
27TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 1/4(63), 2022

ECONOMIC CYBERNETICS

UDC 658.6

JEL Classification: L81

DOI: 10.15587/2706-5448.2022.253932

Article type «Reports on Research Projects»

ANALYSING FEATURES OF

E-COMMERCE SYSTEMS

ARCHITECTURE

The object of the research is the process of designing the architecture of high­load systems. The conducted
research is based on the system approach to design the architecture of e­commerce systems, characterized by high
workload due to the large number of users working simultaneously with the system, a large amount of data and
a significant number of complex calculations. The main hypothesis of the research is that the efficiency of such
systems depends on the efficiency of each individual step to scale up the system and the consistency of these steps.
The maximum efficiency can be achieved only if the resource constraints and requirements, which are determined
by the key stakeholders of the projects, consider the specifics of the business system. This paper examines the
methodological support of the developing high­load systems architecture. Within this research let’s analyze such
specific features of high­loaded systems as scalability, rigidity, and response time and demonstrate the impor­
tance of considering these features when designing the architecture of high­loaded systems. This paper analyzes
approaches to developing high­load systems architecture, their advantages, and disadvantages. It is suggested to
use hybrid scaling method, which is based on combining two approaches – microservices and monolithic. It is also
suggested to use a microservices approach for high­loaded and requiring scaling parts and a monolithic approach
for non­loaded parts of the system. The research indicates the parts of the system that are usually highly loaded
in e­commerce systems and require a microservices approach to design their architecture. This paper analyzes
approaches to database scaling and organization of data replication. The application of the proposed approach
to design the architecture of high­load systems, including the e­commerce systems, allows designing a system that
can be easily scaled when necessary. At the same time, the system can be improved and further developed.

Keywords: high­load systems, microservice architecture, monolithic architecture, e­commerce systems, system
architecture.

Vadim Yakovenko,

Yuliia Ulianovska,

Tetiana Yakovenko

© The Author(s) 2022

This is an open access article

under the Creative Commons CC BY license

How to cite

Yakovenko, V., Ulianovska, Y., Yakovenko, T. (2022). Analysing features of e­commerce systems architecture. Technology Audit and Production Reserves,

1 (4 (63)), 27–31. doi: http://doi.org/10.15587/2706­5448.2022.253932

Received date: 23.11.2021

Accepted date: 21.12.2021

Published date: 28.02.2022

1. Introduction

The pandemic, quarantine restrictions and the necessity
of organizing remote work have increased the demand
for the development of e­commerce systems and business
process automation. These systems are often classified as
high­load systems. High­load systems are applications with
high workload, which occurs through:

– many users simultaneously working with the system;
– high volume of data to be processed;
– the presence of numerous complex calculations [1].
The above factors are typical for high­load systems, both

separately and jointly. Such a system requires a significant
number of resources to operate.

The development of high­loaded systems has certain
peculiarities [1–3]:

– The main feature of high­load business systems is
their rigidity: it is possible to modify only some parts,
because the flexibility of such systems requires a signifi­

cant number of resources. For example, it is impossible
to make access to the data flexible. It is necessary to
clearly define the database for the system to work with,
considering the amount of data and the frequency of
requests, in order to ensure its stable performance.
– The response time is another important factor. The
interaction between users and the application is carried
out by submitting requests, which should be responded
to in a suitable time span.
– Scalability is a necessary feature for high­load systems,
which determines their ability to increase the maximum
allowable workload (the number of users working simul­
taneously with the system, the amount of data, etc.).
These peculiarities require critical analysis when develop­

ing the architecture of e­commerce systems. Therefore, the
aim of this research is to develop the architecture of e­com­
merce systems, considering the peculiarities of high­load
systems operation. The object of this research is the process
of developing the architecture of high­load systems.

