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DEVELOPMENT OF THE STRENGTH
STATISTICAL CHARACTERISTICS OF
MATERIALS, WHICH TAKES INTO
ACCOUNT THE FEATURES OF THEIR
BRITTLE FRACTURE

The object of the research is the algorithm for determining the finding of the most probable, mean value, dispersion
and coefficient of failure loading variation of a stochastically defective plate under conditions of comprehensive
tensile-compression. The material of the plate is considered as a continuous medium in which evenly distributed
defects such as rectilinear cracks that do not interact with each other. It is isotropic and has the same crack re-
sistance. Let’s believe that the plate consists of primary elements, each of which can be weakened by one defect.

To predict the strength and failure conditions of plates made of such material, it is natural to use, on the one
hand, the results of the theory of limit equilibrium of individual determined defects and their development, and
on the other hand, probabilistic-statistical methods that take into account the randomness of defects. This com-
prehensive approach makes it possible to calculate the statistical characteristics of strength and fracture based
on data on the structure of the material defect and its resistance to the emergence and development of cracks.

The main content of this paper is the algorithm for calculating and research the strength statistical characte-
ristics of stochastically defective plate structural elements taking into account some deterministic features of their
brittle fracture. Based on the deterministic failure criterion, which takes into account the initial direction of crack
propagation, the ratio is obtained to find the most probable, mean value, dispersion and coefficient of variation
of failure loading. The dependences of the specified strength statistical characteristics on the type of applied
loading, the number of defects (body size) and structural inhomogeneity of the material, as well as the effect of
taking into account the initial direction of crack propagation are investigated.

The obtained results allow to more adequately assessing the reliability of structural materials under conditions
of complex stress state, taking into account the stochastic of their structure. This is due to the fact that the use
of the approach to determine the limit applied stresses, which takes into account the initial direction of the crack
propagation, improves the algorithm for finding strength statistical characteristics.
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bability theory and mathematical statistics allows making
an adequate assessment of their reliability. The problem of
strength reliability of structural materials in the probabilistic

1. Introduction

Most theoretical studies of fracture mechanics are based

on the theory of mechanics of continuous media, which
refers to homogeneous materials and does not take into
account the inhomogeneous microstructure of a solid body.
In real material, however, there are many defects of dif-
ferent sizes, shapes and orientations. Taking into account
this chaotic internal structure requires the application of
probabilistic-statistical approach, which allows studying
the phenomenon of real materials failure and effectively
modeling it. The integrated application of deterministic
solutions of brittle fracture mechanics and methods of pro-

aspect, in particular with the use of experimental data,
has been studied in the works of a number of authors.

In the paper [1], a two-dimensional finite element
simulation-based approach was developed to assess the
pore-pore interactions and their impact on fracture statistics
of isotropic microstructures. The statistical properties of
fracture strength of brittle materials described in terms
of the Weibull distribution are researched [2]. In the ar-
ticle [3], the probabilistic fracture mechanical computing
codes are compared. The probability distribution of fishnet
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strength is calculated as a sum of a rapidly convergent series
of the failure probabilities after the rupture of one, two,
three, etc., links [4]. A modified Weibull failure probability
model that considers the impact of compressive stress on
cladding failure probability is deduced, and then it is used
to calculate the failure probability of different cladding
designs [5]. The failure modes, the probabilistic model of
multiple surface cracking are studied in [6]. In the work [7],
a data-driven approach based on a Gaussian process for regres-
sion is developed to determine the probability of axle failure
caused by crack growth in railway axles. In the paper [8],
a reliability analysis of fatigue crack growth for a pearlitic
steel subject to the growth of multiple cracks is presented.

Therefore, a model of the material designed to describe
the strength and fracture of bodies, which takes into ac-
count its defects in the probabilistic aspect, is relevant.

Thus, the object of research is the algorithm for determin-
ing the finding of the most probable, mean value, dispersion
and coefficient of failure loading variation of a stochas-
tically defective plate under conditions of comprehensive
tensile-compression. The subject of research is selected brittle
model materials under complex stress conditions using the
deterministic criterion of fracture, which takes into account
the initial direction of crack propagation. Analysis of the
strength statistical characteristics of this model dependence
on the type of applied loading, the number defects (body
size) and the material structural inhomogeneity is carried out.

