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Abstract

Let Γ = Cay(Zn, Sk) be the Cayley graph on the cyclic additive group Zn (n ≥ 4), where S1 =
{1, n− 1}, . . . , Sk = Sk−1 ∪ {k, n− k} are the inverse-closed subsets of Zn − {0} for any k ∈ N,

1 ≤ k ≤ [n
2
] − 1. In this paper, we will show that χ(Γ) = ω(Γ) = k + 1 if and only if k + 1|n.

Also, we will show that if n is an even integer and k = n
2
− 1 then Aut(Γ) ∼= Z2wrISym(k + 1)

where I = {1, . . . , k + 1} and in this case, we show that Γ is an integral graph.
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1. Introduction

In this paper, a graph Γ = (V,E) always means a simple connected graph with n vertices

(without loops, multiple edges and isolated vertices), where V = V (Γ) is the vertex set and E =
E(Γ) is the edge set. The size of the largest clique in the graph Γ is denoted by ω(Γ) and the size

of the largest independent sets of vertices by α(Γ). A graph Γ is called a vertex-transitive graph if

for any x, y ∈ V there is some π in Aut(Γ), the automorphism group of Γ, such that π(x) = y.

Let Γ be a graph, the complement Γ of Γ is the graph whose vertex set is V (Γ) and whose edges

are the pairs of nonadjacent vertices of Γ. It is well known that for any graph Γ, Aut(Γ) = Aut(Γ)
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[8]. If Γ is a connected graph and ∂(u, v) denotes the distance in Γ between the vertices u and v,

then for any automorphism π in Aut(Γ) we have ∂(u, v) = ∂(π(u), π(v)).
Let k be a positive integer, a k-colouring of a graph Γ is a mapping f : V (Γ) −→ {1, . . . , k}

such that f(x) 6= f(y) for any two adjacent vertices x and y in Γ, and if such a mapping exists we

say that Γ is k-colorable. The chromatic number χ(Γ) of Γ is the minimum number k such that

Γ is k-colorable. Let Γ be a graph and I(Γ) denote the set of all independent sets of the graph

Γ. A fractional colouring of a graph Γ is a weight function µ : I(Γ) −→ [0, 1] such that for any

vertex x of Γ,
∑

x∈I∈I(Γ) µ(I) ≥ 1, and if such a weight function exists we say that Γ is fractional

colouring. The fractional chromatic number of a graph Γ is denoted by χf (Γ) and defined in [9,

Page 134]. Also a fractional clique of a graph Γ is denoted by ψf (Γ) and defined in [9, Page 134].

Let Υ = {γ1, . . . , γk+1} be a set and K be a group then we write Fun(Υ, K) to denote the set

of all functions from Υ into K, we can turn Fun(Υ, K) into a group by defining a product:

(fg)(γ) = f(γ)g(γ) for all f, g ∈ Fun(Υ, K) and γ ∈ Υ,

where the product on the right is in K. Since Υ is finite, the group Fun(Υ, K) is isomorphic to

Kk+1 (a direct product of k + 1 copies of K) via the isomorphism f → (f(γ1), . . . , f(γk+1)). Let

H and K be groups and suppose H acts on the nonempty set Υ. Then the wreath product of K

by H with respect to this action is defined to be the semidirect product Fun(Υ, K)⋊H where H

acts on the group Fun(Υ, K) via

fx(γ) = f(γx
−1

) for all f ∈ Fun(Υ, K), γ ∈ Υ and x ∈ H.

We denote this group by KwrΥH . Consider the wreath product G = KwrΥH . If K acts on a set

∆ then we can define an action of G on ∆×Υ by

(δ, γ)(f,h) = (δf(γ), γh) for all (δ, γ) ∈ ∆×Υ,

where (f, h) ∈ Fun(Υ, K)⋊H = KwrΥH [6].

Eigenvalues of an undirected graph Γ are the eigenvalues of an arbitrary adjacency matrix of

Γ. Harary and Schwenk [10] defined Γ to be integral, if all of its eigenvalues are integers. For a

survey of integral graphs see [3]. In [2] the number of integral graphs on n vertices is estimated.

