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Abstract - MODIS instruments have been designed to include special channels for fire monitoring by adding 
more spectral thermal band detector on them. The basic understanding of remote sensing fire detection 
should be kept in mind to be able to improve the algorithm for regional scale detection purposes. It still gives 
many chances for more exploration. This paper describe the principle of fire investigation applied on MODIS 
data. The main used algorithm in this research is contextual algorithm which has been developed by NASA 
scientist team. By varying applied threshold of T4 value in the range of 320-360K it shows that detected fire is 
significantly changed. While significant difference of detected FHS by changing ∆T threshold value is 
occurred in the range of 15-35K. Improve and adjustment of fire detection algorithm is needed to get the best 
accuracy result proper to local or regional conditions. MOD14 algorithm is applied threshold values of 325K 
for T4 and 20K for ∆T. Validation has been done from the algorithm result of MODIS dataset over Indonesia 
and South Africa. The accuracy of MODIS fire detection by MOD14 algorithm is 73.2% and 91.7% on 
MODIS data over Sumatra-Borneo and South Africa respectively. 
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Introduction 
The moderate resolution imaging spectroradiometer (MODIS) instruments launched in December 1999 and May 

2002 on board the Terra and Aqua satellites respectively have provided opportunities for improved fire detection based on 
more thermal bands compared to inheritance satellite sensors such as national oceanic and atmospheric administration 
(NOAA) advanced very high resolution radiometer (AVHRR) and visible atmospheric sounder (VAS) on board 
geostationary orbiting environmental satellite (GOES) (Kaufman et al., 1998). Description of specification of MODIS 
instrument and its opportunity in detecting surface temperature anomaly was given by NASA scientists (Giglio et al., 2003). 
Many researchers strive to use MODIS capability to make better identification on fire pixels to give the more accurate and 
near real time information of fire occurancy (Zhanga et al., 2008) either active fire or smoldering. MODIS algorithms have 
been derived to identify fires (Justice et al., 2002; Wang et al., 2007) and there have been some improvements. 

The fire detection algorithm using MODIS data is developed from the predecessor algorithm based on NOAA data 
(Giglio et al., 2003) which has been used for fire monitoring include the single threshold algorithm (Flannigan and Haar, 
1986), multiple threshold algorithm (Eva and Flasse, 1996) and the contextual algorithm (Prins, 1994; Flasse and Ceccato, 
1996; Nakayama et al., 1999). The contextual algorithm is able to detect more fire pixels than the multiple threshold 
algorithm and detected fires from contextual are visually consider valid fire pixels. The improved capability of contextual 
algorithm for NOAA-AVHRR then is adapted for fire monitoring using MODIS data. The contextual algorithm 
application to detect fire using MODIS data was performed  for data of Democratic Republic of Congo (Giglio et al., 2003) 
and it was also used to detect small and cool fires in the Southern United States (Wang et al., 2007). 

Fire detection monitoring by satellite remote sensing uses information of thermal sensor radiance data. Fire pixels 
have thermal characteristic anomaly compared to other pixels in imagery data which is captured from the field of view. The 
fire detection algorithm classifies pixels as fire or non-fire based on their characteristics in thermal spectral range. There is 
no evidence to show that any of the existing fire algorithms are universaly applicable in all conditions (Li et al., 2000). Fire 
algorithms typically are based on common physical principles, but each is “tuned” to local or regional conditions according 
to specific parameters. An improved understanding of fire detection principles and effect of changing the tuning parameters 
will allow researchers to make any adjusment especially in determining threshold value to improve fire monitoring methods 
which are best for their own area of interest. 

