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Abstract 
A standard traveling salesman problem(TSP) under dual-objective strategy constrained is 

proposed in this paper, characterized by the fact that the demand of both as many as possible the 
numbers of nodes be visited in time and minimum trajectory distance. The motivation for this TSP problem 
under dual-objective strategy constrain stems from the coverage repair strategies for wireless sensor 
networks using mobile actor based on energy analysis, wherein a mobile robot replenishes sensors energy 
when it reaches the sensor node location. The Evolutionary Algorithm (EA) meta-heuristic elegantly solves 
this problem by the reasonable designed operators of crossover, mutation and local search strategy,which 
can accelerate convergence of the optimal solution. The global convergence of the proposed algorithm is 
proved, and the simulation results show the effectiveness of the proposed algorithm.  

  
Keywords: coverage repair strategies, wireless sensor networks, mobile node, evolutionary computing, 

dual-objective strategy constrained, traveling salesman problem (TSP)  
 
 
1. Introduction 

Wireless sensor networks have been attracting the interest of computer scientists and 
engineers recently due to their potential to impact our everyday lives and because of their 
numerous applications in areas such as health care, national security, inventory tracking, 
surveillance, and environmental monitoring. They are collections of autonomous sensing 
devices, belong to the domain of wireless ad hoc networks [1] and face many design and 
realization challenges, e.g., [2]-[4]. Recently, an emergent research area coined as “wireless 
sensor and robot networks” [5]-[6] has stemmed from the integration between WSN and multi-
robot systems. They consist of an ensemble of sensor and robot nodes that communicate via 
wireless links to perform distributed sensing and actuation tasks. While sensors are highly 
constrained devices (i.e., they possess limited computing power, battery, memory, transmission 
range, etc.), robots are resource-rich, usually mobile and meant to assist, maintain and optimize 
sensor networks. For example, they may perform intelligent movement for data collection [7], 
sensor placement [8] or sensor node repair, etc.  

Some of the literature have discussed on the mechanism how the mobile node repair 
static sensor nodes,but rarely involved in energy analysis considerations [7]-[9]. We are 
concerned with the problem of energy analysis-based coverage repair strategies in WSN, which 
can be defined as follows: consider a network of static sensors already deployed in some area 
of interest. Those will be responsible for monitoring the region. Unfortunately, network coverage 
(i.e., the total area monitored by the network) will be eventually degraded because of active 
node failures (e.g., battery depletion.), thus creating sensing holes in the area. Periodically, 
every sensor reports its location to a base station (by multi-hop communications) and also the 
current energy left (or residual survival time) to the base station too. Assume that a single 
mobile robot is located at the base station, it can reach each static sensor node, and replenish 
energy (for example, by replacing the battery or the sensor node [10]) for each node. 
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Its goal is to let mobile node reach node location and repair it before node energy(or 
survival time) runs out , prevent the node death brings sensing holes in the area. We want to 
compute an ‘optimal’ robot trajectory so that the more number of fix node in time, the better, and 
also a minimum trajectory distance defined as the length total traveled. 

The above scenario can be formulated as a combinatorial optimization problem. We 
represent the sensor network by a complete graph G = (V,E) where V = {v1, v2, . . . , vn} is the 

vertex set and E = {eij} is the edge set, with eij being the edge between sensors i and j, ∀ i, j �  

{1, 2, . . . , n}. There is a single mobile node v0 is located at the base station. 

We want to find an optimal-feasible tour   that starts and ends at the base station. The cost 

function for any tour    can be computed as 



Vi

ii
Tt )(  where  

i
t  stands for the residual 

survival time of node vi,  i
T  stands for time spent which mobile node v0 arrive node vi. A tour is 

said to be optimal -feasible if it has no repeated nodes (other than the base station as its first 
and last element), replenish energy (for example, by replacing battery or sensor node [10]) for 
each node in time.  

A similar problem in the literature is that of “the traveling salesman problem (TSP)”. We 
model the energy analysis-based coverage repair strategies as a TSP under dual-objective 
strategy and apply the evolutionary algorithm optimization (EA) meta-heuristic [11] to solve it. 