ECONOMICS OF ENTERPRISES:
ECONOMIC CYBERNETICS

28 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 1/4(63), 2022

ISSN 2664-9969

2. Research methodology

The conducted research is based on the approaches
described in papers [2, 4, 5]. The key hypothesis of the
research is that the efficiency of such systems depends
on the efficiency of each individual step to scale up the
system and the consistency of these steps. The maximum
efficiency can be achieved only under consideration of
resource constraints and requirements, determined by the
key stakeholders of the projects, and the specifics of the
business system. The principles of developing the archi­
tecture of high­load systems, presented in papers [2, 5, 6],
are analyzed. Based on this analysis and considering the
architecture of data processing mechanisms and synchro­
nization of modules [4, 7], database architecture [8], the
necessity of using a systematic approach are determined
to develop the architecture of high­load systems.

3. Research results and discussion

Development of web­based applications is optimal solution
to develop e­commerce systems. A web­based application is
a client­server application (the client is a browser, and the
server is a web server) for which data is stored on the server,
and data exchange takes place in the network. Their impor­
tant advantages for e­commerce systems are the following:

– The system can be operated by a great number of
users at once.
– They do not require installation on users’ devices,
thus they can be used whenever, and do not require
additional workstations, increasing hardware power, etc.
Users need only a browser and access to the Internet
to work with the system.
– Developing web­based applications is cheaper.
– All the updates and changes to the web application
became automatically available for all users.
A web­based application comprises the application code

and database. When a user plans to use it, he or she sends
a request to the server. The server processes the request,
selects the necessary data from the database, generates a re­
sponse and sends it to the user. According to the results
of research, the maximum time to perform these operations
should not exceed 6 seconds for complex requests. Optimal
average time to process a request for comfortable work of
the user, which indicates the normal functioning of the
system, is 3 seconds. A longer response time is unaccept­
able for such systems due to the high probability to lose
potential customers.

Another important characteristic of the system per­
formance is a maximal number of requests processed per
second (Requests Per Second (RPS)).

Therefore, the most important is scalability of the sys­
tem, which give opportunity to manage its performance
indicators: the time of processing requests and RPS.

Let’s analyze the approaches to scaling. There are two
approaches to scaling [9, 10]:

– Vertical scaling involves increasing the capacity of
some components of the system to increase the overall
capacity. As a rule, vertical scaling is performed by
replacing some devices with more powerful ones. This
is the simplest way of scaling, which does not require
any changes to the program.
– Horizontal scaling involves splitting the system into
structural components distributed among different com­

puters and increasing the number of servers to perform
specific functions in parallel. Consequently, the need to
add nodes to the system, working as a single unit, and
to modify the program for efficient use of the additional
resources is evident.
The development of a high­load system requires a flexible

approach to scaling and combination of both approaches.
Obviously, the vertical scaling is not endless [11]. It is
optimal to use it when the server is too old to bear the
workload. Thus, it is quicker and cheaper to replace it
with a new one, instead of changing the program code.

The horizontal approach to scaling involves splitting the
application into several modules, which can be distributed
among the servers, or multiplication of the highest­loaded
part of the application.

For example, the most loaded part of e­commerce sys­
tems can be the catalog. In this case, the task is to share
the performance of this module between different servers,
i. e., to organize parallel computing of this function.

This solution also has certain restrictions, because parallel
computing creates the problem of data synchronization: each
server, each stream, has its own data. They are no longer
synchronized. The growing workload leads to a haphazard
data state: users can change the same data simultaneously,
but this situation is not acceptable. The synchronizer imple­
mentation removes the parallelism, but the load on the
synchronizer grows. Therefore, the optimal solution is to
isolate those high­load components performed synchronously
and to use a vertical scaling approach for them.

Therefore, the second approach in combination with
vertical scaling is optimal to scale high­load systems. How­
ever, there is a mention that the application of this ap­
proach can differ for a particular system depending on
its specific features and business requirements.

Another peculiarity to consider when scaling the sys­
tem is the load on the integrating module. The more the
number of separate modules is, the more the load on the
integrating module grows with the increase of the load on
the modules. Obviously, the goal of scaling is to get a well­
performing system rather than a set of separate modules.
Therefore, one should consider that the complexity of
communication and load on the integrating module grow
in geometrical progression with increasing the number of
system modules.

