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Large amount of palm oil mill effluent (POME) is generated annually. The waste would be
potential for production of single cell oils (SCOs). The objective of this study was to evaluate
lipid accumulation by fungi using POME as substrate. Seven filamentous fungi were initially
isolated from various biomes. The study results showed that out of these 7 fungi, five of them
produced endoglucanase and accumulated lipid about 34.3-87.5% of their dry cell mass using
POME as substrate. The five fungi were identified as ATH, sp.,

sp., sp. 1 T30, and sp.2 T50. The highest lipid accumulation was
obtained by ATH. The profile of trans-esterified SCOs revealed high content of
saturated and mono-unsaturated fatty acids i.e., palmitic (C16:0), stearic (C18:0) and oleic
(C18:1) acids similar to conventional vegetable oils used for biodiesel production. The strain
that was able to use organic substrates in POME indicated that they are promising strain for
biofuel feedstock as well as for fulfilling effluent quality for wastewater discharge.

Fatty acid methyl ester, , Oleaginous fungi, Palm oil mill effluent
(POME), Single cell oil
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ABSTRACT

INTRODUCTION

Keywords:

As awareness on the limited stock of fossil fuel and concern on environmental
hazard of petroleum fuel is growing, research on sustainable biofuel is gaining its
popularity (Richana 2010; Fujita 2004; Wraight & Ramos 2005; Jing 2010;
Mohammadi 2011). Microbial based biofuel (micro-diesel) has become more
attractive due to its environmental incentive and renewable properties (Zheng

et al. et al.
et al.

et al.

* Corresponding author : imadesudianalipi@gmail.com

DOI: 10.11598/btb.2014.21.2.4

100



2012). The merit of micro-diesel over petroleum fuel is clear, but our understanding
on microbial diversity and physiology of oleaginous microbes is still incomplete to
produce economically viable micro-diesel (Zhao . 2012). Current practice of
biodiesel production is through trans-esterification of vegetable oils or animal fats
with short chain alcohols. Feedstock acquires more than 70% of total biofuel
production cost, and this limit further expansion of biodiesel (Wei . 2013).
Exploiting lipid accumulating microorganism would offer solution for feedstock
generation (Wang . 2011). Some lipid accumulating fungi i.e.

, sp., var. ,
sp., sp., sp. and sp.

accumulate large amounts of lipids greater than 40% per dry cell weight (Wei
2013; Wynn . 2001) under N-limited cultivation conditions.

Oils derived from microbes have many advantages over plant oil due to having
short life cycle, less labor required, less affection by venue, season and climate, and
easier to scale up (Wang . 2013). These oleaginous characters would place microbial
oils as potential feedstocks for biodiesel production in the future (Liu . 2012).
Lignocellulose waste are abundant in tropical region. Several microbes use
lignocelluloses hydrolysate for biofuel production (Tsigie . 2011).

POME contains high strength organic substances with total chemical oxygen
demand (COD) about 30,000-40,000 ppm and 3% lipid (Wu . 2010). Utilizing these
wastes for biofuel production offer manifold benefits through reducing total organic
in effluent, and generate biofuel feedstock via bioconversion palm oil waste into triacyl
glycerol rich microbial cell (Coleman 2004). Fungi would be good candidate for
biofuel feedstock, since some fungi produce extracellular cellulase which break down
complex polysaccharide into fermentable sugar (Goyal . 1991), consume it for
lipid synthesis and finally accumulate it into lipid bodies which primarily consist of
triacylglicerol (Rossi . 2010). This study aims to evaluate the lipid accumulation by
fungi using POME as substrate.

This study initially isolated 7 filamentous fungi from various biomes as listed in
Table 1.

et al

et al

et al Cunninghamella
echinulata Microsphaeropsis Mortierella isabellina, M. ramanniana angulispora Mucor
circinelloides, Phomopsis Cephalosporium Sclerocystis Nigrospora

et al.
et al

et al
et al

et al

et al

et al

et al

MATERIALS AND METHODS

Fungi Species Used

Table 1. Fungi used in this study

Name of species Fungi sources

sp. Soil of Cibinong West Java
ATH Decaying wood of South East Sulawesi

Comp Insect frass
sp1 T30 Sludge of wastewater treatment in West Java

sp2 T50 Sludge of wastewater treatment in West Java
sp Soil of Cibinong West Java

sp. Soil of Cibinong West Java

Aspergillus
Flavodon flavus
Paecilomyces lilacinus.
Fusarium Fusarium

Trichoderma
Mucor
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Culture Conditions

