BIOLOGI REPRODUKSI BUNGA Cassine koordersii
Kostermans (Celastraceae) KOLEKSI KEBUN RAYA BOGOR

Reproduction biology of flower of Cassine koordersii Kostermans (Celastraceae) from Bogor Botanic Garden’s plant collection

D. Ardhianto\textsuperscript{1), R. Sari2), dan A. Djali3)
1) & 3) Jurusan Biologi, Fakultas MIPA UI
2) Pusat Konservasi Tumbuhan Kebun Raya Bogor, LIPI

Abstract

A study on flower biology of Cassine koordersii Kostermans was carried out in the Bogor Botanic Garden on April – November 2002. The plant produces flowers in umbel inflorescences that open sequentially, starting from the lowest branch of the inflorescence. There is no spatial separation between the anther and the stigma, and the dispersal of highly viable pollen takes place within the period of stigma receptivity. The flowers also show some characters of entomophily. Visitor insects are flies (ordo Diptera, family Syrphidae and Tachinidae) and ants (ordo Hymenoptera, family Formicidae). In general, the morphological and phenological characteristics of the flower allow self pollination to occur successfully. Floral assessment using Cruden’s Outcrossing Index showed that the flower is self-compatible.

Key words: Cassine koordersii, flower, morphology, phenology, entomophily, pollination

PENDAHULUAN

umumnya berada pada ketinggian sekitar 300 m di atas permukaan laut.

Adanya hambatan pada perbanyakan *C. koordersii* baik secara vegetatif maupun generatif menyebabkan regenerasi tanaman ini menjadi sulit. Oleh sebab itu dipandang perlu segera dilakukan penelitian yang lebih mendalam tentang biologi reproduksi *C. koordersii* guna mengungkapkan karakteristik reproduksi bunga serta permasalahan-permasalahan yang mungkin menghambat berlangsungnya proses reproduksi pada tanaman tersebut. Sejalan dengan itu maka penelitian ini dilakukan dengan harapan dapat menyediakan informasi yang komprehensif tentang karakteristik morfologi dan fenologi bunga serta kaitannya dengan proses terjadinya penyerbukan pada bunga *C. koordersii*.

BAHAN DAN CARA KERJA

Pengamatan reseptivitas kepala putik dilakukan melalui uji reseptivitas dengan menggunakan larutan hidrogen peroksida (Dafni, 1992). Kepala putik diambil dengan pinset kemudian dimasukkan ke dalam larutan hidrogen peroksida 3%. Kepala putik dinyatakan reseptif jika menunjukkan reaksi positif terhadap larutan tersebut yang ditandai dengan terbentuknya dan terlepasnya gelembung-gelembung udara dari permukaan kepala putik akibat adanya enzim peroksidas. Setebanyak 10 sampel kepala putik diuji beberapa saat setelah bunga mulai mekar, 30 sampel pada saat-saat serbuk sari dilepaskan, 10 sampel pada saat benang sari mulai layu, dan 10 sampel pada saat bunga layu atau satu hari setelah setelah serbuk sari selesai dilepaskan.

Viabilitas serbuk sari diuji dengan menggunakan anilin biru laktofenol (Hauser & Morrison dalam Bernardello et al., 1999). Estimasi viabilitas serbuk sari ditentukan berdasarkan persentase serbuk sari yang terwarnai oleh senyawa tersebut. Serbuk sari diambil dari 10 sampel kepala sari yang masih tertutup, beberapa saat sebelum kepala sari terbuka. Cara

Data pengamatan morfologi dan fenologi bunga selanjutnya digunakan untuk menentukan sistem kawin C. koordersii berdasarkan nilai Outcrossing Index atau OCI (Cruden, 1977). Nilai tersebut merupakan total nilai dari parameter-parameter yang ditentukan, yaitu ukuran diameter bunga, perbedaan waktu masak kepala sari dan kepala putik, serta pemisahan spasial posisi kepala sari dan kepala putik.

HASIL DAN PEMBAHASAN

Morfologi

Koleksi C. koordersii di Kebun Raya Bogor berupa pohon setinggi 15,86 m, diameter batang setinggi dada (dbh) 1,47 m dengan tajuk yang lebat. Cabang-cabang yang menghasilkan bunga umumnya berada di sisi luar tajuk. Tunas perbungaan muda berwarna hijau, berbentuk bulat dengan bagian pangkal sedikit memanjang dan pada bagian ujungnya terdapat 3 bakal kuncup bunga berbentuk menyerupai 3 tombol kecil yang tersusun berjajar (Gambar 1-A).

