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Abstract – Mercury is hazardous contaminant that can be accumulated by aquatic organisms such as fishes, mussels 
etc. Catfish is one of source of animal protein but it also can accumulate Hg2+ from water that used in aquaculture. 
Due to less information about capability of catfish to accumulate Hg2+, therefore we studied bioaccumulation of Hg2+ 
that used biokinetic approach (aqueous uptake-rate, and elimination-rate).  Nuclear application technique was applied 
in this study by using radiotracer of 203Hg.  A simple kinetic model was then constructed to predict the 
bioaccumulation capability of   by catfish. The result of experiments were shown that the uptake rate of difference 
Hg2+ concentration were 79.90 to 101.22 ml.g-1.d-1. Strong correlation between uptake rates with increasing 
Hg2+concentration. In addition, the elimination rates were range 0.080 – 0.081 day-1. The biology half time (t1/2b) of 
Hg2+ in whole body catfish were 8.50 – 8.63 days.  However, no clear correlation between elimination rate with 
increasing concentration of Hg2+. The calculation of Bio Concentration Factor (BCF) shown catfish have capability 
to accumulated Hg maximum 1242.69 time than its concentration in water.  
Keywords:  Radiotracer; Kinetic; Uptake; Elimination; Bioaccumulation 

  
Introduction 

Catfish is one of aquaculture species in Indonesia. Catfishes of the genus Clarias (Siluroidei, 
Claridae) are widespread in tropical Africa and Asia (Sudarto, 2007). Because many catfish aquacultures in 
low quality water, it has possibility contaminated by pollutants such as heavy metals. One of the most 
hazardous contaminants is mercury (Hg) that input from natural and anthropogenic activities and then will  
enter   In environment waters,  mostly of  Hg present as in organic  (Hg2+) and organic (methyl mercury) 
(Wang, 2012; Leermakers et al., 2005). These mercury species have potential to be accumulated in catfish 
through water and the food web. Consumption of contaminated cat fish by mercury can effect to human 
health. WHO (2008) explain that some organs such as: the nervous system, the cardiovascular system and 
the kidneys are the primary targets for toxicity of mercury and mercury compounds. Moreover, the most 
of sensitive to toxic effect of mercury are developing organ systems (such as the fetal nervous system).  
Therefore, it is important to find the information of accumulation of Hg2+ in catfish.  

A large number bioaccumulation studies of Hg2+ and other heavy metals in fresh water fishes have 
examined but most previous studies measured the concentration of Hg in fish and compare it’s 
concentration in water (Baker et al., 2009; Choy et al., 2009; Casas and Bacher, 2006; Passos et al., 2007; 
Kasper et al., 2009; Limbong et al., 2004; Eng et al., 1989, Prasetyo, 2009; Riani, 2010; Mustaruddin, 2013). 
However, these previously studies were not provided information regarding the uptake and elimination 
kinetics of the Hg2+, which are important parameters in interpreting and predicting the Bioaccumulation 
Factor.  On other hand biokinetics of Hg2+ in fishes are less well studied.  In this study we quantified the 
biokinetics (uptake and elimination) of Hg2+ from water by catfish (Clarias gariepinus) to predict its 
capability to accumulate the Hg2 that used radiotracer.  A radiotracer technique was used during the 
present study because it is a very sensitive method and the biokinetics of Hg can be followed non 
invasively over time (Tsui and Wang, 2004). African catfish  (C. gariepinus) is one of the popular freshwater 
fish widely cultured in Indonesia, and is used for human consumption. Herein, we measured a few kinetic 
parameters (aqueous uptake-rate, and elimination-rate) of Hg2+ species in the fish. A simple kinetic model 
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was then constructed to predict the bioaccumulation capability of   Hg2+ by catfish from water. This 
information is important due to both of the environmental assessment in ecosystems and human risk 
assessment regarding to fish consumption. 

 

Materials and Methods 
Radiotracer experiments 

The bioaccumulation experiment used methods similar to those of  Wang and Wong, 2013; Tsui 
and Wang  2004  with some modifications. The catfish (C. gariepinus) (7.0 to 7.2 cm length) were purchased 
from a fish farm in Serpong area, South Tangerang, Indonesia. Catfishes were acclimated by maintaining in 
aerated fresh water and fed with commercial fish feed twice a day.  After 14 days acclimatization process, 
four catfishes were placed in aquarium and exposed to different concentrations of Hg2+ (0.001, 0.005 and 
0.01 ppm) in the dissolved (0.22-μm-filtered fresh water) for a total of 12 days. Every Hg2+ concentration 
also spiked 203Hg2+radioisotope into aquarium until each activity concentration was 1 Bq.ml-1.  Radiotracer 
of 203Hg2+((t1/2 = 46.9 d, in 0.1 N HCl, specific activity = 3μCi.g-1) was produced in Center for 
Radioisotope and Radiopharmaceutical, BATAN Indonesia. The uptake of radioisotopes was followed non 
destructively over time. The activity concentration of 203Hg2+ was measured by a gamma spectrometer (NaI 
detector) at 279 keV, and was corrected for counting efficiency and geometry. At the end of the uptake 
experiment (8 days), all catfishes were transferred to the uncontaminated running freshwater. The flow rate 
of the uncontaminated water was set at 1 l.h-1 to avoid recontamination.  The elimination of the 203Hg2+ in 
each catfish is expressed as the percent of the initial activity at the beginning of the elimination experiment. 
Model 