The aim of research is constructing an algorithm for
finding strength statistical characteristics of stochastically
defective plates, taking into account the peculiarities of
the deterministic fracture criterion of plate weakened by
a crack-type defect under conditions of complex stress state.

2. Research methodology

Consider an algorithm for determining the strength sta-
tistical characteristics in the case of a plane stress state
of lamellar bodies weakened by stochastically distributed
rectilinear defects-cracks (let’s assume that their number
is equal to a certain number N), which penetrate the nor-
mal thickness. The model material is isotropic and has the
same crack resistance. The plate is under the action of
a uniform loading P and Q<nP (biaxial tension, compres-
sion or tension-compression of two mutually perpendicular
directions) (Fig. 1). Loading P and Q can be considered as
the main stresses in the plane stress state. The number of
defects N is proportional to the plate area S: N<N,S, where
Ny is the number of defects per unit area. Let’s assume
that the possible size of defects in the material is limited.

Fig. 1. Stochastically defective plate model

Cracks are evenly distributed, do not interact with each
other and are characterized by two statistically independent
parameters. The first random crack parameter is the angle
of inclination o relative to the direction of force P ac-
tion (—-m/2< o <7/2), and the second is the length 2/ (0<2/<d,
d is the finite structural characteristic). Since the plate ma-
terial is isotropic, the random variable o can be set by the
density of uniform probability distribution: f(o)=1/% [9].
The probability distribution density of a random variable [
is chosen in the form of a generalized B-distribution [9]:

r+1 Iy
f(l)zd(1_d) :

where 7>0 is the structural parameter of the material (with
its increasing are more probable small cracks).

Consider a plate as a set of N primary defective ele-
ments (with one crack). The failure loading for it coincides
with the failure loading for its weakest element (Weibull
weakest link hypothesis).

For a plate with a rectilinear crack under conditions of
tensile-compression, let’s choose a deterministic criterion
of failure, which takes into account the initial direction
of its propagation [10]:

K
ziq)i(n’avpre*)v K=

7 N

where P., Q.=nP. is the failure loading; K, is the stress
intensity factor (constant, which characterizes the resis-
tance of the material to crack propagation); p is the crack
edge friction coefficient (0<p<1), the angle 8=6. (Fig. 1)
determines the initial direction of crack propagation. It is
found by the following formula:

1-/1+8b?

46

P

1,2), (1)

0. = 2arctg (2)
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where b= (-msin2]o|

2(sin 2.+ mcos? )

Depending on the type of crack, the function @,(n,a,p,0-)
has the following analytical representation:
a) for open cracks (¢,20):
0 . )
. cos?(smzowncosz o)-—

@,(1,0,0,0.)=sec? )
1(1,0,0.8-) 2] 3 s sinalo
—5( —n)sm;sm o
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where o, are the normal stress to the crack line (o6, =
= Psin? a.+Qcos? a.);
b) for closed cracks (5,<0):

(1-m)sin2| o |+

(3 -1
- : Ly ) NG
+2psign P (sin” oL+ 1 cos” o)

(I)Z(n,aypvo): 4 (

3. Research results and discussion

3.1. Distribution function of failure loading. In article [9],
based on the analytical representation of the deterministic
failure criterion (1)—(4), let’s obtain the expressions of the
distribution function of failure loading for a plate element

;18

TECHNOLOGY AUDIT AND PRODUCTION RESERVES — Ne 2/1(64), 2022



IS5N 2664-9969

INDUSTRIAL AND TECHNOLOGY SYSTEMS:
MECHANICS

with one crack, taking into account the initial direction of
its propagation. Let’s write these expressions in the form
convenient for finding strength statistical characteristics
for such cases of the applied loading:

— for biaxial tension 0<n<1 (P>0):

2 n/2 K2 r+1
E(P,n):E J. [1—[)26{(1)% (T],O(,O,G*)] d(X,

A (5)
VT Taga "

2n/2 K2 r+1
E(p,n):nj(1 P2d¢2(n,aoe)] do,
nTSP<°°(T]¢0)§ (6)