Known characterizations of integral graphs are restricted to certain graph classes, see [1].

Let G be a finite group and S a subset of G that is closed under taking inverses and does not

contain the identity. A Cayley graph Γ = Cay(G,S) is a graph whose vertex-set and edge-set are

defined as follows:

V (Γ) = G; E(Γ) = {{x, y} | x−1y ∈ S}.

It is well known that every Cayley graph is vertex-transitive.

For any graph Γ, ω(Γ) ≤ χ(Γ) [8]. Also it is well known that for bipartite graphs ω(Γ) =
χ(Γ) = 2. Let Γ be the Cay(Zn, Sk) where Zn (n ≥ 4), is the cyclic additive group with identity

{0}, and for any k ∈ N, 1 ≤ k ≤ [n
2
]−1, S1 = {1, n−1}, . . . , Sk = Sk−1∪{k, n−k} are inverse-

closed subsets of Zn − {0}. In this paper we will show that χ(Γ) = ω(Γ) = k + 1 if and only if

k+1|n, also we show that if n is an even integer and k = n
2
−1 thenAut(Γ) ∼= Z2wrISym(k+1),

where I = {1, . . . , k + 1}.
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2. Definitions and Preliminaries

Proposition 2.1. [11] For any graph Γ we have

ω(Γ) ≤ ωf (Γ) ≤ χf (Γ) ≤ χ(Γ).

Proposition 2.2. [8] If Γ is vertex transitive graph, then we have

ωf (Γ) =
|V (Γ)|

α(Γ)

Definition 1. [4] Let Γ be a graph with automorphism group Aut(Γ). We say that Γ is symmetric

if, for all vertices u, v, x, y of Γ such that u and v are adjacent, also, x and y are adjacent, there

is an automorphism π such that π(u) = x and π(v) = y. We say that Γ is distance-transitive if,

for all vertices u, v, x, y of Γ such that ∂(u, v) = ∂(x, y), there is an automorphism π such that

π(u) = x and π(v) = y.

Remark 2.1. [4] Let Γ be a graph. It is clear that we have a hierarchy of conditions:

distance-transitive ⇒ symmetric ⇒ vertex-transitive

Definition 2. [4], [5] For any vertex v of a connected graph Γ we define

Γr(v) = {u ∈ V (Γ) | ∂(u, v) = r},

where r is a non-negative integer not exceeding d, the diameter of Γ. It is clear that Γ0(v) = {v},

and V (Γ) is partitioned into the disjoint subsets Γ0(v), . . . ,Γd(v), for each v in V (Γ). The graph Γ
is called distance-regular with diameter d and intersection array {b0, . . . , bd−1; c1, . . . , cd}, if it is

regular of valency k and for any two vertices u and v in Γ at distance r we have |Γr+1(v)∩Γ1(u)| =
br, and |Γr−1(v) ∩ Γ1(u)| = cr, (0 ≤ r ≤ d). The numbers cr, br and ar, where

ar = k − br − cr (0 ≤ r ≤ d),

is the number of neighbours of u in Γr(v) for ∂(u, v) = r, are called the intersection numbers of

Γ. Clearly b0 = k, bd = c0 = 0 and c1 = 1.

Remark 2.2. [4] It is clear that if Γ is distance-transitive graph then Γ is distance-regular.

Lemma 2.1. [4] A connected graph Γ with diameter d and automorphism group G = Aut(Γ) is

distance-transitive if and only if it is vertex-transitive and the vertex-stabilizer Gv is transitive on

the set Γr(v), for each r ∈ {0, 1, . . . , d}, and v ∈ V (Γ).

Theorem 2.1. [5] Let Γ be a distance-regular graph which the valency of each vertex as k, with

diameter d, adjacency matrix A and intersection array,

{b0, b1, . . . , bd−1; c1, c2, . . . , cd}.

Then the tridiagonal (d+ 1)× (d+ 1) matrix
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(Γ) =

























a0 b0 0 0 . . .

c1 a1 b1 0 . . .

