		Kemungkinan Kejadian	-	-	-	-	1
		Relative Severty	-	-	-	-	-
		Perkiraan % waktu					
4		Penundaan persiklus produksi	-	-	-	-	-
		Kejadian	-	-	-	-	-
	II	Total Penambahan waktu	-	-	-	-	-
		Kemungkinan Kejadian	-	-	-	-	-
		Relative Severty	-	-	-	-	-
		Perkiraan % waktu					
		Penundaan persiklus produksi	-	-	-	-	-
		Kejadian	-	-	-	-	-
	III	Total Penambahan waktu	-	-	-	-	-
		Kemungkinan Kejadian	-	-	-	-	-
		Relative Severty	-	-	-	-	-
		Perkiraan % waktu					
		Penundaan persiklus produksi	-	-	-	-	-

		Kejadian	-	-	1	-	-
		Total Penambahan	-	-	360	-	-
		waktu					
		Kemungkinan	-	-	0.5	•	-
		Kejadian					
		Relative Severty	-	-	0.27	-	-
		Perkiraan % waktu					
5		Penundaan persiklus produksi	-	-	0.0013	-	-
		Kejadian	-	-	-	-	-
	l II	Total Penambahan	-	-	-	-	-
	!!	waktu					
		Kemungkinan	-	-	-	-	-
		Kejadian					
		Relative Severty	-	-	-	-	-
		Perkiraan % waktu					
		Penundaan persiklus produksi	-	-	-	ı	-
		Kejadian	-	-	-	-	-
	111	Total Penambahan	-	-	-	-	-
	'''	waktu					
		Kemungkinan	-	-	-	-	-
		Kejadian					
		Relative Severty	-	-	-	-	-
		Perkiraan % waktu					
		Penundaan persiklus produksi	-	-	-	-	-

Produktivitas untuk masing masing tukang yaitu:

Tukang I: .

Waktu total 3 Siklus = 7787 Detik Waktu non efektif (Delay) = 550 Detik Waktu efektif (7787-550) = 7237 Detik Luas 3 Siklus = 3 m^2

Produktivitas Keseluruhan Yaitu:

$$= \frac{1 \text{ Jam}}{\text{Waktu Efaktif}} \times 3 \text{ m}^2$$

$$\frac{\text{=}_{60~Menit~x~60~Detik}}{7237~Detik} \times 3~\text{m}^2$$
 =1.49 m²/jam

Produktivitas Ideal Yaitu:

$$\frac{\text{Produktivitas Keseluruhan}}{(1-\text{Een-Eeq-Eela-Emt-Emm})}$$

$$\frac{1,49 \text{ m}^2/\text{jam}}{(1-0-0-0.372-0-0)} \text{ m}^2$$

Rata Rata Waktu Siklus Yaitu:

Waktu Efektif

3 Siklus

7237 Detik

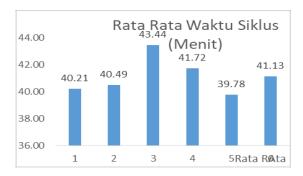
= 3

= 2412,33 Detik

= 40,21 Menit

Tabel 4. Produktivitas Keseluruhan Tukang

Tukang	Waktu Produksi total 3 siklus	Jam efektif (Detik)	Produktivitas keseluruhan m2/jam	Produktivitas Ideal m2/jam	Rata Rata Waktu 1 Siklus
1	7787	7237	1.49	2.38	40.21
2	7348	7288	1.48	1.49	40.49
3	7820	7820	1.38	1.38	43.44
4	7510	7510	1.44	1.44	41.72
5	7520	7160	1.51	2.38	39.78
Rata Rata	7597	7403	1.46	1.81	41.13


Berdasasrkan pengamatan 5 tukang batu bata yang dilakukan di lapangan, untuk produktivitas keseluruhan tukang batu bata, produktivitas keseluruhan terbesar diperoleh oleh tukang 5 yaitu sebesar 1,51 m2/jam dan produktivitas keseluruhan terkecil diperoleh tukang 3 yaitu sebesar 1,38 m2/jam dengan jumlah siklus yang terjadi yaitu 3 siklus. Maka produktivitas tukang perhari yang terbesar adalah 12 m2/hari > 10 m2/hari (SNI).

Gambar 1. Produktivitas Ideal Tukang

Gambar 2. Produktivitas Keseluruhan Tukang

Gambar 3. Rata Rata waktu Siklus Tukang

Berdasarkan Gambar 1 maka diketahui produktivitas ideal rata rata yaitu sebesar 1,81 m2/jam. Berdasarkan Gambar 2 maka diketahui produktivitas rata rata keseluruhan tukang yaitu sebesar 1,45 m2/jam, untuk tukang dengan nilai produktivitas terbesar diraih oleh tukang 5 yaitu sebesar 1,51 m2/jam, Sedangkan untuk tukang dengan nilai produktivitas terkecil diraih oleh tukang 3 yaitu sebesar 1,38 m2/jam. Berdasarkan Gambar 3 maka rata rata waktu yang di butuhkan tukang untuk menyelesaikan 1 m² pasangan bata adalah sebesar 41,13 menit, untuk waktu tercepat pemasangan batu bata di raih oleh tukang 5 yaitu sebesar 39,78 menit, sedangkan untuk waktu terlama pemasangan batu bata di raih oleh tukang 3 yaitu sebesar 43,44 menit.

5. Kesimpulan

Waktu yang diperlukan untuk penyelesaian 1 m² pekerjaan pemasangan batu bata yaitu ratarata 41,13 menit. Produktivitas tukang yang bekerja di lantai 1 yaitu rata-rata 1,45 m²/jam. Sedangkan produktivitas tukang yang bekerja di lantai 2 yaitu rata-rata 1,47 m²/jam.

Referensi

- Basari, K., Pradipta, R. Y., Hatmoko, J. U. D., Hidayat, A. 2014. Analisa Koefisien Produktivitas Tenaga Kerja Pada Pekerjaan Pembesian, *Jurnal Karya Teknik Sipil*, Vol. 3(4).
- Muslim, I., Zainuri., Lubis, F. 2019. Analisis Produktivitas Tenaga Kerja Pada Pekerjaan Dinding Faced (Studi Kasus Pada Proyek Pembangunan Hotel Pop Pekanbaru), *Jurnal Teknik Sipil*, Vol. 5(1).
- Musthofa. 2015. Analisa Pengaruh Kinerja Mandor Terhadap Kualitas Proyek Konstruksi Di Kota Tuban, *Jurnal Teknik Sipil Untag Surabaya*, Vol. 8(2).
- Pratama AB. 2017. Faktor Yang Mempengaruhi Produktivitas Tenaga Kerja Konstruksi Di Bungku Kabupaten Morowali Sulawesi Tengah, *Prosiding Seminar Hasil Penelitian* (SNP2M) (pp 155-159).
- Trianingsih, L., Hidayah, R. 2014. Studi Perbandingan Efektivitas Material Bambu Dan Batu Bata Sebagai Konstruksi Dinding, *Jurnal Teknik sipil Inersia* Vol. 3(1).
- Undang undang Republik Indonesia Nomor 13 Tahun 2003 Tentang Ketenagakerjaan.