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Abstract 
In real-time applications life of lead-acid battery are affected by many factors such as state of 

charge, rate of charging /discharging, temperature and aging. If these factors of battery are frequently 
encountered thought-out the lifecycle, battery performance degradation is identified. Hence, in this 
communication a valve regulated lead-acid batteries (VRLA) electrical behavior are  modeled using 
MATLAB/SIMULINK and the performance parameters related to the  battery such as  internal resistance 
(R), state of charge (SOC), and capacity under various operating conditions are predicted using artificial 
neural network (ANN). The relevant simulation results are compared with experimental results. A validation 
result shows that this model can accurately simulate the dynamic behavior of the lead-acid battery for any 
different experimental data sets. This paper describes initial feasibility studies as well as current models 
and makes comparisons between predicted and actual performance. 

  
Keywords: Lead acid battery, neural network simulation, secondary battery model, parameter prediction. 
 
 
1. Introduction 

The recent rapid expansion in the use of portable electronics, computers, personal data 
assistants, cellular phones, power tools, and even electric and hybrid vehicles creates a strong 
demand on fast deployment of battery technologies at an unprecedented rate. In today’s highly 
computerized society, communications lines must be sustained even in the event of an outage 
of the commercial power supply [1]. Accordingly, as a means of supplying power to 
communications facilities and equipment during such a power outage, lead-acid batteries are 
generally used. Unlike a flooded-type lead-acid battery, the valve-regulated lead-acid battery 
does not require maintenance work such as re-filling with water. Moreover, the way in which it 
can be set up is unrestrained, and its lifetime has been extended through various 
developments. Owing to these advantageous features, introduction of VRLA batteries is being 
speeded up [2-3].  

In this paper simulation of dynamic model of 12V/65Ah VRLA battery is analyzed. 
Battery comprises a complex set of interacting physical and chemical processes. It is difficult to 
model accurately. Researchers have developed numerous computationally feasible 
mathematical models that capture battery behavior in sufficient detail. Physical models provide 
a detailed description of the physical processes occurring in the battery. Empirical models 
consist of ad hoc equations describing battery behavior with parameters fitted to match 
experimental data. Abstract models represent a battery as electrical circuits, discrete-time 
equivalents, stochastic process models, and so on. Mixed models offer a simplified view of the 
physical processes with empirically fitted parameters. Besides, unpredictability and uncertainty 
associated with operator’s behaviors also add difficulty to estimate battery parameters 
accurately. Therefore, a variety of algorithms has been proposed to estimate battery 
parameters. The method of charge counting or current integration is presently the most 
commonly used one. However, the battery parameters vary with type and experimental 
conditions and their variation is not uniform for all battery systems [4-5]. 

Basically there are three types of battery models reported in the literature, specifically: 
experimental, electrochemical and electric circuit-based. Experimental and electrochemical 
models are not well suited to represent cell dynamics for the purpose of state-of charge 
estimations of battery packs. However, electric circuit-based battery model represents an 
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electrical characteristic of the battery. There are many types of electric circuit-based battery 
models reported in literatures. As an alternative approach, we have developed non-
phenomenological models for secondary battery systems based on artificial neural networks. 
For performance study, common modeling approach is to develop an electrical circuit that is 
designed to be functionally equivalent to the battery. The accuracy of these models depends 
upon the number of characterization tests performed to identify the values of the circuit 
elements [6-7].  

In this paper, we have developed a technique which uses short term information to 
predict long term information with the measured data. For this, artificial neural network with 
specifically feed-forward back propagation algorithm is developed. ANN overcomes the 
limitations of the conventional approaches by extracting the desired information directly from the 
experimental data. The fundamental processing elements are neurons. A schematic structure of 
the ANN is shown in Figure 1. Network is a parallel distributed information processing 
technique. In this Configuration, networks are arranged in layers, with the first layer taking in 
inputs and the last layer producing outputs. The middle layers have no connection with the 
external world, and hence it is called hidden layers. Each layer is connected with Neurons in 
between them. The sizes of middle (hidden) layers are determined by trial and error methods. A 
typical ANN operation starts with the training stage, which modifies the connection weights in 
some orderly fashion using a suitable learning method [8-10]. To train this network, back 
propagation algorithm based on experimental result is used. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Schematic diagram of general Artificial Neural Network structure 
 
 