0 c2 a2 b2
. . .

cd−2 ad−2 bd−2 0
. . . 0 cd−1 ad−1 bd−1

. . . 0 0 cd ad

























,

determines all the eigenvalues of Γ.

Theorem 2.2. [7] Let Γ be a graph such that contains k + 1 components Γ1, . . . ,Γk+1. If for any

i ∈ I = {1, . . . , k + 1}, Γi
∼= Γ1 then Aut(Γ) ∼= Aut(Γ1)wrISym(k + 1).

3. Main Results

Proposition 3.1. Let Γ = Cay(Zn, Sk) be the Cayley graph on the cyclic group Zn (n ≥ 4), where

S1 = {1, n− 1}, . . . , Sk = Sk−1 ∪ {k, n− k} are the inverse-closed subsets of Zn − {0} for any

k ∈ N, 1 ≤ k ≤ [n
2
]− 1. Then χ(Γ) = ω(Γ) = k + 1 if and only if k + 1|n.

Proof. By definition of Si, 1 ≤ i ≤ k clearly | Si |= 2i, hence | Sk |= 2k. Let Γ = Cay(Zn, Sk)
be the Cayley graph on the cyclic group Zn and Sk be the set of inverse-closed subset of Zn − {0}
which is defined as before. By definition of Γ clearly ω(Γ) = k + 1. So, if χ(Γ) = ω(Γ) = k + 1
then by Proposition 2.1, χf (Γ) = ωf (Γ) = k+1. Also we know that Γ is a vertex transitive graph,

so by Proposition 2.2, k + 1 = ωf (Γ) = |V (Γ)|
α(Γ)

therefore k + 1|n. Conversely, if k + 1|n then

χ(Γ) = k + 1, because Γ is a vertex transitive graph and the size of every clique in the graph Γ is

k + 1, therefore χ(Γ) = ω(Γ) = k + 1.

Example 1. Suppose Γ1 = Cay(Z12, S2) and Γ2 = Cay(Z12, S3) are two Cayley graphs, then

χ(Γ1) = ω(Γ1) = 3 and χ(Γ2) = ω(Γ2) = 4.

Figure 1: χ(Γ1) = ω(Γ1) = 3 Figure 2: χ(Γ2) = ω(Γ2) = 4
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Proposition 3.2. Let Γ = Cay(Zn, Sk) be the Cayley graph on the cyclic group Zn (n ≥ 4), where

S1 = {1, n− 1}, . . . , Sk = Sk−1 ∪ {k, n− k} are the inverse-closed subsets of Zn − {0} for any

k ∈ N, 1 ≤ k ≤ [n
2
]− 1. If n is an even integer and k = n

2
− 1 then Aut(Γ) ∼= Z2wrISym(k + 1),

where I = {1, . . . , k + 1}.

Proof. Let V (Γ) = {1, . . . , n} be the vertex set of Γ. By assumptions and Proposition 2.2, the size

of the largest independent set of vertices in the Γ is 2, because Γ is a vertex transitive graph and the

size of every clique in the graph Γ is k + 1. Thus, the size of the every independent set of vertices

in the Γ is 2. Therefore for any x ∈ V (Γ), there is exactly one y ∈ V (Γ) such that x−1y = k + 1.

Hence, if x−1y = k+1 then two vertices x and y adjacent in the complement Γ of Γ, so Γ contains

k + 1 components Γ1, . . . ,Γk+1 such that for any i ∈ I = {1, . . . , k + 1}, Γi
∼= Γ1

∼= K2,

where K2 is the complete graph of 2 vertices. Therefore Γ ∼= (k + 1)K2, hence by Theorem 2.2,

Aut(Γ) ∼= Aut(K2)wrISym(k + 1) = Z2wrISym(k + 1), soAut(Γ) ∼= Z2wrISym(k + 1).

Example 2. Let Γ = Cay(Z12, S5) be the Cayley graph on the cyclic group Z12, then χ(Γ) =
ω(Γ) = 6, and Aut(Γ) = Z2wrISym(6), where I = {1, . . . , 6}.