The uptake kinetics were modelled with a single-component first order kinetic model (Whicker 
and Schultz, 1982, Metian et al., 2011; Wang, 2012, Cardoso et al., 2013) 

        (1) 
where CFt and CFss represent activity concentration factor at time t (d) and at steady state (ml.g-1) 
respectively, and ke represents biological uptake rate constant (d-1).  If there was no indication of reaching a 
steady state during the time of exposure (non-significant fit to model 1), a simple linear regression model 
was applied. Concentration factor, CF is ratio of activity concentration of 203Hg in fish tissue to its activity 
concentration at water. 

         (2) 
where ku is the slope of regression (uptake in ml. g-1.d-1). Elimination after return to fresh water was 
modelled using either a single-component exponential model  

         (3) 
where Ao and At are percent of the initial activity at the beginning of the loss experiment and percent at 
time t of loss experiment.  On other had ke is elimination rate constant. The Bio Concentration Factor 
(BCF) is ratio of the steady-state chemical concentrations in an aquatic water-respiring organism and the 
water determined in a controlled laboratory experiment in which the test organisms are exposed to a 
chemical in the water (UK-EPA, 2011) 

         (4) 

 

Result and Discussion 
According to Wang (2012), speciation of Hg2+ is complicated by their binding to various ligands 

(e.g., chloride and dissolved organic carbon). Furthermore, Wang (2012) explained that differences in Hg 
speciation may considerably affect its bioavailability and bioaccumulation in aquatic organisms. In this 
experiment we calculated all biokinetic parameter from dissolved Hg2+. On other hand interaction between 
Hg and dissolved organic matter (DOM) significantly influences the Hg speciation, solubility, mobility and 
toxicity in aquatic ecosystems (Ci et al., 2011).  Using the pore-size filter (0.22 μm) we removed DOM to 
ensure the mercury speciation was dissolved Hg2+. 

After 7d experiment, uptake of  Hg2+in whole-body catfish displayed linear kinetics and the steady 
state wasn’t reached (Figure 1).  The values of Concentration Factor (CF) at the end of experiment were 
517.88 to 650.58 ml.g-1. This result indicated that catfish have capability to accumulated Hg2+ 517.88 to 
650.58 time than it’s concentration on water. However these are not representing as value of Bio 
Concentration Factor (BCF) due to this value have to be determined at steady state condition. 
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Figure. 1 Bioaccumulation Hg2+ (a) Uptake Hg2+ from difference concentration (b) Influence of Hg2+ 

concentration in water to uptake rate by catfish 
 

Uptake rate of Hg2+ from difference it’s concentration in water were 79.90 to 101.22 ml.g-1.d-1.  
Uptake of dissolved metals (Hg2+) from solution through permeable surfaces into the bodies of fish is 
generally considered to be a passive process (Carvalho et al., 1999). Elevated Hg2+concentration in water 
induce decreasing of Concentration Factor and uptake rate. This result can be explained based on 
mechanism bioaccumulation Hg2+ through water. Mercury enter to fish via gill that follow the mechanism 
of respiration or water drinking. According to Morgan et al (2004), it is generally accepted that the key toxic 
site of action of heavy metal (such as Hg2+) is the Na+K+-ATPase located on the basolateral membrane of 
gill cells. Furthermore, Morgan et al. (2004) explained that this enzyme is responsible for extruding Na+in 
exchange for K+ across the basolateral membrane and into the extracellular fluid, thereby providing much 
of the energy for active Na+ and Cl- uptake. In freshwater fish, this transport is essential to counter act the 
diffusive loss of Na+ and Cl- to the hypo osmotic fresh water environment. Water borne Hg2+ exposure 
inhibits the activity of this enzyme causing an inhibition of Na+ and Cl− uptake via the gills (Morgan et al., 
2004). Furthermore Stohs and Bagchi (1989) explained that specific differences in the toxicities of metal 
ions may be related to differences in solubility, absorbability, transport, chemical reactivity, and the 
complexes that are formed within spite of these factors, the basic mechanisms involving production of 
reactive oxygen species are the same for these transition metal ions in the body. The toxicity of mercury 
and its ability to react with and deplete free sulffiydryl groups are well known. Elemental, inorganic, and 
organic forms of mercury exhibit toxicological characteristics including neurotoxicity, nephrotoxicity, and 
gastrointestinal toxicity with ulceration and hemorrhage. The decrease in free sulfhydryl groups may lead to 
the formation of an oxidative stress, resulting in tissue-damaging. (Stohs and Bagchi, 1989) 

Regarding the elimination step, this study find that the catfish demonstrated a slow decrease of 
Hg2+ concentration in the first day until the end of the experiment.  Probably, the catfish needed more time 
to progressively detoxify and a continuation to this study would be to assign until achieve equilibrium. 
When non-contaminating conditions were restored, the whole body elimination kinetics of both Hg2+ were 
best described by a one -component exponential model (Figure 2a). The elimination rate were range 0.080 
– 0.081day-1. The biology half time (t1/2b) Hg2+ in whole body catfish were 8.50 – 8.63 days.  However, no 
clear correlation between elimination rate and increasing concentration of Hg2+ because the linear 
regression coefficient (Adj.R-Sq) bellow 50% (Figure 2b). 