The paper is structured as follows. Section II is related work. We propose coverage 
repair strategies as a TSP under dual-objective strategy and the EA-based algorithm for solving 
the problem in Sec. III. The convergence of the proposed algorithm to a globally optimal solution 
with probability 1 is proved in Sec. IV. Section V shows the efficiency of the proposed algorithm 
through simulation   experimental results on modified TSP standard benchmark problems, 
precede the final remarks in Sec. VI. 

 
 
2. Related Work 

The traveling salesman problem (TSP) is one of the most challenging problems in NP-
hard combinatorial optimization. It has been drawing significant research attention, probably 
because it arises practically in many areas, is very easy to understand and serves as a standard 
test bed for further algorithmic developments [12]. For example, Rafael Falcon [10] introduced 
1-TSP-SELPD in the carrier-based coverage repair problem in wireless sensor and robot 
networks. 

Improving the efficiency of the existing algorithms or designing new efficient algorithms 
for TSP to decrease the computation amount is a very urgent task due to both the theoretical 
importance and the wide range of applications of TSP.  

A lot of research with Evolutionary Algorithm (EA) approach we did on the TSP 
problem. The quantum concept and technique are integrated into the genetic algorithm 
designing to result in a novel quantum genetic algorithm [13], a new evolution strategy based on 
clustering and local search scheme is proposed for some kind of large -scale traveling salesman 
problems [14], in [15] a new chromosomal encoding scheme and a new crossover operator are 
described and a new local search scheme is used to improve the quality of the offspring 
generated by the crossover. 

The standard TSP is very closest to our problem, We solve the energy analysis-based 
coverage repair strategies (modeled as a TSP under dual-objective strategy) through an 
evolutionary Algorithm (EA) approach� designed one population-based meta-heuristic 
algorithms, for their proved ability to overcome local optima through a parallel exploration of the 
search space and the use of social communication mechanisms to drive the population toward 
promising regions. 
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3. Evolutionary Computing For Coverage Repair Strategies 
 
3.1. Network model 

In lots of literature the wireless sensor network is represented by a complete graph G = 
(V,E) where V = {v1, v2, . . . , vn} is the vertex set and E = {eij} is the edge set, with eij being the 

edge between sensors i and j, ∀ i, j �  {1, 2, . . . , n}. 

In our proposed model, a collection of static nodes in wireless sensor networks 
correspond to the vertex set V.  If the static node vi current remaining energy value is expressed 
as ei , and assume that the consumption of the node energy per time is expressed as fi  (in 
actual case this value will not remain the same, here in order to simplify the problem assume 
that the value is a constant), then this node's residual survival time is ti=ei/fi , it means that after ti 
time the node will die if is not added energy, the node monitoring area there could be a 
coverage hole. Supposed there is a mobile sensor node v0. This mobile sensor node v0 can 
traverse each static sensor node vi from the initial position and return to the initial fixed 
position(also named the base station). When the mobile node v0  reaches each static sensor 
node vi, it can replenish energy(for example, by replacing the battery or the sensor node [10]) 
for node vi, then the node vi's current energy recovery to a maximum energy of emax . 
 
 
3.2. Problem formulation: Coverage Repair Strategies 
  In order to simplify the problem reasonably, the moving speed of mobile node v0  is 
assumed constant for w, then the mobile node v0  arrive node vi in time Ti=S(v0, vi)/w, where 

S(v0, vi)=| 
imj,kj,j,10

 vvv vv   | stands for the Euclidean length of line 
imj,kj,j,10

 vvv vv   that 

means the mobile node v0  through a number of intermediate nodes vj,1� � … vj,k� �… vj,m  to 
node  vi , as shown in Figure 1. 
 