Accurate results can be obtained with the choice of smallest number of neuron for a 
given problem. The single or multiple inputs are applied from the sensor or previously recorded 
data to the input layer with each of the inputs are multiplied by a weight and the product 
summed. The summation of the weighted input is passed through sigmoid function which is 
activation function. The algorithm updates the network weights in such a way that the sum - 
squared error in network's result is minimized. The architecture, activation function and learning 
algorithm are the important characteristics of the ANN model. Back propagation is the 
generalization of the Widrow-Hoff learning rule to multiple-layer networks and nonlinear 
differentiable transfer functions. Input vectors and the corresponding target vectors are used to 
train a network until it can approximate a function, associate input vectors with specific output 
vectors, or classify input vectors in an appropriate way as defined by user. Networks with 
biases, a sigmoid layer, and a linear output layer are capable of approximating any function with 
a finite number of discontinuities [11-13]. 
 
 
2. Research Method 

A simple, fast, and effective circuit model structure for lead - acid batteries as shown in 
Figure 2 has been described. The structure did not model the internal chemistry of the lead - 
acid battery; instead the equivalent circuit empirically approximated the behavior at the battery 
terminals.   

 
 
INPUT 
LAYERS 
 
 
                                                                                                                                                                             OUTPUT 
LAYERS 
 
 
 

 
 
 
 
 



Buletin TEI  ISSN: 2089-3191  
 

Prediction Of Lead-Acid Battery Performance Parameter: An Neural Network ... (E.Jensimiriam) 

67

 
Figure 2. Structure of effective equivalent circuit model of Lead-acid cell 

 
 
To obtain an electrical model that accurately reproduces the battery’s voltage response 

over time, a dynamic model is needed. Expanding from the very basic static circuit model 
developed, which adds n sets of parallel R-C components [14-15]. The time constants 
associated with these RC pairs help shape the battery’s dynamic voltage response. The 
dynamic response test is a relatively new technique that takes a more sophisticated approach to 
characterizing battery electrical behavior. The purpose of this test is to model the battery’s 
dynamic voltage response to a specific load over a predefined period. System identification 
techniques are used to estimate parameter values for a selected electrical model that enable 
accurate reproduction of the measured voltage response of the battery. Changes in a battery’s 
dynamic electrical behavior, manifested as changes in estimated parameter values, is indicative 
of chemical and morphological transformations occurring within the battery. According to 
Kirchhoff’s voltage law (KVL) and Kirchhoff’s current laws (KCL) define the behavior of the 
model [16-18]. The Figure 3 gives circuit for KCL and KVL. 

 
 

 
 

Figure 3. Equivalent circuit according to KCL and KVL. 
 
 

The current in this model is positive when leaving the positive electrode (discharge), 
and negative when entering the positive electrode (charge).The resistance term R0is often 
referred to as the ‘high-frequency’ resistance, as it is the only impedance to current/ion flow that 
will be encountered under high frequency loads. This resistance is always present, and can be 
attributed to ohmic losses in the electrode grid. The steady-state resistance R that is 
encountered under DC conditions after the initial transient subsides is the sum of R0and R1. 
Therefore, R1can be thought of as an additional equilibrium resistance associated with: charge-
transfer processes, ionic diffusion, electrolyte concentration gradients, and active material. 
Process of the parameter estimation for calculation of R0, R1, and R2 is done in MATLAB .these 
parameters are estimated using a nonlinear least squares minimization.  Simulink was used to 
simulate this battery model. R0 value formulated as: 

 
R0 =   R00 [1 + A0 (1 – SOC)] 
R00   - value of R0 at SOC=1 in Ohms. 
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Where; 
A0       - Constant.  
SOC   - State of charge 
 
R1 Value formulated as: 
 
R1 = - R0 ln (DOD) 

Where:  
R10    -   Constant in Ohms. 
DOD - Depth of discharge.  
 
The time constant modeled a voltage delay when battery current is changed 
 
C1 = τ1 / R1 

 

τ1 = Time constant 
 

Therefore, battery internal resistance is: 
 
R = R0 +R1 

 
An increase in the ohmic resistance of the battery is also observed with battery ageing. 

Experimentally, the resistance is calculated by dividing the time average value of the active 
power by the time average of the square of the battery current. For parameterization method of 
lead acid battery, it required standard experimental test data.  For discharge, full batteries were 
discharged at constant currents and temperatures.  For charge, batteries were charged at 
constant current, until the terminal voltage approached the gassing voltage for the battery.  
Then, the charges were continued at constant voltage, until the batteries reached a full charge.  
Several typical currents, voltage and ambient temperatures were used for the testing procedure.   