 

(a) (b)
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Figure. 2  Elimination of  Hg2+ (b) Loss of Hg2+ in difference concentration, (b) Ke of catfish after 

accumulated Hg2+ in difference concentrations 
 

The uptake experiment only performed for 7 days so that the condition of equilibrium has not 
been reached. According to Reinardy et al. (2011), dissolved contaminants are primarily taken up across gill 
membranes or epithelia of the gastrointestinal tract depending on exposure (aqueous or dietary); and, if 
exposure is of sufficient duration, equilibrium will be established between contaminants in tissues and in 
the abiotic environment. Another way to define the ability of bioaccumulation is the value of BCF. Van 
der Oost et al. (2003) explained the bio Concentration Factor (BCF) of a chemical is the ratio of its 
concentrations in the organism and in water during steady state or equilibrium.  The biokinetic parameter 
that results from this experiment was display on Table 1. The elevation of Hg2+ concentration will decrease 
the uptake rate, elimination rate, Bio Concentration Factor (Table 1). The model bioaccumulation was 
displayed at Figure 3. 

 
Table 1. Bioakinetic parameter and BCF calculation 

Concentration of Hg2+ 

 in water (ppm) 
ku 

(ml.g-1.day-1) 
Ke 

(day-1) 

BCF 
(ml.g-1) 

t1/2 
(day) 

0.001 101.22 0.081 1242.69 8.51 

0.005 86.81 0.080 1081.41 8.63 

0.01 79.90 0.080 986.78 8.56 
 
 
 

Figure 3. Bioaccumulation model. (a) Prediction steady state condition, (b) Influence concentration   
Hg2+ in water to BCF 

 

(a) (b)

(a) (b)
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Regarding to model, steady state condition was reached after 31 days accumulated Hg2+. The BCF 
have strong correlated with Hg2+ concentration in water because increasing concentration will inhibit the 
metabolism enzyme of catfish.  Comparing with another result was shown at Table 2. 

 
Table 2. Biokinetic for fishes using radiotracer techniques 

Biota ku 
(ml.g-1.day-1) 

ke 

(day-1) 
BCF, calculation 

(ml.g-1) 
Refference 

Tilapia (Oreochormis niloticus) 86 0.039 2205.128 Wang et al. 
(2010) 

Mosquito fish (Gambusia 
affanis) 

52 – 78 0.021 – 0.042 1857.143  - 2476.19 Pickhardt et al. 
(2006) 

Sunfish (Lepomis microlophus) 38 – 51 0.003 - 
0.0035 

1033.30 – 1457.14 Pickhardt et al. 
(2006) 

Catfish (Clarias gariepinus) 79.90 – 101.22 0.080 – 0.081 986.78 – 1242.69 in this study 
 

The result of this experiment was comparable with another Hg2+ bioaccumulation experiment that 
use radiotracer techniques.  Furthermore, protection of human health depends directly on the accuracy of 
estimates of BCF because its variability such as (1) ecological variability (signal) due to ecosystem-specific 
differences in Hg uptake and accumulation and (2) methodological variability (noise) due to, for example, 
differences in species, sex, weight, length, age, trophic position, tissue type, collection season, and Hg 
analysis (Scudder-Eikenberry et al., 2015).  Thus, minimizing methodological variability in experiment is 
critical to BAF-based Hg-risk management. The Hg concentrations in some fishes (including catfish) may 
be contribute  to negative effect to human health, thus Hg exposure to human mainly occurs through 
dietary intake of contaminated fish (Taylor et al., 2014). Base to this experiment, catfish have capability to 
accumulated Hg maximal 1242.69 time than its concentration in water. On other hand the threshold levels 
of Hg2+ is 1.0 mg.Kg-1 thus concentration of Hg2+ in aquaculture water approximately 0.00081 ppm can 
give maximum concentration level of Hg in catfish. 
 
Conclusions 

Uptake rate of Hg2+ from difference it’s concentration in water were 79.90 to 101.22 ml.g-1.d-1.  
Strong correlation between uptake rates with increasing concentration of Hg2+. The elimination rate were 
range 0.080 – 0.081day-1. The biology half time (t1/2b) Hg2+ in whole body catfish were 8.50 – 8.63 days.  
However, no clear correlation between elimination rate and increasing concentration of Hg2+.  Catfish have 
capability to accumulated Hg (BCF) maximal 1242.69 time than its concentration in water.     Due to the 
threshold levels of Hg in fish products were  1.0 mg.Kg-1,  therefore concentration of Hg2+ in aquaculture 
should be maximum approximately 0.00081 ppm  
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