 

 

Figure 1. mobile node v0  through a number of intermediate nodes vj,1， …，vj,k，…，vj,m  to 

node  vi  from base station 
 
 

Most reasonable repair strategy should satisfy that before each node vi 's  survival time 
ti run out , the mobile node v0  should reach  node vi 's  location and repair it, prevent the node vi  

death brings blind area, which requirements,∀ i�  {1, 2, . . . , n}, Ti=S(v0, vi)/w < ti ,  indicates 

that the node vi can get timely repair. 
We want to find an optimal feasible solution tour   that starts and ends at the base 

station where the mobile node v0  through all the static nodes V = {v1, v2, . . . , vn},  which can be 
expressed by    = v0vj,1 vj,2…vi…vj,n-1vj,nv0. A tour is said to be feasible if it has no repeated 

nodes (other than the base station as its first and last element). A tour is said to be optimal 
means the more number of static nodes fixed successfully by mobile node v0, the better, this 
cost function for any tour    can be computed as  

 





Vi

ii
Ttsign )(max                                                              (1) 
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where 








0,0

0,1
)(

xif

xif
xsign  represents sign function. Considering such path may be more 

than one, we hope to find the path with the shortest length, this cost function can be computed 
as  
 






n

i
ijij

vvd
0

1,, ),(min                                                               (2) 

 

where  ),(
1,, ijij

vvd   stands for the Euclidean length of node 
1,,

, ijij
vv .  If we do not consider 

condition (1), this problem returns to the standard traveling salesman problem, one of the most 
classical combination optimization problems. 
 
 
3.3 Evolutionary Computing Coverage for  Repair Strategies 
 
A . Encoding scheme and population initialization 

A feasible solution tour   that starts and ends at the base station where the mobile 

node v0  through all the static nodes V = {v1, v2, . . . , vn} can be expressed by vertex sequence    
v0vj,1 vj,2…vi…vj,n-1vj,nv0 , so integer-coded schema for chromosome is designed in this paper , 
chromosome  =0 j1j2…i…jn-1jn 0 corresponds to a path  = v0vj,1 vj,2…vi…vj,n-1vj,nv0. For 

example, paths  = v0v1v2v5v4v7v3v6v0  is uniquely obtained for the string of integer-coded 

‘012547360’. 
The initialization of the population of chromosomes can be done by a random method. 

Since the random approach is used in this paper, the chromosomes as many as the population 
size pop value are generated randomly. Each chromosome is represented randomly as a 
permutation of n integers between 1 and n. As described above, the process to generate the 
initial population does not yield any illegal chromosome. 
 
B. Fitness function 

      The value of Formula (1)  



Vi

ii
Ttsign )(  and Formula (2) 




n

i

ijij
vvd

0

1,,
),(  are both 

functions of the variable path  = v0vj,1 vj,2…vi…vj,n-1vj,nv0. To facilitate the presentation, use  
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let  
 

))(),(()( 21  fff   

 
denote the fitness function. 

Let 
1

  , 
2

   be  two  individuals, 
1

  is said to be better than  
2

 , if )(
11

f > )(
21

f  , 

regardless the values of  )(
12

f  and )(
22

f ; only in the case of )(
11

f = )(
21

f , 
1

  is said to be 

better than  
2

 , if )(
12

f < )(
22

f . 

 
C. Crossover Operator 

We adopt the order crossover operator (OX, a kind of two-point crossover operator) [16] 
for the evolution of individuals. Select two individuals P1 and P2, generate two random integers 
X, Y� {1,2,…, n} as the crossover points. interchange part between two cut point, list the original 
order from the first gene after the second cut point Y, remove the existing gene, and then fill 
these no duplicate numbers from the first position after the second point Y, specific process is 
shown in Figure 2.  
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Figure 2. Example of  the order crossover operator process 
 
 

 This crossover operator can be a good way to solve the difficulty that the general two-
point crossover operation produces illegal individual as repeated integer gene, meanwhile, it 
can retain the adjacent relationship and the precedence relationship between nodes, meet the 
problem needs. 