In high­load systems, it is also important to dupli­
cate critical components. All the critical components of
a high­load system, which affect its functionality, must
be duplicated both in software and hardware (duplicate
the equipment). These duplicates are not necessarily to
work simultaneously, but they must ensure availability
to use them in the case when the primary duplicates are
not able to handle the load.

An important component of high­load systems is the
monitoring system. As a rule, problems in the system opera­
tion arise at moments of peak load, i. e., when the business
earns the most. The monitoring system allowsto identify
the issue causing the failure in the work, and immediately
go to fixing these issues. Naturally, it is possible to identify
the issue without the monitoring system. But in this case,
it is necessary to involve highly qualified specialists and
spend time to find the reason. Moreover, the monitoring
system allowsto analyze the module’s performance and pre­
vent possible failures, and thus minimize the probability
of profit loss.

ECONOMICS OF ENTERPRISES:
ECONOMIC CYBERNETICS

29TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 1/4(63), 2022

ISSN 2664-9969

The system’s inflexibility allows to save money on
equipment. The cost of the hardware for a high­load
system is always much higher than the cost of a typical
application. When developing a flexible high­load system,
the number of required hardware increases significantly.

So, the first method to develop the architecture for
e­commerce systems is the method of monolithic archi­
tecture: creating the program code using a set of plugins.
Each plugin provides the implementation of a particular
feature. For example, integration with external solutions,
personalization of the payment terms, integration of pay­
ment systems, discount calculation system, etc.

An alternative approach is the microservice architec­
ture, under which the program is composed of a set of
microservices and each microservice has its own database
and operates independently. The advantage is the ability
to develop, maintain, scale, and improve each of the mi­
croservices separately. But an important disadvantage is
its cost. For example, to improve a particular microservice,
it is necessary to analyze the code, make the appro priate
changes, plan updates, test the system to ensure the ab­
sence of conflicts, prepare documentation, etc.

Developing monolithic applications is much cheaper,
while they have a single code, and the application works with
a single database. In the case of microservices architecture
it is necessary to develop a protocol for interconnection
with the core, the main product page, for each microservice.
In this case, when processing a user’s request, the program
works with several databases of different microservices, all of
which provide their own response to the request, which the
application consolidates into a single response for the user.

It is obvious that the optimal solution is a hybrid (com­
bined) architecture. A monolithic part is developed for
unloaded functions of e­commerce systems, and microser­
vices are developed for functions which are high­loaded
and could require scaling.

For e­commerce systems, as a rule, microservices are
required to implement such functions:

– catalog;
– data buses for importing data from external software;
– API for interaction with mobile devices and other
services;
– mailer and other services to communicate with clients.

The advantages of this approach are, foremost, reduc­
tion of costs for development and support of the system.
The hybrid method requires less time for development,
and it is cheaper. For that reason, it is the optimal solu­
tion for startup projects, companies with limited budgets,
companies willing to test a business hypothesis, etc. More­
over, the application has no disadvantages in functionality
and scalability.

An example of such hybrid architecture for an e­com­
merce system is shown in Fig. 1.

Fig. 2 shows an example of the infrastructural archi­
tecture of the e­commerce system.

The principle of development and performance of such
a system is as follows. It is recommend to use Python,
Framework and Django within the development process,
which is optimal regarding the development terms.

Microservices architecture is used to implement such
functions:

– notification service;
– search engine based on Elastic Search;
– product matching service (finding analogues for pro­
ducts that are not available in the catalog);
– bus of input and output data processing;
– Rest API;
– signing documents with EDI.
The PostgreS as a database of enterprise level with

significant scalability is optimal for e­commerce system.
Elastic is used to scale the catalog: all complex requests
are sent to Elastic, and then the results of processing
are shown in the catalog. Search within the system is
full­text and implemented with Elastic.