Determination of Cellulolytic Fungi

Endoglucanase Assays

Biomass

The fungal inoculants of the 7 filamentous fungi was prepared following Mulder
(1989) and Kimura . (2004). Briefly, fungal spores that had been incubated at

30 °C for 5 days on Potato Dextrose A

L ×10 spores/mL was inoculated into 150 mL of the
seed culture medium containing (g/L): glucose, 30; yeast extract, 5; KNO , 1; KH PO ,
2.5; ZnSO ·7H O, 0.01; CuSO ·5H O, 0.002; MnSO , 0.01; MgSO ·7H O, 0.5;
FeSO ·7H O, 0.02; and CaCl , 0.1. The initial pH of the medium was adjusted to 5.5 by
adding 10 M NaOH in a 500 mL flask and incubated at 30 °C with shaking at 125 rpm
for 24 hours. Then, 10 mL of the seed culture was transferred into 250 mL of growth
medium containing POME obtained from PT Perkebunan Nusantara, Malimping,
West Java. Prepared medium was autoclaved for 20 minutes before use. The culture
was incubated at 30 °C with shaking at 125 rpm for 24 hours.

The ability of fungi to hydrolyze cellulose was evaluated using CMC containing
media following Zhou . (2004). To evaluate the effect of temperature on the
endoglucanase activity, the cultures were separately incubated at 30 °C and 50 °C with
shaking at 125 rpm for 5 days.

Enzymatic activity was assayed following Zhou . (2004). Briefly, the culture
were placed in 50 mL centrifuge tubes, then centrifuged at 2,500 g at 4 ºC for 30
minutes

activity measurements, 2% carboxymethylcellulose (CMC,
Sigma) was

L L L
s were incubated at 50 ºC for 30 minutes.

Reducing sugars were determined using the 3,5-dinitrosalycilic acid (DNS) assay
according to Dinis , (2009). L utes
(after adding the supernatant to the reaction mixture) up to 45 minutes

L utes and immediately cooled on ice
for 5 minutes. Finally, L was measured at
540 nm in a spectrophotometer (UV Mini 1240 Shimadzu). One enzyme unit is
defined as mMol glucose produced by 1 mL enzyme per hour.

Biomass fungal was determined according to Ogbo (2010). Briefly, biomass was
harvested by filtration, and fungal pellet were washed with 50 mL deionized water
for removal of residual nutrients, and lyophilized at -50 °C in a vacuum of 1 mbar for
12 hours and weighed. Fungal biomass was expressed as grams of dry weight per liter
of culture medium.

et al. et al

et al

et al

et al.

gar plates (Difco Laboratories, Detroit, MI,
USA) were harvested and suspended in seed culture medium. A spore suspension (500
μ ) containing approximately 4

. Supernatants were clarified by filtration through 0.45 μm nitrocellulose filters
(Pall). For enzymatic

dissolved in 50 mM citrate buffer pH 5. Enzymatic reactions contained
200 μ of supernatant, 300 μ of 50 mM citrate buffer pH 5, plus 500 μ of each
substrate solution. The reaction mixture

Briefly, 50 μ aliquots were taken every 5 min
, then mixed

with 50 μ of a DNS solution, boiled for 5 min
500 μ of water were added and absorbance
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Lipid Concentration

Lipid Composition Analysis

The lipid concentration of fungi broth was determined from a standard curve
obtained by plotting absorbance against the corresponding lipid concentration
determined by the conventional method of acid hydrolysis followed by solvent
extraction and gravimetric estimation. Forty milligrams samples were extracted with
3 mL of chloroform/methanol (1/2, v/v) by vortexing (1 minute) and centrifugating
at 2,500 g for 15 minutes at room temperature. The supernatants were collected and
residues were re-extracted twice with 2 mL of chloroform/methanol (1/1, v/v) by
centrifugation as stated above. All the supernatants were pooled together, filtered with
Whatman filter No. 1 (Whatman, USA), and washed with 2 mL of Milli-Q water,
followed by centrifugation at 2,500 g for 5 minutes. The lower organic phases were
collected and evaporated to dryness under nitrogen and total lipid contents were
determined gravimetrically (Sitepu . 2013).