Figure 3: χ(Γ) = ω(Γ) = 6

12

3

4

5

6

7 8

9

10

11

12

Proposition 3.3. Let Γ = Cay(Zn, Sk) be the Cayley graph on the cyclic group Zn (n ≥ 4), where

S1 = {1, n− 1}, . . . , Sk = Sk−1 ∪ {k, n− k} are the inverse-closed subsets of Zn − {0} for any

k ∈ N, 1 ≤ k ≤ [n
2
] − 1. If n is an even integer and k = n

2
− 1 then Γ is a distance-transitive

graph.

Proof. By Lemma 2.1, it is sufficient to show that vertex-stabilizer Gv is transitive on the set Γr(v)
for every r ∈ {0, 1, 2} and v ∈ V (Γ), because of Γ is a vertex-transitive graph. We know V (Γ) =
{1, 2, . . . , n

2
−1, n

2
, n
2
+1, . . . , n} is the vertex set of Γ. LetG = Aut(Γ). Consider the vertex v = 1

in the V (Γ), then Γ0(v) = {1}, Γ1(v) = {2, . . . , n
2
− 1, n

2
, n
2
+ 2, . . . , n} and Γ2(v) = {n

2
+ 1}.

Let ρ = (2, 3, . . . , n
2
, n
2
+ 2, . . . , n) be the cyclic permutation of the vertex set of Γ. It is an easy

task to show that ρ is an automorphism of Γ. We can show that H = 〈(2, 3, . . . , n
2
, n
2
+ 2, . . . , n)〉

acts transitively on the set Γr(v) for each r ∈ {0, 1, 2}, because H is a cyclic group. Note that if

1 6= v ∈ V (Γ) then, we can show that vertex-stabilizer Gv is transitive on the set Γr(v) for each

r ∈ {0, 1, 2}, because Γ is a vertex-transitive graph.
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Proposition 3.4. Let Γ = Cay(Zn, Sk) be the Cayley graph on the cyclic group Zn (n ≥ 4), where

S1 = {1, n− 1}, . . . , Sk = Sk−1 ∪ {k, n− k} are the inverse-closed subsets of Zn − {0} for any

k ∈ N, 1 ≤ k ≤ [n
2
]− 1. If n is an even integer and k = n

2
− 1 then Γ is an integral graph.

Proof. By Remark 2.2, it is clear that Γ is distance-regular, because Γ is a distance-transitive

graph. Let V (Γ) = {1, 2, . . . , n} be the vertex set of Γ. Consider the vertex v = 1 in the V (Γ),
then Γ0(v) = {1}, Γ1(v) = {2, . . . , n

2
− 1, n

2
, n
2
+ 2, . . . , n} and Γ2(v) = {n

2
+ 1}. Let be u in

the V (Γ) such that ∂(u, v) = 0 then u = v = 1 and |Γ1(v) ∩ Γ1(u)| = 2k, hence b0 = 2k and

by Definition 2, a0 = 2k − b0 = 0. Also, if u in the V (Γ) and ∂(u, v) = 1 then two vertices u, v

are adjacent in Γ, so |Γ0(v) ∩ Γ1(u)| = 1 and |Γ2(v) ∩ Γ1(u)| = 1, hence c1 = 1, b1 = 1 and

a1 = 2k− b1− c1 = 2k−2. Finally, if u in the V (Γ) and ∂(u, v) = 2 then two vertices u, v are not

adjacent in Γ, so |Γ1(v) ∩ Γ1(u)| = 2k, hence c2 = 2k and a2 = 2k − c2 = 0. So the intersection

array of Γ is {2k, 1; 1, 2k}. Therefore by Theorem 2.1, the tridiagonal (3)× (3) matrix,




a0 b0 0
c1 a1 b1
0 c2 a2



 =





0 2k 0
1 2k − 2 1
0 2k 0



 ,

determines all the eigenvalues of Γ. It is clear that all the eigenvalues of Γ are 2k, 0,−2 and their

multiplicities are 1, k + 1, k, respectively. So Γ is an integral graph.
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