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Abstract - Linear subspace of solution is applied to Boussinesq and Kadomtseve-Petviashvili (KP) 
equations using Hirota bilinear transformation. A sufficient and necessary condition for the existence 
of linear subspaces of exponential travelling wave solutions to Hirota bilinear equations is applied to 
show that multivariate polynomials whose zeros form a vector space can generate the desire Hirota 
bilinear equations with given linear subspaces of solutions and formulate such multivariate 
polynomials by using multivariate polynomials which have one and only one zero.  
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Introduction  
The bilinear form which was discovered by Hirota has played a vital role in the study of integrable nonlinear systems. 

The formalism is perfectly suitable for obtaining not only multi-soliton solutions but also several types of many nonlinear 
evolution equations. Moreover, it has been used for the study of the algebraic structure of evolution equations and 
extension of integrable systems (Hirota, 2004; Hieteranta, 2005). Beside the solitons and algebraic structure of evolution 
equations (Ma, 2004), (Jimbo and Miwa, 1983) another class of interesting multiple exponential wave solutions is linear 
combinations of exponential waves, which implies the existence of linear subspaces of solutions. It is also shown that, the 
kind of nonlinear equations can possess such a linear superposition principle, and a sufficient criterion for its existence 
was given for Hirota bilinear equations in (Ma and Fan, 2011). 

We would in this paper like to extend the work of Ma and Fan (2011) to describe Hirota bilinear equations which 
possesses linear subspaces of exponential travelling wave solutions. The involved exponential wave solutions may or may 
not satisfy the corresponding dispersion relation. It is also known that bilinear equations are the nearest neighbors to 
linear equations and this explain why Hirota bilinear equations has advantage over the other methods. And we expect our 
resulting theory to exhibit such common features. The paper is organized as follows:  in section 2 we will briefly discuss 
the linear superposition principle for exponential travelling waves and the established sufficient and necessary criterion for 
the existence of linear subspaces of exponential travelling wave solutions to Hirota bilinear equations. 

In section 3 after analyzing the zeros of a kind of multivariate polynomials ,we will show that multivariate 
polynomials whose zeroes form s vector can generate the desired Hirota bilinear equations with given ;linear subspaces of 
solutions, and formulate such multivariate polynomials by using multivariate polynomials which have one and only one 
zero.  An application is made to Boussinesq and KP equations.  Concluding remarks will be given in section 5.  

 

Linear superposition principle 
Recall that the Hirota bilinear operator is defined by the following rule (see, for example, Man and Fan, 2011; 

and Ma et al., 2010) 
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Where n1,…,nm are arbitrary nonnegative integers.  
Let p be a polynomial in m variables, satisfying, 

(0,..,0) 0

m

p


                                                                                                                             (2-2)  

which means that p has no constant term. Hence the corresponding Hirota bilinear equation can be written as 

1
( ) . ( ,..., ) . 0

mx x xp D f f p D D f f                                                                                            (2.3) 

Note that a term of odd degree in p produces zero in the resulting Hirota bilinear equation, and so we assume that p is an 
even polynomial, I. e  

1 1( ,..., ) ( ,..., )m mp x x p x x                                                                                                     (2.4) 

Various evolution equations can be written in Hirota bilinear equations through a dependent variable transformation, see 
(Airy, Stokes, Boussinesq and Raleigh, 1991). 

Introducing an N wave variables by fixing    N    we have 
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1, 1 ,... , 1i i M i Mk x k x i N                                                                                      (2.5) 

And N exponential wave functions 

1, 1 ,...
,1i M i Mk x k xi

if e e i N                                                                                              (2.6) 

Where 
, 'j ik s    are constant. Recall from bilinear identity that 

1 1, 1 ,( ,..., ) . ( ... ) .j ji i

Mx x i M i Mp D D e e p k x k x e e                                                                     (2.7) 

It is easily seen from (2.2) that every of the wave functions  , 1 ,if i N  gives a solution to the Hirota bilinear 

equation (2.3) 
Let us now consider a linear combination of the form 

1

1 1 1 1... ... N

N Nf f f e e                                                                                        (2.8) 

Where , 1i i N   are arbitrary constant. 