Kuncup bunga yang masih muda berwarna hijau terang dan berbentuk bulat. Sedangkan kuncup bunga yang siap mekar berwarna hijau keputih-putihan dan bagian distalnya berbentuk segi lima tumpul dengan garis-garis daun mahkota yang terlihat jelas.

Bunga *C. koordersii* merupakan bunga lengkap, biseksual, aktinomorf dengan bentuk menyerupai satu bidang piringan cekung (diameter rata-rata 9,3 mm) dengan tangkai berwarna hijau terang (Gambar 2). Kelopak bunga relatif tersembunyi, terdiri dari 5 (terkadang 4 atau 3) daun kelopak, berwarna hijau gelap, berbentuk cekung, panjang 1,9 mm dan lebar 2,4 mm. Mahkota bunga aktinomorf, berbentuk bintang (rotatus), berwarna hijau muda terang, terdiri dari 5 (terkadang 4, jarang sekali 3 atau 6) daun mahkota yang saling terlepas. Daun mahkota berbentuk lonjong, bagian ujungnya lebih lebar, lebih tipis dan lebih putih dari bagian tengah dan pangkal, panjang rata-rata 3,4 mm dan lebar rata-rata 2,2 mm, tidak gugur setelah bunga layu. Mahkota bunga diperkirakan mempunyai peran penting untuk memikat dan menyediakan tempat hinggap bagi serangga pengunjung. Benang sari awalnya berwarna kuning pucat keputih-putihan kemudian berangsur-angsur berubah menjadi kuning terang beberapa saat menjelang kepan sari terbuka dan akhirnya menjadi coklat muda pada saat laju. Benang sari terletak berhadapan dengan daun kelopak dan berseling dengan daun mahkota, menempel di sisu luar sudut cakram, panjang rata-rata 2,0 mm. Bunga yang memiliki 5 daun mahkota umumnya memiliki 5 benang sari, jarang sekali 3 atau 4, sedangkan bunga yang memiliki 3, 4 atau 6 daun mahkota umumnya hanya memiliki 2, 3 atau 4 benang sari. Kepala sari terdiri dari 2 lobus yang menempel tegak pada benang sari (*basifixed*) dan tidak goyang (*non versatile*). Kepala sari membuka secara membujur (*longitudinal*) dengan celah bukaan menghadap ke atas, tegak lurus terhadap penampang bunga. Putik berbentuk kerucut, terletak secara sentral di atas permukaan cakram, panjang rata-rata 0,9 mm tetapi tampak menjadi lebih panjang setelah penyerbukan. Benang sari dan putik seperti tidak terpisah secara spasial karena keduaanya hanya berjarak sekitar 1,7 mm. Posisi kepala sari sedikit lebih tinggi dibandingkan kepala putik sehingga serbuk sari yang terlepas dari kepala sari berpeluang jatuh dan menempel pada kepala putik. Cakram terletak di bagian tengah bunga, tidak berbagi (*continuous*), berupa lampengan agak pipih yang berbentuk segi lima tumpul menyerupai lingkaran (diameter rata-rata 3,2 mm) dengan alur-alur celah lekukan tampak di bagian permukaannya, ber warna hijau tua yang tampak jauh lebih gelap daripada warna mahkota bunga.

Gambar 2. Bunga *C. koordersii*. A. bunga baru mekar, kepala sari belum terbuka (a1), B. bunga mekar, kepala sari terbuka (a2), C. bunga layu, benang sari terlipat (s)

Secara umum karakteristik morfologi bunga *C. koordersii* tampak bersesuaian dengan karakteristik bunga zoofili yang dikemukakan oleh Proctor & Yeo (1975), diantaranya adalah tersedianya makanan yang berupa nektar dan serbus sari, aroma yang khas, perhiasan bunga yang berwarna menarik dan tampak jelas, serta bentuk bunga yang memungkinkan hewan penyerbuk dapat hinggap dengan nyaman. Cakram bunga *C. koordersii* adalah salah satu bagian bunga yang disukai serangga pengunjung. Menurut Hou (1962) cakram pada bunga berbagai jenis tumbuhan Celastraceae merupakan cakram nektarifer atau penghasil nektar. Posisi cakram, benang sari dan putik yang saling berdekatan memungkinkan terjadinya penyerbukan melalui peran-
Fenologi

Pohon *C. koordersii* menghasilkan bunga selama bulan Maret – November. Perbungaan muncul secara tidak serempak, melainkan secara sporadis dan terpencar. Oleh karena itu pembungaan *C. koordersii* tidak menunjukkan pola musiman yang jelas.