 

 
 

Figure 4.  Model for Parameter Estimation 
 
 

Steps involved in parameter Estimation: 
- Measure battery current and temperature over time,  
- Calculate voltage response using estimated parameters, 
- Compare calculated voltage response to measured voltage mainly focus on the linear part of 

the characteristics. 
- Adjust estimated parameters with help of difference in target output. 
- Deduct information about battery state from adjusted parameters. 

A quantification of performance degradation in terms of capacity reduction caused by 
aging mechanisms may also be possible with this diagnostic technique. The dynamic response 



Buletin TEI  ISSN: 2089-3191  
 

Prediction Of Lead-Acid Battery Performance Parameter: An Neural Network ... (E.Jensimiriam) 

69

test consists of: data collection, parameter estimation. An open-circuit voltage measurement 
collected at this point serves as an estimate of battery SOC and provides a value for E0. Next, 
parameters R0, R1 and C1 are estimated using a nonlinear least squares minimization. Simulink 
was used to simulate this battery model. A MATLAB script was used to calculate the least 
squares error between measured and modeled voltages. The goal of this dynamic response test 
is to determine a relationship between one or more of the estimated parameters and the battery 
capacity. If such a relationship can be found, the dynamic response test could be conducted on 
a battery of unknown state, and the parameter values estimated from the test’s voltage and 
current measurements could be used to determine the capacity of the battery. Each equivalent 
circuit element was based on non linear equations. The nonlinear equations included 
parameters and the parameters of the equations were dependent on empirically determined 
constants. This iterative process is performed in designed ANN network and begins by 
calculating the model voltage output from the measured current input and an initial guess of the 
parameter values for R0, R1and C1. This model voltage output is then compared with the 
measured voltage output at each time instance by taking the sum of squares error between the 
two voltages. An optimization function then attempts to minimize k by refining the candidate 
parameter values in an iterative fashion until a local minimum for k is found. The final set of 
candidate parameter values at the end of this process is taken as the estimate for R0, R1 and C1. 
 
2.1. Measurements of the Battery Characteristics: Experimental Set Up 

The battery modeling using artificial neural network was based on experimentally 
measured characteristics of the battery. The capacity of the valve-regulated lead-acid battery 
used in this experiment is 12V/65Ah.The internal resistance of VRLA battery is monitored during 
cycling at constant rate of discharge C10, C5 and C3 in order to determine the resistance 
variation and monitoring the SOC (state of charge) with the parameter. It is noted that at lower 
discharge rate, R value is increased only a low SOC and at a high discharge rate R value 
increases linearly. Our experiments carried out at room temperature without any specific 
temperature control. The charge and discharge series were run using an LCN programmable 
tester, manufactured by Bitrode Corporation which is designed to test as per the standards such 
as BCI, SAE, DIN, JIS, IEC, and BS. The following experiments are carried out for our study. 
Consider fully charged battery 12V/65Ah; Discharge it by changing the current in step wise 
manner shown below until the battery reach 10.5V. 

 
Case I:  SOC = 100%  

1. Discharge the battery at  I (current) = 0.2C (13)A ; 
2. Then charge the battery at I=0.1C A to attain the 100%. 
3. Discharge the battery at  I = 0.4C (26) A; 
4. Then charge the battery at I=0.1C A to attain the 100%. 
5. Discharge the battery at  I = 0.6C (39) A; 
6. Stop 

 
Case II:  SOC = 75%  

1. Discharge the battery at  I = 0.2C A ; 
2. Then charge the battery at I=0.1C A to attain the 75%. 
3. Discharge the battery at  I = 0.4C A 
4. Then charge the battery at I=0.1C A to attain the 75%. 
5. Discharge the battery at  I = 0.6C A  
6. Stop 

 
Case III:  SOC = 50%  

1. Discharge the battery at I = 0.2C A ;  
2. Then charge the battery at I=0.1C A to attain the 50%. 
3. Discharge the battery at  I = 0.4C A 
4. Then charge the battery at I=0.1C A to attain the 50%. 
5. Discharge the battery at  I = 0.6C A 
6. Stop 
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Measures battery voltage, internal resistance, and Ah output for every step of 
discharge. The unit voltage, time, current, temperature, watt-hour and ampere- hour and 
number of cycles achieved with discharge – charge cycle shall be recorded. 
 