In establishing a linear superposition principle for the exponential waves , 1ie i N in order that the linear 

combination (2.8) gives a solution to Hirota bilinear equation (2.3), the following computation was made using (2.7), (2.2) 
and (2.4) 
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Hence (2.8) solves the Hirota bilinear equation (2.3) if and only if  

1, 1, , ,( ,..., ) 0, 1i j M i M jp k k k k i j N
                  

is satisfied (2.9) 

Observe that (2.9) gives a system of nonlinear algebraic equations on the wave related numbers 
, 'i jk s as soon 

as the polynomial p is given. The above discussions is summarized in a paper by ( Ma and Fan, 2011) in a theorem. The 
theorem tells us exactly when a linear superposition of exponential wave solutions solves a given Hirota bilinear equation. 
The theorem elaborated more on interrelation between Hirota bilinear equation and the linear superposition principle for 
exponential waves. Let us give some special examples in (1+1) and a (2+1)- dimensional equations respectively 

1
i i i

i i i i

k x t
i N

k x l y t

                                                                                              (2.10) 

The first example to be considered is the following polynomial: 
2 2 4( , )p x t t x x                                                                                                                (2.11) 

The corresponding condition (2.9) gives 
2 2 2 2 4 3 2 2 3 4( , ) 2 2 4 6 4 0i j i j i i j j i i j j i i j i j i j jp k k k k k k k k k k k k k k

  (2.12) 
and the outcome of the Hirota bilinear equation is 

2 2 4( ) . 0t x xD D D f f
                                                                                                            (2.13) 

which will give  
2 2 24 3 0tt t xx x xxxx xxx x xxf f f f f f f f f f f

 

Under the transformation 
2(ln )xxu f

 
This equation correspond to  

23( ) 0tt xx xx xxxxu u u u
                                                                                                     (2.14) 

Based on the linear superposition principle for the exponential wave given in theorem (1), solving the system 
(2.12) on the wave related numbers leads an N-wave solution to the nonlinear equation (2.14) 

2 4

1 1

2(ln ) , i i i

N N
k x k k t

xx i i i

i i

u f f f e
                                                                        (2.15) 
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Where the '  and k 'i is s   are arbitrary constants. Each exponential wave if  in the solution satisfies the corresponding 

nonlinear dispersion relation i. e  

( , ) 0, 1i ip k i N
 

The next example is the polynomial in (2+1) dimension. 
4 2( , , ) ,p x y t tx x y

                                                                                                         (2.16) 
From equation (2.9) we have 

4 3 2 2 3 4 2 2( , , , ) 4 6 4 [ 2 ] 0,i j i j i j i i j i i j i i j i j i j i i i j jp k k l l k k k k k k k k k k k l l l l
a

nd the resulting Hirota bilinear equation reads  
4

2( ) . 0y

x t xD D D D f f
                                                                                                (2.17) 

Which is equivalent to  
2 24 3 ( ) 0xx x t xxxx xxx x xx yy yf f f f f f f f f f f f

 

Under the transformation  
2(ln )xxu f

    this equation is mapped into  

( 6 ) 0t x xxxx x yyu uu u u
                                                                                           (2.18) 

Based on the linear superposition principle for the exponential wave given in theorem (1),  solving the above 
system on the wave related numbers leads an N-wave solution to the nonlinear equation (2.18) 

2 2 32

1 1 1

2(ln ) , i i i i i

N N N
k x k y k x k y k t

xx i i i i

i i i

u f f f e or e
 

Where the ' 'i is and k se  are arbitrary constants. Each exponential wave if  in the solution f satisfies the 

corresponding nonlinear dispersion relation i. e  

( , , ) 0, 1i i ip k l i N
 

It is directly to prove that  

1 2 1 2( , )( ).( ) ( , ) .x t x tp D D e f e g e p D k k D f g
 

Where  

1 1 2 2,k x y k x t
  and 

 1 2 1 2 1 2( , , )( ).( ) ( , , ) .x y t x t yp D D D e f e g e p D k k D D l l f g
 

where,  

1 1 1 2 2 2,k x l y t k x l y t
 

And p is a polynomial in the indicated variables. Taking, 

0 0 0 0 0 0 0k x t and k x l y t
 

The above identity yields 
0 0 0

0 0 0

2

2

( , )( ).( ) ( , ) .