This paper describes the fire detection principles and shows how significant the threshold value in results of fire 
detection algorithm. The fire detection algorithm which has aplied is based on an enhancement of the contextual algorithm 
(Giglio et al., 2003). The chosen areas of interests are Kalimantan and Sumatra islands of Indonesia. Both of those islands 
are prone to be risk of forest fire especially within dry season in Indonesia. The islands mostly consist of peat lands that are 
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easily burned in dry condition. This work also shows different curves pattern of fire detection by applying certain algorithm 
threshold value which is examined into two different Indonesia’s seasons MODIS datasets. 
Physical principal of fire detection 

Fire is a chemical reaction of fuel and oxygen which emits energy in the visible and thermal spectral regions 
(Chuvieco, 1999). Thermal emmision is described by Plank’s Law of blackbody radiation, as stated in equation (1). 

  (1) 

where: E = Radiated energy (W m-2 sr-1 micron-1) 
 h = Planck’s constant = 6.626068x10-34 Joule sec 
 k = Bolztman’s constant = 1.3806488x10-23 J K-1 

 c = Speed of light in vacuum = 3x108 m s-1 

 T = Object temperature (Kelvin) 
We define c1= 2hc2  and c2=hc/k, so that equation (1) is rewritten as: 
  (2) 

With  c1 = 1.19107 x 108 W micron4 m-2 sr-1 

 c2  = 1.43883 x 104 micron K 
Figure  shows blackbody spectral emission curves based on equation (1) applied to different surface temperatures. 

Wilhelm Wien, a German physicist, stated that the higher the temperature of the object, the shorter the wavelength of 
maximum emission which is agree with the picture that the peak emisison’s wavelength for each curve moving to lower 
wavelengths as temperature increases. This statement well known as “Wien’s displacement law”. Equation (2) may be 
inverted to provide an expression for the apparent temperature of a black body as perfect emitter object based on a 
measure of the emitted radiance as expressed in equation (3). 
  (3) 

Remote sensing technology adopts above principal to detect fire from space by satellite borne sensors. The sensor 
orbits above the earth’s atmosphere and it detects energy at the top of atmosphere (TOA). Radiation energy emitted from 
the earth’s surface interacts with the intervering atmosphere by reflection, scattering, absorption, and transmission. Only 
energy which is transmitted by the atmosphere is detected by the sensor.  

shows the atmospheric transmittance from 0.3 microns to 30 microns. Spectral regions of high transmittance are 
termed “atmospheric windows”. 

The highest transmitance in the thermal wavelength region  occurs at wavelengths around 4 µm and 11-12 µm. This 
is the reason why satellite sensors are designed with spectral bands at those wavelengths to measure the thermal emission 
from the Earth’s surface (Prins, 1994; Flasse and Ceccato, 1996). Thermal energy detected by satellite sensors is given as a 
pixel values. They represent top of atmosphere (TOA) radiance measured by a sensor. A pixel might be composed by fire 
and non-fire subpixels with certain size and certain temperature. Small portion subpixels with extremely high temperature 
can be detected as fire while a lower subpixels temperature need to have large portion to be able detected as fire. Each 
satellite sensor has different characteristic and response in thermal band detection. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The 4 μm band has a strong thermal response even if only a small portion of the pixel is covered by fire. This 
channel is sensitive to fires as small as 10-4 of the fire pixel (Dozier, 1981). Additionally characteristic of 11 μm band is 
sensitive in the lower temperature because of its peak temperature is lower than 4 μm sensor as ilustrated by blackbody 
curve. It means that detected value in band 4 μm and 11 μm of high temperature object (fire) will give a difference value of 

Figure 1.  Black body spectral radiance as a function  
of wavelength for various  absolute temperatures 

(Chuvieco, 1999). 