— for tension-compression —1<n<0 (P>0, Q<0):

21[/3 K2 r+1
R(Pm=—] ( P (n,ap,O)J da,

o3

V3K e(MK
< 7
sqmiad Ly VY @
2 o KZ r+1
E(P,n)znj(1—mq>g(n,a,p,o)J do+
n/3 r+l
+— J( Pzd naoe)] do, (p1f/1z7)KSP<oo; ®)

— for predominant compressmn -tension (—oo<n<-1):

1) when —(p+«/1+p ) <n<-t:

2 n/3 K2 r+1
E(P,T]):E J. (1_})2[]@3 (T],(x,p,())) d(X,
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Here let’s introduce the notation o,y =arctg./-n, o, €(0,7/2)
is the solution of equation:

Kld)iz(nv (X/,O,e*)

P2 =d,

n-1+{(1-n)*-4np’
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In the case V3 <P< %2(W the distribution func-
8yInld Jd
tion Fi(P, n) has the form (9).
K
For LG < P < oo the distribution function F(p,n) is

Jd

determined by formula (10).

If 1<n<ow (P>0) or —o<n <0 (Q>0), then by sub-
stituting P for Q and m for m;=1/n in the correspond-
ing expressions for Fi(P, m), let’s obtain the distribution
function Fi(Q, My).

3.2. Distribution density prohabhilities of failure loading.
Distribution density probabilities of failure loading for a plate
with a stochastic distribution of N defects is determined by
the following ratio [11]:

dF(P,m)

f:V(Pyn):N(1—E(P,n))N71 dP

(12)

The most probable value of failure loading (mode),
which corresponds to the loading level, in which the dis-
tribution density probabilities /y(P, n) reaches a maximum,
is determined from the equation [11]:

d2(1-(1—F1(P,n))N)
dP?

=0. (13)
Equation (13) can also be written as:

(1=N)(FE (P,m))* +(1= E(P,m)) F" (P,n)=0. (14)

Substituting in formula (12) the analytical representa-
tions of the distribution function (5)—(11), let’s obtain
formulas that determine the distribution density proba-
bilities of failure loading for a plate with randomly dis-
tributed defects-cracks for different cases of stress state.

Consider partial cases: uniaxial tension (n<0, P>0, Q<0),
biaxial symmetric tension (n<1, P<Q>0) and biaxial sym-
metric tension-compression (n=-1, P>0,Q =-P).

For uniaxial tension, the distribution density proba-
bilities of failure loading are defined as follows:
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For biaxial symmetric loading there is:

2N1<2( 1)

K2Y
(@)= (A-EP D) [1—P2d]

T <P <oo,
For biaxial symmetric tension-compression let’s obtain:

ANK?(r +1)
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<P<oo,

17

—

According to expressions (15)—(17) in Fig. 2—4 the
distribution density probabilities of failure loading /y(P, 1)
graphs for a plate with stochastic N crack distribution under
different types of stress state are constructed.

In Fig. 2, 3, solid lines correspond to the case of taking
into account the initial direction of cracks propagation,
and dashed lines — without taking it into account (6.=0).

In Fig. 4, the distribution density probabilities of fail-
ure loading curves are constructed taking into account
the initial direction of crack propagation for materials of
various inhomogeneity. Solid lines correspond to the case
of uniaxial tension, dashed lines to the case of biaxial
symmetric tension, dash dotted lines to the case of biaxial
symmetric tension-compression.

The distributions of the failure loading random variable
will be unimodal. The threshold value of strength is not
equal to zero and depends on the type of loading.