The total lipid concentration was determined by gas chromatographic analysis of
the total fatty acids directly trans-methylesterified from dried cell (Liu 2008 ; Kosa
& Ragauskas 2011). One milliliter of 10% methanolic-HCl and 0.5 mL methylene
chloride were added to the dried biomass and placed at 60 °C for 3 hours for direct
methyl-esterification. The reaction was stopped by the addition of 2 mL saturated
NaCl solution and 1 mL hexane. The resultant methyl esters recovered in the hexane
layer were then applied to a gas chromatograph (GCMS-QP 2010-Ultra; Shimadzu,
Kyoto, Japan) equipped with a FAMEWAX capillary column (30 m× 0.25 mm i.d., GL
Science, Tokyo, Japan) under temperature programming (150-250 °C at 5 °C/minute
increments). Peanut oil (Nacalai Tesque, Kyoto, Japan) was trans-methylesterified and
used as the reference material.

Overall, all fungi studied showed CMC-ase activity (Fig.1), but the strains of
sp., and Comp grew slowly. Therefore, we omitted these

strains for further study. ATH produced the highest CMC-ase at
96 hours incubation. Other strains having slightly lower activity were sp.
and Comp. Maximum activity attained at 96 hours, and decreased
at 144 hours. The ability of cultures to produce CMC-ase indicated these fungi
produced endoglucanases, EC 3.2.1.4, and played important role in cellulose
hydrolyses (Hasper 2002). Kitcha and Cheirsilp (2014) observed newly isolated
fungi as being able to hydrolyze cellulose of palm by products.
To gain cellulolytic character of fungi in this study, we further evaluated their ability
to hydrolyze POME at 30 °C and 50 °C.

et al

et al.

Mucor Paecilomyces lilacinus
Flavodon flavus

Aspergillus
Paecilomyces lilacinus

et al.
Aspergillus tubingensis

RESULTS AND DISCUSSION
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Endoglucanase Activity at 30 °C

Overall, endoglucanase activity of fungi grown in POME is summarized in
Figure 2. The highest endoglucanase activity was obtained by ATH and

sp. grown at 30 °C after 96 hours cultivation. Slightly lower activity was
observed on sp.2 St50. Generally lower CMC-ase was observed at 144 hours
fermentation.

Flavodon flavus
Aspergillus

Fusarium

Figure 1. CMC-ase (endoglucanase) activity of fungi grown on CMC-medium

Figure 2. Endoglucanase activity of selected isolates grown on POME at 30 °C

Aspergillus

sp.

Flavodon

flavus ATH

Paecilomyces

sp. Comp

Fusarium

sp1 T30

Fusarium

sp2 T50

Trichoderma

sp.
Mucor sp.

Aspergillus

sp.

Flavodon

flavus

Fusarium sp1

T30

Fusarium sp2

T50

Trichoderma

sp.
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Endoglucanase Activity at 50 °C

Effect of Growth Temperature on Endoglucanase Activity

Endoglucanase activity of selected fungi grown on POME at 50 °C varies among
fungal species depending on incubation period (Fig.3). Maximum activity was showed
by ATH at 96 hours incubation. Lower activity was obtained after 144
hours cultivation.

In general, CMC-ase activity was higher in cultures incubated at higher
temperature (Fig.4). Almost 50% increase of CMC-ase activity was achieved by

ATH. Fungi have been intensively explored for hydrolyses of
lignocellulose materials. ATH is wood decayed fungi isolated from
South East Sulawesi, Indonesia. appears to be widely distributed
lignocellulolytic fungi isolated from decaying sea grass from a coral lagoon off the
west coast of India (Raghukumar 1999; Mtui & Nakamura 2008) and produces
extracellular lignin-modifying enzymes (LMEs): manganese-dependent peroxidase
(MNP), lignin peroxidase (LIP), and laccase when grown in N-limited media (Mtui &
Nakamura 2008). These enzyme characters would be advantageous for producing
fermentable substances for triacylglicerol synthesis using lignin containing waste such
as POME (Duarte 2013; Lam & Lee 2011).