( , , )( ).( ) ( , , ) .

x t x t

x y t x y t

p D D e f e g e p D D f g and

p D D D e f e g e p D D D f g
 

Hence we can get a new class of multiple exponential wave solutions by 
0'f e f

 where f is an original 
multiple exponential wave solution like any of (2.14) and (2.18); and such will be shown to form a new linear subspaces of 
solutions. Bilinear equations with given linear subspaces of solutions  To established the given result the following 
theorem will be used with proof found in (Ma et al.,  2012). Theorem:  (structure of Hirota bilinear equation) 

Let 

'

,, ( )ij M Nlet M M N and A a
  be a constant matrix of rank n. suppose that 

1( ,..., )NQ y y
 is a multivariate polynomial in y 1( ,... )T

My y
 possesses only one zero y = y0  then, 

1 0 1( ,..., ) (( ) ), ( ,..., )T T

M Mp x x Q Ax y x x x
 

Is a multivariate polynomial where zeros form an n-dimensional subspaces and the corresponding Hirota bilinear 
equation 

1 1 0( ,..., ) . (( ) ) . 0T

x x xp D D f f Q AD y f f
 

Possesses a linear subspace of solution defined by 
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1, 1 ,,...
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where, 

1, 1, , ,( ,..., ) 0, 1T

i j M i M jA k k k k i j N
 

And the 'i s are arbitrary constants.  

In the following we will present two examples to throw more light on the algorithm of the above theorem  
The first example has   

2 2

1 2 1 2 0

0 2 0
( , ) ( 1) , , , ( , )

1 3 1
Q y y y y y A x x t

 

The associated multivariate polynomial is 
2 2( , ) 6 5p x t xt x t

 
And the corresponding Hirota bilinear equation reads 

2 2(6 5 ) . 0,x t x tD D D D f f
 

This bilinear equation possesses the linear subspaces of solution defined by  

0 0

1 1

i i

N N
k x k x k t

i i i

i i

f f e e
 

where the '  and k 'i is s   are arbitrary constants, but 0 0k and  are arbitrary fixed constants. Obviously all 

exponential waves fi  in the solution satisfy the corresponding nonlinear dispersion relation if and only if  

0 0k x t
e

    satisfies the corresponding dispersion relation. 
The second example is 

2

1 2 1 2 0

0 1 0 1
( , ) 2 , , , ( , , )

0 2 3 4

TQ y y y y y A x x y t
 

The associated multivariate polynomial is 
3 2 3( , , ) 2 6 2 2 3 4p x y t x x t t x y t

 
And the corresponding Hirota bilinear equation reads 

3 2 3(2 6 2 2 3 4 ) . 0x x t t x y tD D D D D D D f f
 

This bilinear equation possesses the linear subspaces of solution defined by  

0 0 0

2

3

1 1

, 1
i i i

N N x y t
k x l y t

i i i

i i

f f e e N
 

where the 
'  and l ' 'i i is s and s

  are arbitrary  constants, but 0 0,k lo and
 are arbitrary fixed constants. 

Obviously all exponential waves fi in the solution f satisfy the corresponding nonlinear dispersion relation if and only if 

0 0 0k x l y t
e

satisfies the corresponding nonlinear dispersion relation. 
 