 
D. Mutation operator 

Select individuals from crossover offspring according to the mutation probability 

)1,0(
m

p  to take part in mutation. For each selected individual, say  =0 j1j2…ji…jk…jn-1jn 0, 

randomly generate two integers i,k �  {1, 2, …, n-1,n}, swap the two integer ji and jk , thus 
generates a new offspring individual ' =0 j1j2…jk…ji…jn-1jn 0 . 

 
E. Local search operator   

Considering the possibility that a node less residual survival time needs to repair first of 
greater, a local search operator we are proposing is developed. For selected individual, say 
=0 j1j2…ji…jn-1jn 0, randomly generate integer i�  {1, 2, …, n-1,n}, considered the nodes  vj,i 
,…,vj,n-1,vj,n corresponding to the following integers ji,…,jn-1,jn  after the ith  location, sort their 
residual survival time tj,i ,…,tj,n-1,tj,n in ascending order , get their ascending sequence  tj,i 

＇,…,tj,n-1＇,tj,n＇, then the local search result  for  =0 j1j2…ji…jn-1jn 0  is ＇=0 j1j2…ji＇…jn-1＇jn 

＇0 .  

After reassigned, if the new generated individual ＇ is better than the current one  , 

according to their fitness function value, update the current one and continue to the next 
iteration, otherwise,dose not. 

 
F. Selection operator 

Selection strategy is concerned with choosing chromoso mes from population space. It 
may create a new population for the next generation based on either parent and offspring or 
part of them. 

For all the individual members including parents and offspring, according to their fitness 
function value, select the best pop individuals directly to form the next generation population. 

 
G. Termination criterion 

If the algorithm execution reaches the maximum evolutionary generations, then stop, 
and keep the best solution obtained as the approximate global optimal solution of the problem. 
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3.4  Coverage Repair Algorithm Based on Evolutionary Computing 
ALGORITHM   
Step 1.  (Initialization) Choose population size pop(this population size number may be odd), 

proper mutation probability pm, etc. Randomly generate initial population P(0). Let the 
generation number t = 0. 

Step 2.  (Crossover) Choose two parents in P(t) with probability pc, and use the proposed 
crossover operator  to generate two offspring. This procedure is repeated pop/2 times 
and results a total of generating pop individual.     

Step 3.  (Proposed local search) For each offspring generated by crossover, the proposed local 
search scheme is used to generate an improved offspring. All these improved offspring 
constitute a set denoted by O1. 

Step 4.  (Mutation) Select the parents for mutation from set O1 with probability pm. For each 
chosen parent, the proposed mutation operator is used to generate a new offspring. 
These new offspring constitute a set denoted by O2. 

Step 5.  (Selection) Select the best pop individuals among the set P(t)� O1� O2 as the next 
generation population P(t+1). Let t =t+1.   

Step 6.  (Termination) If termination conditions hold, then stop, and keep the best solution 
obtained as the approximate global optimal solution of the problem; otherwise, go to 
step 2. 

 
 
4. Global Convergence Analysis Of The  Algorithm 

A brief and general framework of the designed algorithm based on EA is described as 
follows: during  each iteration, the population is modified by a number of successive probabilistic 
transformations. The resulting new population depends only on the state of the current 
population in a probabilistic manner. This property reveals that the designed algorithm is of a 
stochastic nature. Notice that the deterministic concept of “convergence to the optimum” is not 
appropriate, to define exact stochastic convergence as followed. 
 

DEFINITION 1 Let  ∗ denote the chromosome which corresponds to an optimal tour. If 

 

1)}(lim{Pr
* 


tPob

t
  

 
then the proposed algorithm based on EA is called to converge to the global optimal solution 
with probability 1, where Prob{} represents the probability of random event {}. 

To prove the global convergence of the algorithm with probability 1, it is required to 
introduce the following concept. 
 

DEFINITION 2 For two chromosomes 
a

  and 
b

 , if 

 

Prob{MC(
a

 ) = 
b

 } > 0 

 

then chromosome 
b

  is called to be reachable from chromosome 
a

  by crossover and 

mutation, where MC(
a

 ) represents the offspring that were generated from chromosome 
a

  by 

crossover operator and mutation operator. 
Bäck [17] and Rudolph [18] have proved that if a genetic algorithm with a finite search 

space S satisfies the following conditions, it will converge to global optimal solution with 
probability 1. 