Data import is arranged using the Celery task broker.
Each file for import or export is sent to the task bro­
ker, which creates a list of such files, and for each
of them it determines the process, performing the im­
port or export procedure. This approach to organize
data import and export enables horizontal scaling of this
microservice.

E­commerce systems, as a rule, have a complex struc­
ture of data storage, complex personalization logics, huge
amounts of data. Therefore, in­memory database Redis is
suitable for scaling the catalog, as it stores the data in
the operating system in non­relational form.

Fig. 1. An example of a software architecture for an e-commerce system

ECONOMICS OF ENTERPRISES:
ECONOMIC CYBERNETICS

30 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 1/4(63), 2022

ISSN 2664-9969

The implementation of the log monitoring system en­
ables identifying errors in the system. Automated monitor­
ing of projects and errors allows responding immediately:
to renew projects or, when possible, to fix errors. Simi­
larly, monitoring is used for integration processes with
external programs and services. The system Jenkins could
be used to ensure continuous integration of e­commerce
system with external software. The integration with the
accounting system to provide displaying real­time data on
the availability and stock of goods can be an example.
Another example is transferring information about orders
from the e­commerce system to the accounting system for
document processing, updating amounts of stocks, etc.

Scaling is implemented by containerization with the
technology Docker. This system allows to quickly set up
a server environment for web applications and control
resources. The approach has a significant advantage com­
pared to virtualization. Virtual computers are created with
software to perform some operations. As each virtual com­
puter requires a separate operating system, which runs on
the server using its resources, the efficiency of using the
server’s resources is low.

Containerization, however, allows to place programs
and processes in a separate container and reserve a certain
number of resources for it, manage its performance, ac­
cessibility, processes, transfer the container among servers,
perform monitoring, and so on.

The system Docker Swarm is used for orchestration –
management of containerization process. This system al­
lows to create clusters (sets of servers) and control their
performance. The software is distributed on these clusters:
the master application, the database and the microservices.
Each element has its own cluster. The orchestration system
Docker Swarm provide monitoring and management of the
servers. When a cluster is unavailable, the system replaces
containers to other servers and resumes their operation,
thus ensuring the system’s availability and continuity of
its performance.

Moreover, the orchestration system allows online replica­
tion of data. Docker Swarm routes traffic in such a way:
requests to read data go to the Slave database, and re­
quests to write data go to the Master database. At the
same time, the Master database constantly transfers all

the updates to the Slave databases. Due to regular rep­
lication in the cluster, there is always a stable version of
the database to restore all the data.

The specific features of suggested architecture for the
e­commerce solutions are relevant for the development
of mobile and web applications. It is reasonable to use
such principles to develop high­load systems, or systems
with the potential need for scaling. A probable develop­
ment of this research could be further improvement of
the architecture with the aim of increasing the speed and
permissible loads.

4. Conclusions

The paper analyzes the approaches to designing high­
load systems, their advantages, and disadvantages. It is
suggested to use hybrid method for scaling, which is
based on combining two approaches – microservices and
monolithic. Microservice method could be used for high­
loaded and requiring scaling parts of the system, the
monolithic method could be applied for non­loaded parts.
It is found that usually high­loaded parts of the system
are the catalog, data buses for data import, API support
for interaction with mobile devices and other services,
and services to communicate with users. These are the
parts of e­commerce systems requiring a microservices
approach to develop the architecture. The paper provides
analysis of approaches to database scaling and organi­
zation of data replication. Scaling can be implemented
by tools of containerization technology Docker, and the
management of the containerization process could be
implemented using system Docker Swarm. The routing
system distributes traffic from the application and send
all the reading requests to the Slave database and all
the writing requests to the Master database. The infor­
mation in the databases is constantly updated due to
regular replication. As a result, the cluster always has
a stable version of the database to restore all the data.
The implementation of the suggested approach to design
high­load systems architecture, including e­commerce sys­
tems, enables developing a system, which can be easily
scaled up anytime. At the same time, the system can be
improved and updated.