Gambar 3. Tahap perkembangan bunga *C. koordersii*.
Reseptivitas kepala putik dan viabilitas serbuk sari

Pada Tabel 1 dapat dilihat hasil uji reseptivitas kepala putik yang dilakukan secara berseri. Seluruh sampel kepala putik yang diuji menunjukkan reaksi positif, yang berarti reseptif, sejak fase awal bunga mekar (pukul 04.00 – 04.30 WIB) hingga fase bunga mulai layu (pukul 16.00 – 17.00). Hal ini berarti bahwa kepala putik berada dalam kondisi reseptif selama periode pelepasan serbuk sari sehingga peluang untuk terjadinya penyebuhan sangat besar. Sementara itu uji reseptivitas terhadap sampel kepala putik yang diambil satu hari setelah bunga layu menunjukkan hasil yang negatif. Hal ini mengindikasikan bahwa periode reseptif kepala sari C. koordersii tergolong tidak terlalu lama sehingga peluang terjadinya penyebuhan silang juga relatif berkurang.

Hasil uji viabilitas serbuk sari menunjukkan bahwa serbuk sari C. koordersii memiliki viabilitas yang tinggi (Tabel 2). Dari sejumlah 7.896 butir serbuk sari yang diambil dari 10 sampel kepala sari beberapa saat sebelum kepala sari terbuka (pukul 07.30–09.00 WIB), hanya 5 butir serbuk sari (0.06%) yang tidak terwarnai atau tidak viabel, sementara 99.94% lainnya dapat dikategorikan viabel.

Berdasarkan hasil kedua jenis pengujian tersebut di atas dapat diketahui bahwa pada bunga C. koordersii tidak terdapat hambatan yang cukup berarti untuk berlangsungnya proses penyebuhan. Masa reseptif kepala putik, masa pelepasan serbuk sari, dan viabilitas serbuk sari, semuanya sangat mendukung untuk terjadinya penyebuhan yang sempurna.

Serangga pengunjung

Serangga pengunjung bunga C. koordersii yang berhasil diamati meliputi semut (bangsa Hymenoptera suku Formicidae) dan lalat (2 jenis dari suku Syrphidae dan 1 jenis dari suku Tachinidae). Bentuk dan warna bunga C. koordersii mungkin saja disukai lalat, namun pemikat utama bagi serangga untuk datang mengunjungi bunga tersebut adalah serbuk sari dan nektar, karena serangga pengunjung yang teramatia termasuk jenis serangga yang suka mengkonsumsi serbuk sari dan nektar. Adanya serangga pengunjung ini menunjukkan bahwa bunga C. koordersii termasuk bunga entomofili.

Tabel 1. Data reseptivitas kepala putik C. koordersii

<table>
<thead>
<tr>
<th>Waktu Pengujian</th>
<th>Jumlah Sampel Kepala Putik</th>
<th>Hasil Uji Kepala Putik*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Positif</td>
</tr>
<tr>
<td>Awal bunga mekar, 04.00–04.30 WIB</td>
<td>10</td>
<td>10 (100%)</td>
</tr>
<tr>
<td>Saat serbuk sari dilepaskan, 07.00–09.00 WIB</td>
<td>30</td>
<td>30 (100%)</td>
</tr>
<tr>
<td>Saat bunga mulai layu, 16.00–17.00 WIB</td>
<td>10</td>
<td>10 (100%)</td>
</tr>
<tr>
<td>Satu hari setelah awal bunga mekar, 09.00 WIB</td>
<td>10</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Jumlah Total</td>
<td>60</td>
<td>50</td>
</tr>
</tbody>
</table>

* Hasil uji kepala putik positif bila kepala putik mengeluarkan gelembung udara, negatif bila kepala putik tidak mengeluarkan gelembung udara

Tabel 2. Data viabilitas serbuk sari C. koordersii

<table>
<thead>
<tr>
<th>Waktu Pengujian</th>
<th>No. Kepala Sari</th>
<th>Jumlah Butir Serbuk Sari</th>
<th>Hasil Uji Serbuk Sari*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Positif</td>
</tr>
<tr>
<td>07.30–09.00 WIB</td>
<td>1</td>
<td>1026</td>
<td>1026</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>638</td>
<td>638</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>902</td>
<td>902</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>498</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>415</td>
<td>412</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>680</td>
<td>680</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>729</td>
<td>729</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>792</td>
<td>792</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1050</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1166</td>
<td>1166</td>
</tr>
<tr>
<td>Jumlah Total</td>
<td>10</td>
<td>7896 (100%)</td>
<td>7891 (99,9%)</td>
</tr>
</tbody>
</table>

* Hasil uji serbuk sari: positif berarti butir serbuk sari terwarnai, negatif berarti butir serbuk sari tak terwarnai

Sementara itu semut yang terkenal sangat menyukai zat gula merupakan pengunjung bunga yang sangat umum dan hampir selalu dapat dijumpai padabunga-bunga dari berbagai jenis tumbuhan, terutama di daerah tropis. Meskipun demikian hewan ini dianggap sebagai serangga pengunjung yang merugikan, karena seringkali justru menjadi pencuri nektar yang mampu mengambil nektar tanpa menyentuh kepala sari dan kepala putik. Tubuh semut keras dan tidak cocok untuk transpor serbuk sari (Faegri & Pijl, 1979).