� for any two chromosomes a, b�  S, b is reachable from a by crossover and mutation; 

� the population sequence P(0), P(1), . . . , P (t), . . . is monotone, i.e. for ∀t : 

min{f (x)| x �  P(t + 1)} ≤ min{f (x)| x �  P(t)} 

For the proposed algorithm, the following conclusion applies. 
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THEOREM 1 The proposed coverage repair algorithm converges to the global optimal solution 
with probability 1. 
 

Proof   First, it is proved that for any two chromosomes 
a

  and 
b

 , 
b

  is reachable from 
a

  by 

crossover and mutation. In fact, note that the probability of choosing 
a

  to take part in crossover 

is pc > 0. Suppose that 
c

  is any offspring generated from a by crossover and 
e

  is the 

individual generated from 
c

  by the proposed local search , then the probability of 
e

  being 

chosen to take part in mutation is pm > 0. Thus, the probability of 
b

  being generated from a by 

crossover and mutation satisfies 
 

Prob{MC(
c

 ) = 
b

 } ≥ pc � pm � Prob{M(
e

 ) = 
b

 } 

 

It is only necessary to prove that 
b

  is reachable from 
e

  by mutation , i.e. to prove  

 

Prob{M(
e

 ) = 
b

 } > 0 

 

where M(
e

 ) represents the offspring of 
e

  by mutation . Suppose that 
e

  and 
b

  have the 

following form  
 

e
  = (e1, e2, . . . , en-1, en) , b

 = (b1, b2, . . . , bn-1, bn) 

 
It is known from the mutation operator that the probability of generating bi from ei by 

mutation is 1/(n-i+1). Therefore, 
 

Prob{ M(
e

 ) = 
b

 } =
1

1

n
· 

2

1

n
 ···

2

1
·
1

1
 =

!

1

n
> 0 

 
Thus, 
 

Prob{ MC(
c

 ) = 
b

 }≥ pc·pm·Prob{M(e) = b} =pc·pm /n!  >0 

 

This proves that 
b

  is reachable from 
a

  by crossover 、the proposed local search  and 

mutation. 
Now, the population sequence P(0), P(1), . . . , P (t), . . . is proved to be monotone. In 

fact, it can be seen from the selection scheme at step 5 of the proposed algorithm that P(t + 1) 
consists of the best pop chromosomes chosen from P(t) �  O1 �  O2 for t = 0, 1, . . . . Thus, P(0),  
P(1), . . . , P (t), . . . is monotone.  

The proof is completed. 
 
 
5.  Simulation Studies 

We have conducted experiment to test the  feasibility of our EA-based  proposal for 
Coverage Repair Strategies. Simulation was run in C language with an Intel(R) Pentium(R) Dual 
Core CPU at 2.0 GHz and 2 GB of memory under Windows XP(SP3). The instance is very 
similar to burma14 [19] (one standard benchmark problem,  a  14-city TSP problem for which 
the optimal distance value is 30.8785, available from TSPLIB, a library of TSPs  
http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html). These 2D 
coordinates for 14 points correspond to the 14 static nodes position in the graph.  The base 
station is placed at point B<16.47, 96.10>, the same as node v1 position. The travel cost 

),(
ji

vvd  was computed as the Euclidean distance between node 
i

v  and node 
j

v  . On this 

basis, each node is randomly assigned a node residual survival time value of ti . The mobile 
node v0 starts and ends at the base station through all the 14 static nodes. The experimental 



                     ISSN: 2089-3191 

Buletin TEI  Vol. 3, No. 3,  September 2014 :  213 – 222 

220

parameters are as follows: mutation probability pm=0.12,max evolutionary generations 
GenMax=1200, population size pop=50, Moving speed of the mobile node v0 respectively takes 
different values  w=0.4� � � � � �0.5 0.6 0.7 0.8 0.9 1.0 , node residual survival time of each node 
is assigned a random number between 20 and 40. A specific group values are shown in the 
Table 1.  