Parameterization 
Following the idea of (Ma and Fan, 2011) we can compute Hirota bilinear equations with linear subspaces of 

solutions by using parameterization of wave numbers and frequencies. The problem is how to construct a multivariate 

polynomial 1( ,..., )MP x x
   with no constant term such that  

1,1 1,2 ,1 ,2( ,..., ) 0M MP k k k k- - =
                                                (4.1) 

For the sets of constants 1, ,,..., , 1,2.i M ik k i =
 

Let us first introduce the weights of independent variables 

1 1( ( ),..., ( )) ( ,..., )M Mw x w x n n=
                                                (4.2) 

Where each weight 
( )i iw x n=

 is an integer, and then form a polynomial  1( ,..., )MP x x
 being homogenous in same 

weight. 
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Second for I = 1, 2 we parameterize the constants  1, ,,..., , 1,2.i M ik k i =
consisting of wave numbers of frequencies 

using a parameter ik
 as follows 

in

j i i ib b k+ =
      1≤ j ≤ M                                                           (4.3) 

Where 
'jb s

 are constant to be determined, to balance the system (4.1). then putting the parameterize constants into 

(4.1), we collect terms by powers of parameters 1 2k and k
, and set the coefficients of each power to zero, to obtain 

algebraic equations on the constant 
'jb s

and the coefficients of the polynomial 1( ,..., )MP x x
.  

Finally solve the resulting algebraic equations to determine the polynomial 1( ,..., )MP x x
 and the 

parameterization. Now based on (2.20) the resulting parameterization really tells that the obtained Hirota bilinear equation 
possesses the linear subspaces of solutions defined by 

1
1,0 1 ,0 1 1

... ... , 1

1

nn M
M M i M i M

N
k x k x b k x b k x N

i i i

i

f f e ee e
+ + + + ³

=

= =å å
               (4.4)

 

Where the 

' 'i is and k se
 are arbitrary constants but the ,0 'ik s

 are arbitrary fixed constants. 
In the following we give some illustrative example in 1+1 and 2+1-dimensions which apply the above parameterization 
and achieved by using one parameter. 

Example 1. 
( ( ), ( )) (1,1)w x w t =

 
Let us introduce the weights of independent variables 

 
( ( ), ( )) (1,1)w x w t =

                                                       (4.5) 
Then, a general even polynomial being homogenous in weight 2 is 

2 2

1 2 3P c x c xt c t= + +
                                                     (4.6) 

Following the parameterization of wave numbers and frequency in (4.3) the wave variables read  

i i i ik x b k th = +
        1 ≤ i ≤ N 

Where  ik
  1 ≤ i ≤ N are arbitrary constant but 1b

 is a constant to be determined. In this example the corresponding 

Hirota bilinear equation 
( , ) . 0x tP D D f f =

 has the linear subspace of N-wave solutions define by  

  
0 0 1

1 1

, 1i i

N N
k x t k x b k t

i i i

i i

f f e e N

                               (4.7) 

Where    k0 and w0 are arbitrary fixed constants and  b1 satisfies
  

 
2

3 1 2 1 1 0c b c b c+ + =                                                                    (4.8)   

With  

2

2 1 3 1

1

3

4

2

c c c c
b

c

- ± -
=                                                    (4.9) 

Example 2 ( ( ), ( ), ( )) (1,3,2)w x w y w t =  
Let us infroduce the weights of independent variable  

 ( ( ), ( ), ( )) (1,3,2)w x w y w t =                                                       (4.10) 

Then a general polynomial of weights 3 will be  
3

1 2 3p c x c xt c y= + +

                                                                   (4.11) 

Following the parameterization of wave numbers and frequencies in (4.3) the N-wave variables is 
3 2

1 2 ,i i i ik x b k y b k th = + +

       
 1 ≤ i ≤ N

  where ki  1 ≤ i ≤ N are arbitrary constant but b1 and b2 are constants to be determined.
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The computation of the corresponding Hirota bilinear equation 
( , , ) . 0x y tP D D D f f =

 
 has the linear subspaces of 

N-wave solutions defined by  

  

3 2
0 0 0 1 2

1 1

,i i i

N N
k x l y t k x b k y b k t

i i i

i i

f f e e

                                            (4.12) 