Fig. 2. An example of the infrastructure architecture of the electronic commerce system

ECONOMICS OF ENTERPRISES:
ECONOMIC CYBERNETICS

31TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 1/4(63), 2022

ISSN 2664-9969

References

1. Amyrov, S. N. (2020). Features of the Development of High
Load Data Systems. International journal of open information
technologies, 8, 38–45.

2. Lackermair, G. (2011). Hybrid cloud architectures for the online
commerce. Procedia Computer Science, 3, 550–555. doi: http://
doi.org/10.1016/j.procs.2010.12.091

3. Chamkiev, A. T. (2021). Osnovnye osobennosti arkhitektury
vysokonagruzhennykh sistem. Obzor sushchestvuiushchikh re­
shenii. Tochnaia nauka, 98, 19–21.

4. Voichyk, S. S., Tymoshyn, Yu. A. (2018). Arkhitektura mekha­
nizmiv obrobky danykh ta synkhronizatsiia moduliv u vyso­
konavantazhenykh systemakh Smart City. World Science,
1(10(38)), 22–24. doi: http://doi.org/10.31435/rsglobal_ws/
31102018/6173

5. Cervantes, H., Kazman, R. (2016). Designing Software Archi­
tectures: A Practical Approach. Boston: Addison­Wesley.

6. Shcherbakov, I. M. (2019). Proektuvannia ta analiz servernoi
arkhitektury dlia vysokonavantazhenykh Web­dodatkiv. Info­
komunikatsii – suchasnist ta maibutnie, 435–438.

7. Yefimenko, A. A., Kovalchuk, V. N., Mishyn, H. O., Suho­
niak, I. I. (2018). Model dyspetcheryzatsii potokiv danykh
dlia vysokonavantazhenykh veb­system. Problemy stvorennia,
vyprobuvannia, zastosuvannia ta ekspluatatsii skladnykh infor­
matsiinykh system, 15, 163–172.

8. Stetsyk, O., Terenchuk, S. (2021). Comparative analysis of
NoSQL databases architecture. Management of Development of
Complex Systems, 47, 78–82. doi: http://doi.org/10.32347/2412­
9933.2021.47.78­82

9. Barabanov, A., Makrushin, D. (2021). Security Audit Log­
gingin Microservice­Based Systems: Survey of Architecture
Patterns. Voprosy Kiberbezopasnosti, 2 (42), 71–80. doi: http://
doi.org/10.21681/2311­3456­2021­2­71­80

10. Kryvenchuk, Y., Mykalov, P., Novytskyi, Y., Zakharchuk, M.,
Malynovskyy, Y., epka, M. (2019). Analysis of the Architecture
of Distributed Systems for the Reduction of Loading High­
Load Networks. Advancesin Intelligent Systems and Computing,
759–770. doi: http://doi.org/10.1007/978­3­030­33695­0_50

11. Franke, U., Johnson, P., K nig, J. (2013). Anarchitecture
framework for enterprise IT service availability analysis. Soft­
ware & Systems Modeling, 13(4), 1417–1445. doi: http://doi.org/
10.1007/s10270­012­0307­3

Vadim Yakovenko, Doctor of Technical Sciences, Professor, Depart­
ment of Computer Science and Software Engineering, University of
Customs and Finance, Dnipro, Ukraine, ORCID: https://orcid.org/
0000­0001­7762­5410

Yuliia Ulianovska, PhD, Associate Professor, Department of Com­
puter Science and Software Engineering, University of Customs
and Finance, Dnipro, Ukraine, ORCID: https://orcid.org/0000­
0001­5945­5251

*Tetiana Yakovenko, PhD, Associate Professor, Department of
Computer Science and Software Engineering, University of Customs
and Finance, Dnipro, Ukraine, e­mail: Yakovenko.t.yu@gmail.com,
ORCID: https://orcid.org/0000­0003­1900­8283

*Corresponding author