 
 

TABLE 1. THE INSTANCE  SPECIFIC GROUP VALUES BASE ON BURMA14  BENCHMARK PROBLEM 
Node id Static node Coordinate <x,y> residual survival time 

1 v1 <16.47,    96.10> 39 

2 v2 <16.47,  94.44> 27 

3 v3 <20.09,  92.54> 36 

4 v4 <22.39,  93.37> 23 

5 v5 <25.23,  97.24> 39 

6 v6 <22.00,  96.05> 37 

7 v7 <20.47,  97.02> 35 

8 v8 <17.20,  96.29> 37 

9 v9 <16.30,  97.38> 39 

10 v10 <14.05,  98.12> 35 

11 v11 <16.53,  97.38> 36 

12 v12 <21.52,  95.59> 33 

13 v13 <19.41,  97.13> 23 

14 v14 <20.09,  94.55> 24 

 
 
Table 2 is the result of using the designed algorithm on the energy analysis-based 

coverage repair problem when the  moving speed of the mobile node v0 takes different values  
w=0.4� 0.5� 0.6� 0.7� 0.8� 0.9� 1.0, Statistics of the maximum number of repaired node in time 

)(1 f  and the shortest length of the path )(2 f .  

 
 

TABLE 1. STATISTICS OF THE MAXIMUM NUMBER OF REPAIRED NODE IN TIME )(
1
f  AND THE SHORTEST 

LENGTH OF THE PATH )(
2
f  

moving speed w optimal feasible solution   )(1 f )(2 f  

0.4 0-1-10-9-11-13-7-12-6-5-4-3-14-2-8-0 9 31.208772 

0.5 0-1-9-11-8-13-7-14-4-12-6-5-3-2-10-0 11 36.416057 

0.6 0-1-10-9-11-8-13-7-14-3-12-6-5-4-2-0 12 34.921118 

0.7 0-1-2-10-9-11-8-13-7-14-3-4-12-6-5-0 13 35.651916 

0.8 0-1-2-14-3-4-5-6-12-7-13-8-11-9-10-0 13 30.878501 

0.9 0-1-13-7-12-6-5-4-3-14-2-8-11-9-10-0 14 31.958275 

1.0 0-1-2-14-3-4-5-6-12-7-13-8-11-9-10-0 14 30.878501 

 
 

Figure 3 shows the best trajectory where the mobile node v0 travels and visits the static 
nodes when w takes different values w=0.7� � �0.8 0.9 1.0. Table 2 shows that the energy 
analysis-based coverage repair problem(modeled as a TSP under dual-objective strategy) 
returns the standard traveling salesman problem when w=1.0 ,  all the 14 static nodes can be 
repaired, and the shortest length of the path can get 30.878501 (aslo showed in Figure 3 (a)) ; 
when w=0.9 , the mobile node v0 may reach node v13 for it’s residual survival time just has 23, in 
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order to get more nodes be repaired timely.The price is that the shortest path length is 
increased from 30.878501 to 31.958275 (aslo showed in Figure 3 (b)); such similar situation 
occurred in the other w values situation. These results show that the designed of the algorithm 
can guarantee that the number of repaired nodes is as many as possible and the path length 
get shortest. 

 

 
 

Figure 3 
 
 
6.  Conclusion 

We modeled the energy analysis-based coverage repair strategies in WSN as a dual-
objective combinatorial optimization TSP problem and solved it by the evolutionary algorithm 
(EA)  approach. This problem keeps a great degree of resemblance with the TSP with time 
windows, for which every static must be served fixing within a strict period of time. Our study 
highlights the benefits of designing of dual-objective model and integral heuristic rules. The 
simulation experience results show that the designed of the algorithm can guarantee that under 
the condition of the number of repaired nodes is as many as possible, and the path length gets 
shortest.  
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