3.3. Strength statistical characteristics. Let’s find and
investigate some strength statistical characteristics of plates
with stochastic distribution of defects. The mean value of
the failure loading is found by the formula [10]:

0 14 18

Pmax (M)
(P)=pm+ [ (1-E(pm) dp (18)
Pmin (M)
S //N =20 s
=53 = 2}\6\;;7 30 G
' k J PQ
K

Fig. 2. The distribution density probabilities of failure loading in the case of uniaxial tension
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Fig. 3. The distribution density probabilities of failure loading in the case of biaxial symmetric tension-compression
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Fig. 4. The distribution density probabhilities of failure loading for materials of various inhomogeneity
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The dispersion and coefficient of variation of failure
loading are determined by the following relations [10]:

Pmax (M)
D(p)=pan(+2 | (1=F(p)" pdp-(p)’,  (19)
Puin (M)
JD
W(p)=YP) (20)

(p)

Substituting in formulas (18)—(20) analytical represen-
tations of the distribution function (5)—(11), let’s obtain
relations that determine specified strength statistical charac-
teristics for plates with randomly distributed defects-cracks
in different cases of stress state.

Let’s consider the above partial cases. Let’s make a change
of variables:

KZ
X=P,72d‘

Let’s obtain the ratio to determine the mean value
and dispersion of the failure loading.
For uniaxial tension:

Jd
(P)%=
1t /2 » N dx
:1+2_([[1—n&[(1—xd>f(0,oc,0,e*)) docJ Nl (21)
d
D(P) 75 =
X v Yde o d
:1+‘([(1—n£(1—xd)12(0,ot,0,6*)) doc] —~(P) %z (22)
A
<P>£
K

2.0+

For biaxial symmetrical tension there is:

\/E 11 r+\N dx
( >7=1+§j(1—(1— ) )Jx_3 (23)
| a\vdx yd
D(P)zz=1+[(1-(1-2)"") Z~(P)' <. (24)

For biaxial symmetric tension-compression let’s obtain:

NG
(Prg="+

[

2 p r+
10720m 1_5“1_’5@5(_1'0"9’0)) ‘do-

’ (25)
2 973 . ~
0 _— _ 2(_ r+l A/
T &‘; (1 ch)1( 1,(1,0,9*)) doc
d
D(P)F:a+
2% r+l N
o () 1_EJ.(1_X¢%(—170€,D,0)) do— ;
o3 s
+ 0 9w = -(P) R (26)

—— [ (1-x 0} (-100,6.)) "dor

o

According to expressions (20)—(26) in Fig. 5-7 graphs
of statistical characteristics of the failure loading under
different types of stress state for materials with different
number of defects and different inhomogeneity. Solid lines
correspond to the case of taking into account the initial
direction of crack propagation, and dashed lines — without
taking it into account (6.=0).

“10 30 © 50

70 90 N

Fig. 5. The failure loading mean value

A
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Fig. B. Dispersion of failure loading
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Fig. 7. Coefficient of failure loading variation

In Fig. 2—4, let’s consider the influence of the applied
loading ratio (parameter m), number of cracks N in the
plate (plate area with the same number of cracks), angle 6.,
which determines the initial direction of crack propagation
and the law of crack length distribution (parameter ) on the

d
most probable value of failure loading (mode) MO[P\/K—J'

From Fig. 2, 3, it is possible to see that with an increas-
ing in the number of cracks in the plate, both for uniaxial
tensile and biaxial symmetric tensile-compression, there is
a decreasing in the most probable value of failure loading.

Taking into account the initial direction of crack propa-
gation (angle 6.) in both cases of loading, leads to a de-
creasing in the value MO(P\/KEJ.

As can be seen from Fig. 4, increasing the value of
the parameter r (increasing the homogeneity of the mate-
rial) leads to an increasing in the most probable value of
failure loading. Also, with the change of the parameter 7,
the shape of the distribution density curve changes. The

d
lowest value MO(P\/I;) is observed for the biaxial sym-

metrical tension (n=1), the highest for the biaxial sym-
metric tension-compression (n=-1). Similar conclusions
were made in [11].

Let’s note that the maximum ordinate of the distri-
bution curve is directly proportional to the parameter N
and inversely proportional to the parameter 7. This feature
does not depend on the type of applied loading. Therefore,
in the case of increasing the parameter N, the maximum
value of the distribution density also increases and de-
creases with increasing parameter 7.