Where 0 0 0, ,k l and w  are arbitrary constant and 1b  and 2b  satisfy 

3 1 1

2 2 1

2 0

0

c b c

c b c

ü+ = ïï
ý
ï- = ïþ                                                                                                   (4.13) 

And the wave solution defined by (4.12) with  

1 1
1 2

3 2

2
,

c c
b b

c c

-
= =

                                                                                  (4.14) 

Examples without the dispersion relation  

Example. 1. 
( ( ), ( )) (1, 1)w x w t = -

 
Let us introduce the weights of independent variables 

 
( ( ), ( )) (1, 1)w x w t = -

                                                       (4.15) 
Then, a general even polynomial being homogenous in weight 1 is 

2 3 2

1 2 3P c x c x t c x t= + +
                                                     (4.16) 

Following the parameterization of wave numbers and frequency in (4.3) the wave variables read  
1

1i i ik x b k th -= +
        1 ≤ i ≤ N                                       (4.17) 

Where  ik
  1 ≤ i ≤ N are arbitrary constant but 1b

 is a constant to be determined. In this example the corresponding 
Hirota bilinear equation 

2 3 3

1 2 3( ) . 0x x t x tc D c D D c D D f f+ + =
                                (4.18) 

 has the linear subspace of N-wave solutions define by  

  

1
0 0 1

1 1

, 1i i

N N
k x t k x b k t

i i i

i i

f f e e N

                               (4.19) 

Where ie  and ik  are arbitrary, and l 0 and w0 are arbitrary fixed constants and 1b
 satisfy 

 

2

3 1 2 1 1 0c b c b c+ + =                                                                    (4.20)   

With  

2

2 2 3 1

1

3

4

2

c c c c
b

c

- ± -
=                                                    (4.21) 

Example 2  

( ( ), ( ), ( )) (1, 2,3)w x w y w t = -  
Let us infroduce the weights of independent variable  

 ( ( ), ( ), ( )) (1, 2,3)w x w y w t = -                                                       (4.22) 

Then the even polynomial being homogenous in weights 2 will be  
2 4

1 2 3p c x c x y c xyt= + +

                                                                   (4.23) 

Following the parameterization of wave numbers and frequencies in (4.3) the N-wave variables is 
2 3

1 2 ,i i i ik x b k y b k th -= + +

       
 1 ≤ i ≤ N

 

Where 
 ik

  1 ≤ i ≤ N are arbitrary constant but 1b
 and 2b

 are a constant to be determined. 

Now a direct computation of the corresponding Hirota bilinear equation of the form 
( , , ) . 0x y tP D D D f f =

 
  



Aceh International Journal of Science and Technology, 1 (2): 40-46 
August 2012 

ISSN: 2088-9860 
 

 46 

2 4

1 2 3( ) . 0x x y x y tc D c D D c D D D f f+ + =
 and has a linear subspaces of N-wave solution defined by 

2 3
0 0 0 1 2

1 1

,i i i

N N
k x l y t k x b k y b k t

i i i

i i

f f e e

                                            (4.24) 

Where ie  and ik  are arbitrary constants and 2b  but 0 0 0, ,l y w  are arbitrary fixed constants and 1b  and 
b2 satisfy 

3 1 2 2 1

2 1 1

2 0

0

c bb c b

c b c

ü+ = ïï
ý
ï- = ïþ                                                                                                   (4.25) 

And has N- wave solution defined by (4.2) with  

2 1
1 1

3 2

2
,

c c
b b

c c

-
= =

 
Conclusions 

Hirota bilinear equations that possesses the linear superposition principle for exponential wave solution is analyzed 
and also examined on how to construct multivariate polynomials which generate such Hirota bilinear  equations using 
some examples. In particular we show that multivariate polynomials whose zeros form a vector space could generate the 
desire Hirota bilinear equations. The related multivariate polynomials were formulated by using multivariate polynomials 
which have one and only one zero. Though the linear superposition principle does not apply to nonlinear differential 
equations, in general, it is known that Hirota bilinear equations possess the linear superposition principle among 
exponential wave solutions. This gives the existence of linear subspace of solution.  
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