2.2. Calculation Of Discharge Resistance Using Experimental Data Set   

R depends on both SOC and the direction of current flow (I). Hence the OCV and SOC 
(0-1) is noted and voltage mapping is drawn, 

The energy removed from the battery during time interval ‘t’ is designed as 
 
Q = ∆t (I 2 * R + V * I); 
 

Hence, new battery SOC reduces to: 
 
SOC  = 1 - (I * ∆t / Q ) ; 
Voc = a + b SOC – c ((I 2*R + V* I) ; 
 

Where c =b (∆t)/Q 
 

Hence, internal resistance is calculated as: 
 
R = (-V / I) + (a + b * SOC) / I (1 - c* I) 

 
Battery mapping to find VOC 

 
In order to estimate any of the aforementioned battery performance metrics, extensive 

electrical characterization parameter derived from empirical data under different conditions 
battery mapping is used. One of the most fundamental and important of these ‘maps’ or tables 
is the relationship between battery rested open-circuit voltage and amp hours discharged. Using 
the charging protocol specified by the battery manufacturer, the battery should first be fully 
charged. This ensures that the maximum amount of active material is available for reaction. 
After a 24 hour rest period, the first open-circuit voltage should be recorded. At this point, the 
battery should be discharged at the C20 rate for a period that would correspond to a 10% 
change in SOC. Battery Mapping done at C20 discharge rate with 10% change in SOC is shown 
in the Figure 5. 

 

Voc = 11.0345+0.0179*SOC
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Figure 5. Battery Mapping done at C20 discharge rate with 10% change in SOC. 
 
 
The figure below shows the relation between the internal resistance with respect to 

voltage and state of charge of a particular battery at specifies operating conditions. 
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Figure 6 shows the relation between the internal resistance with respect to battery voltage and 
state of charge (0 to 100 %) 

 
 
3.3 Simulation Results  

The error is calculated as the difference between the experimentally target output and 
the designed network output. The goal is to minimize the average of the sum of these errors. 
The values of mean square error (MSE) that indicate of the models performance to represent 
the battery behavior during the processes are given in Table 1 calculated with the equation 

 

 
 

Where Ci and Mi are the computed values and measured, respectively, 
 
 

Table 1. Sum square error value and correlated value of Measured and predicted data at 
different discharge rate. 

C3 (Discharge Rate) C5  (Discharge Rate) C10  (Discharge Rate) 
Error R2 Error R2 Error R2 
0.396 0.9056 0.026 0.9323 1.96 0.9012 

 
 
Comparison between battery voltage and internal resistance for measured and modeled 

parameter at different discharge rate is shown in the Figures 7-9.     
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Figure 7. Comparison between battery voltage and internal resistance for measured and 
modeled parameter at   C10 Discharge Rate 

 

 
 

Figure 8. Comparison between battery voltage and internal resistance for measured and 
modeled parameter at C5 Discharge Rate 
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Figure 9. Comparison between battery voltage and internal resistance for measured and 
modeled parameter at C3 Discharge Rate. 

 
 

However, cell performance also affected by deterioration of the active chemicals as the 
battery ages. Although there are many failure modes of VRLA batteries, including premature 
capacity loss, grid corrosion, softening, sulfation, drying out, additive decomposition and poor 
separator plate contact, etc., they vary with different designs, manufacturing and operating 
conditions. The lead-acid battery ageing causes an increase of its resistance and thus a 
decrease of its available capacity. Therefore, the battery resistances are simulated and the 
effects of State of Charge (SOC) on internal battery resistance were examined and showed that 
as the SOC decreases, the battery resistance increases, which can be justly related to physical 
interactions inside the battery. 

 
 
4. Conclusion 

In this communication, dynamic behavior of lead-acid battery models using artificial 
intelligence is investigated and presented. Hence, in this study  valve regulated lead-acid 
batteries electrical behavior are  modeled using MATLAB/SIMULINK and the performance 
parameters related to the battery such as  internal resistance, state of charge, and capacity 
under various operating conditions are predicted using artificial neural network. The relevant 
simulation results are compared with experimental results. Validation results show that this 
model can accurately simulate the dynamic behavior of the lead-acid battery for any different 
experimental data sets. This model works fast and the accuracy of this method verified by using 
the experiment. The presented method can be extended for other different equivalent circuit 
models, and also can be modified to simulate the battery characteristics by entering other 
battery parameters 
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