In Fig. 5, the influence of the loading ratio, the number
of cracks and taking into account the initial direction of
crack propagation on the mean value of the failure loading
is considered. Taking into account the initial direction of

crack propagation leads to a decreasing the value <P>7

As the parameter N increases, the mean value of the failure
loading decreases regardless of the type of stress state. Its
greatest value will be in the case of uniaxial tensing. Let’s
note that there is a certain range of body sizes for which
the strength with an asymptotic approach to its threshold
value is almost independent of the number of defects.

Fig. 6 shows the dependence of the dispersion of the
failure loading on the loading ratio, the number of cracks
and taking into account the initial direction of crack propa-
gation. The dispersion of the failure loading is a decreas-
ing function of the argument N. At a certain interval of

N change it is possible to see a significant decreasing in

d
the value D(P)ﬁ. The nature of this decreasing does

not depend on the type of loading and parameter 6..

As the parameter N changes, the dispersion of failure
loading changes by an amount that is almost independent
of the type of stress state. As for the case of the mean

d
value <P>7
which the dispersion of failure loading is almost independent
of the number of defects [12]. The dispersion of failure
loading decreases taking into account the parameter ..

In Fig. 7, the influence of material homogeneity and
number of cracks on the coefficient of variation of failure
loading W(P) under biaxial symmetric tension is investi-
gated. It is established that in this case the value W(P)
is an invariant with respect to the change of 6. and depends
only on the homogeneity of the material and the size of
the plate. In the case of uniaxial tension and biaxial sym-
metric compression tension, the effect of the parameter is
insignificant. The value W(P) increases with increasing of
parameter 7 and decreases with increasing of parameter N.
There is a certain range of body sizes, for which let’s
observe a significant change in value W(P) and asymptotic
approach to a certain threshold value. Similar patterns can
be traced for other types of stress.

A limitation of this study is the flat model of the defec-
tive body. Therefore, its generalization to the spatial case
is relevant. This will make it possible to make a proba-
bilistic description of the known experimental statistical
regularities and strength characteristics of stochastically
defective materials.

In this paper, the algorithm for determining of the strength
statistical characteristics in the case of a flat stress state
of lamellar bodies weakened by stochastically distributed
defects of one grade was considered. A possible development
of this study is to construct a generalized algorithm for
the case when the body is weakened by defects of different
varieties that do not interact with each other.

, there is a certain range of body sizes for

4. Conclusions

The study shows the influence of the ratio of applied
loading, the number of defects-cracks in the plate (plate area
with the same number of cracks), the angle that determines
the initial direction of crack propagation and the law of
crack length distribution on the most probable value of
failure loading. It is established that with the increase in
the number of cracks in the plate, both in uniaxial ten-
sion and in biaxial symmetric compression-tension, there
is a decrease in the most probable value of the failure
loading. Taking into account the initial direction of crack
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propagation leads to a decrease in the value of the most
probable value of the failure loading, and increasing the
homogeneity of the material leads to its increase.

It is found that the influence of the initial direction of
crack propagation leads to a decrease in the mean value of
the failure loading. As the number of cracks increases, the
mean value of the failure loading decreases regardless of the
type of stress state. Its greatest value will be in the case of
uniaxial tension. A certain range of body sizes is established,
for which the strength with asymptotic approach to its thresh-
old value is almost independent of the number of defects.

It is found that the dispersion of the failure loading is
a decreasing function of the argument (number of cracks), in
particular, at a certain interval of its change there is a sig-
nificant decrease in the value of the dispersion. The nature
of this reduction does not depend on the type of loading and
the angle that determines the initial direction of the crack
propagation. With the change of the argument, the dispersion
of the failure loading changes to a value that almost does
not depend on the type of stress state, in particular, there
is a certain range of body sizes for which the dispersion
of the failure loading is almost independent of the number
of defects taking into account the initial direction of crack
propagation, the dispersion of the failure loading decreases.

It is established that the coefficient of variation of the
failure loading under biaxial symmetric tension is an invariant
with respect to the change of angle, which determines the
initial direction of crack propagation and depends only on
the homogeneity of the material and plate dimensions. In the
case of uniaxial tension and biaxial symmetric compression-
tension, the effect of this parameter is insignificant. The
value of the coefficient of variation of the failure loading
increases with increasing homogeneity of the material and
decreases with increasing number of defects.
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