We also noticed that a culture of ATH having high CMC-ase or
endoglucanase activity indicated that hydrolyses and product hydrolyses consumption
affected enzyme synthesis (Vlasenko 2010).

Flavodon flavus

Flavodon flavus
Flavodon flavus

Flavodon flavus

et al.

Flavodon flavus

et al.

Figure 3. Endoglucanase activity of selected isolates grown on POME at 50 °C

Aspergillus sp.Flavodon flavus
Fusarium sp1

T30

Fusarium sp2

T50
Trichoderma sp.
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Lipid Accumulation

Fatty Acid Profiles of Fungal SCOs

POME is good substrate for growing lipid accumulating fungi (Fig.5), as shown by
the lipid production (75% lipid per cell dry-weight). The highest lipid accumulation
was attained by ATH when grown at 30 °C, but less when the culture was
grown at 50 °C. Incubation temperature affected lipogenesis of fungi (Fig.5).

The suitability of SCOs from oleaginous fungi was evaluated and observed
contained 92% (w/w) neutral lipids in its SCO (Wu 2011).

Other lipid producer, , contained lower neutral lipid fractions (18.5%,
w/w), higher amount of polar lipids (35%, w/w ), and free fatty acids (32% w/w) in its
SCO (Wynn . 2001).

Fatty acid profiles compositions of selected fungi were obtained through trans-
esterification of triacyl glycerol with methanol under alkaline condition. Fatty Acid
Methyl Esters (FAME) was mainly composed of Methyl palmitate ( C H O ), Methyl
cis-10-heptadecenoate (C H O ) and Methyl oleate (C H O ) (Table 2), indicating
that the FAME is closely related to palm and soybean fatty acids (Ratledge & Wynn,
2002). There was slight differences in concentration of lipid species among fungi
evaluated (Wynn 2001; Khot 2012; Chan 2010). The variability in fatty
acid composition of oleaginous organism could be due to culture technique (Chi
2011) and species dependence (Gasmi . 2011).

Flavodon flavus

Cunninghamella echinulata et al.
Mucor circinelloides

et al

et al. et al. et al.
et al.

et al

17 34 2

18 34 2 19 36 2

Figure 4. Comparison of endoglucanase activity of selected isolates grown on POME
at 30 °C and 50 °C

Aspergillus sp.

Flavodon flavus

Fusarium sp1

Fusarium sp2

Trichoderma sp.

Aspergillus sp.

Flavodon flavus

Fusarium sp1

Fusarium sp2

Trichoderma sp.

106

BIOTROPIA Vol. 21 No. 2, 2014



Figure 5. Lipid accumulation by fungi grown on POME at 30 °C and 50 °C after 6-day
fermentation

Table 2. Lipid composition of fungi grown on POME cultured at 30 °C after 6 days
fermentation

Fatty Acid Methyl Esters
(FAME)

Trichoderma
sp.

Flavodon
flavus
ATH

sp.

Fusarium
sp1
T30

Fusarium
sp2 T50

Methyl
palmitate(C17H34O2)

31.39 27.05 23.62 21.36 20.21

Methyl
palmitoleate(C17H32O2)

29.65 26.28 21.08 21.08 20.68

Methyl cis-10-
heptadecenoate

(C18H34O2)

3.1 5.32 4.36 5.32 4.32

Methyl stearate
(C19H38O2 )

4.14 4.28 5.23 4.23 3.69

Methyl linoleate
(C19H34O2)

5.41 6.21 5.21 4.65 6.1

Methyl butanoate 6.72 11.2 7.06 6.1 9.2
Methyl oleate
(C19H36O2)

6.06 6.21 7.32 7.36 6.35

Methyl linolenate
(C19H32O2)

4.11 3.11 9.81 9.98 8.21

Methyl cis-
vaccenate(C19H32O2)

2.38 2.32 6.8 8.69 6.98

Methyl cis-12-
Octadecenoate

2.71 4.82 5.91 4.91 8.6

Methyl
myristate(C15H30O2)

4.33 3.2 3.6 6.32 5.66

Aspergillus sp.Flavodon flavus
Fusarium sp1

T30

Fusarium sp2

T50
Trichoderma sp.
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