 

Figure 2.  Plot of electromagnetic wavelength 
spectrum and  it’s transmission in the atmosphere 

(Rice, 2012). 
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band 4 μm and 11 μm (∆T). Increasing the temperature leads to raising ∆T as ilustrated in Figure 3. This characteristic gives 
a fundamental reason that channel 4 μm and difference value (∆T) of temperature in 4 μm channel (T4) and 11 μm channel 
(T11) is mostly used in remote sensing for fire detection (Philip, 2007). Radiance values of band 4 µm exponentially increase 
while radiance values of band 11 µm gradually rise. Both of those bands graph has the same radiance value at temperature 
460K. Above this value the gap between those two graphs become bigger and bigger. When radiance value is converted 
into temperature by inverse plank function, it can be shown that a difference value of T4 and T11 will be positive and it 
increases when temperature goes up from 460K.  

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
Materials and Methods 
MODIS Instruments 

The MODIS instruments provide daily coverage approximatley 4 times per day for each area on the earth. MODIS-
Terra has an equator crossing time around 10.30 am and 10.30 pm while MODIS-Aqua has a crossing time around 1.30 pm 
and 1.30 am (Chuvieco and Huete, 2010). The MODIS sensor scans the earth with 10 simultaneous 1 km wide stripes (or 
20 and 40 stripes at the 500m and 250m resolution respectively). Figure 4 shows the triangular response of MODIS sensor 
across 2 km with maximum response in the centre of the pixel because of MODIS scanning mode. As a result, fires can be 
expected to be detected by one or two adjacent pixels depending on the location of the fire relative to the pixel and on the 
strength of the fire (Kaufman et al., 1998). 

The MODIS instruments have 36 channels with spectral bands from 0.405 to 14.385 µm and they acquires data at 
three spatial resolutions i.e. 250m (bands 1-2), 500m (bands 3-7), and 1 Km (bands 8-36). The bands employed in deriving 
fire products are listed in Table 1. Two important bands are centred at 3.9 and 11 μm with 1 km resolution (Christopher et 
al., 2006). Other MODIS channels as shown in Table 1 are also employed in deriving various active fire monitoring 
products under different viewing conditions. MODIS instrument has two channels centred on 4 μm, namely channel 21 
and channel 22 which have saturation temperatures at 500K and 331K respectively. The lower saturation temperature, and 
thus increased sensitivity, of channel 22 gives less noisy and has smaller quantization error so whenever possible T4 

observations are carried out using channel 22 (Christopher et al., 2006). However, when channel 22 saturates or has missing 
data, it is replaced with the high saturation channel (channel 21) to derive T4. Furthermore MODIS channel 31 is centred 
on 11 μm (T11) and saturates at approximately 400 K.  

 
Table 1.  MODIS channels used for active-fire detection and characterization 

Channel 
Central 
wavelength (μm) 

Purpose 

1 0.65 Sun glint, coastal false alarm rejection, and cloud masking 
2 0.86 Bright surface, sun glint, coastal false alarm rejection, and cloud masking 
7 2.13 Sun glint and coastal false alarm rejection 
21 3.95 Fire detection and characterization (high-range) 
22 3.95 Fire detection and characterization (low-range) 
31 11 Fire detection,cloud masking 
32 12 Cloud masking 

 
Fire detection strategy 

In principal, fire detection algorithm dichotomizes observed dataset pixels in two categories, fire or non-fire. 
Classification steps mainly base on land surface thermal radiation which is sensed by sensors. If a fire is strong enough the 
fire detection strategy is based on absolute detection of the fire. In this case the presence of a fire is detected by a pixel 

 Figure 3.  Plot of temperature and radiance for band 4 µm and 11 µm 

 

Figure 4.  MODIS response across track 
(Kaufman et al., 1998) 
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temperature occurring above some threshold value. If a fire is weak, or the areal extent of a fire is small compared to the 
size of the pixel being observed, the fire is detected by considering the thermal emission of the pixel relative to emission 
from surrounding pixels. This latter test identifies pixels with values elevated above a background thermal emission 
obtained from the surrounding pixels. This strategy is implemented in the contextual fire detection algorithm (Giglio et al., 
2003). The very important step in contextual algorithm is classifying the pixels either they are fire or not. In MODIS 
contextual algorithm (MOD14) this step is putted in background characterization which defined fire pixels if their value is 
above the threshold of T4 and ∆T. The identified number of fire pixels is affected by those two values. 