Sistem kawin

Sistem kawin tumbuhan berbunga beragam mulai dari outcrossing sempurna sampai inbreeding sempurna, atau perpaduan dari keduanya. Outcrossing atau penyerbukan dan pembuahan silang dianggap paling memungkinkan terjadinya rekombinasi sekaligus memelihara keragaman genetik. Inbreeding atau penyerbukan sendiri dianggap mengurangi jumlah materi genetik untuk rekombinasi dan hanya menguntungkan bagi tumbuhan yang mengalami isolasi geografis atau tidak memiliki vektor penyebukan yang dapat memfasilitasi penyerbukan silang (Uno et al., 2001).

Menurut Ghazoul, (1997) sistem kawin tumbuhan dapat diketahui secara langsung melalui penyerbukan eksperimental terkontrol atau secara tidak langsung dengan memperbandingkan karakter morfologi bunga tumbuhan tersebut dengan bunga dari jenis tumbuhan
lain yang telah diketahui sistem kawinnya. Indikator tak langsung lainnya mencakup tingkat pemsahan organ seksual bunga serta perbandingan jumlah serbuk sari dengan jumlah ovul. Studi tentang morfologi bunga secara seksama akan dapat mengungkapkan apakah penyerbukan sendiri terhalang oleh pemsahan spasial organ seksual bunga, sedangkan studi tentang fenologi bunga akan dapat mengungkapkan ada tidaknya pemsahan temporal atau perbedaan waktu antara pelepasan serbuk sari oleh kepala sari dan penerimaan serbuk sari (reseptivitas) pada kepala putik.

Penilaian berdasarkan tiga parameter yang ditentukan menurut indeks outcrossing Crueden (Cruden, 1977) menunjukkan bahwa bunga C. koordersii memiliki nilai total 3 sehingga bunga dapat dianggap bersifat self-compatible atau memiliki karakter bunga yang memfasilitasi penyerbukan sendiri. Pada parameter pertama, yaitu diameter bunga, bunga C. koordersii bernilai 3 karena diameter bunga rata-rata 9,3 mm atau lebih besar dari 6 mm. Pada parameter kedua, yaitu pemsahan temporal, bunga C. koordersii bernilai 0, karena hasil pengamatan menunjukkan bahwa waktu pelepasan serbuk sari dan penerimaan serbuk sari oleh kepala putik terjadi pada waktu yang relatif bersamaan. Sedangkan pada parameter ketiga, yaitu pemsahan spasial, bunga C. koordersii bernilai 0, karena memiliki kepala sari dan kepala putik dalam satu bunga dan relatif tidak terpisah.

KESIMPULAN

Hasil penelitian menunjukkan bahwa bunga C. koordersii mempunyai potensi untuk menyerbuk sendiri baik secara langsung maupun melalui bantuan serangga polinator (entomofil) karena masa resesptivitas kepala putik bersesuaian dengan masa pelepasan serbuk sari yang mempunyai viabilitas sangat tinggi serta tiadanya hambatan spasial antara kepala putik dan benang sari. Dengan demikian jenis tumbuhan ini juga berpotensi tidak memerlukan individu lain untuk penyerbukannya. Meskipun demikian, penelitian lanjutan masih diperlukan, terutama untuk mengetahui apakah setelah berlangsungnya penyerbukan dapat segera diikuti dengan proses pembuahan dan pembentukan biji, mengingat adanya fakta yang menunjukkan bahwa produksi buah tumbuhan ini tergolong sangat rendah. Penelitian yang lebih mendalam juga diperlukan untuk mempelajari berbagai faktor yang mempengaruhi fertilitas dan daya berkecambah biji yang dihasilkan, mengingat adanya fakta lain yang menunjukkan rendahnya kemampuan biji C. koordersii untuk berkecambah.

UCAPAN TERIMA KASIH

Terima kasih kepada Dra. Inggit P. Astuti, MSi. yang telah memberikan bantuan informasi dan dorongan moril sehingga studi ini selesai dilaksanakan.

DAFTAR PUSTAKA