Optimal threshold value determination needs to be worked out and evaluated as it might results different between 
one area and the others. Liew et al. (2006) introduced the statistical method to derive optimal threshold value by getting the 
solution of minimum cost function. Probability density function of fire pixels and background pixels are figured to predict 
the approached model of the curves. The appropriate equation model of curves in some constrains is guessed and then 
solve the minimum cost function of those equations to get best threshold value and errors.  

 

Results and Discussion 
Fire pixels numbers in this research are got from varying T4 and ∆T and they are expressed in Error! Reference 

source not found. and Error! Reference source not found.. Those figures say that variation of T4 value has detected 
FHS number in more steeply curve compare to variation of ∆T value on MOD14 fire algorithm. This means that T4 
threshold values changing has more significant effect in fire detection. Focusing on figure 5 as drawn an interesting issue, 
the most significant decreasing number of detected FHS arise in range about 320 – 360 K and bit slow down for the rest. 
Sensitivity of detection algorithm can be analysed using zoomed Figure 5 curve in T4 320K up to 500K. In this zoomed area 
the curve can be approximated by exponential curve in dot line of figure 7 which is expressed by equation (4). This 
approximation curve is used to estimate sensitivity of applied MOD14 algorithm using MODIS dataset over Indonesia.  

   (4) 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                      

 

 
 

T4 threshold 
values 

Detected FHS 
number 

Normalised slopes (%) 

320 188 100.00 
321 185 95.12 
322 183 90.48 
323 178 86.07 
324 177 81.87 
325 177 77.88 
326 176 74.08 
330 172 60.65 
340 163 36.78 
350 160 22.30 
400 152 1.82 
500 150 0.00 

Figure 5. Hotspot identified by varying threshold of T4 

 

Figure 6.  Hotspot identified by varying threshold of ∆T 

 

Figure 7.  Relative (%) detected FHS number and its 
approximated exponential curve. 

 

Table 2.  Detected FHS number in various T4 threshold 
values 
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 Algorithm detection sensitivity can be represented by slope’s curve in each given threshold values. Essentially 
slope’s curve in each point of the curve is tangent value (tan θ) of asymptotic line in the sitting point along curve line. 
Figure out derivation of the curve function will result on slope function of asymptotic lines. Normalising values of 
determined point’s slope related to each detected FHS number is written in Table 2. In purpose of providing global fire 
detection algorithm, NASA fire research team created MOD14 algorithm and chose thresholds value 325K on T4 and 20K 
on ∆T respectively. These values are sat in steep curves part either on T4 or ∆T graphs. Threshold value 325K in table 2 
gives sensitivity of 77.88%. Regarding this result, if we want to increase sensitivity of fire detection using MOD14 algorithm 
applied on Indonesia, it needs to adjust threshold value. For example, expected 90% detection sensitivity should decrease T4 
threshold value on about 322K. Related work was done by Liew et al. (2003) using SPOT datasets to validate the results of 
MOD14 algorithm which is applied on MODIS data over Sumatra and Borneo. All validation SPOT datasets have time 
different no more than 40 minutes compare to appropriate MODIS datasets. The pixel number of hotspot both on 
MODIS and SPOT are counted. Their results show that the accuracy of MODIS fire detection over examined area is 73.2% 
by Commission error 26.8% and Omission error 34.2%. This accuracy value is nearly matched to sensitivity of 326K of T4 
threshold value in Table 2. Further research in validation of MOD14 algorithm has been done by C. O. Justice et al.  (2002) 
using MODIS datasets on 24 November 2000 over South Africa. They used ASTER data as valid reference to calculate 
accuracy and error value of detection. The results showed that accuracy of MODIS fire detection over South Africa was 
91.7% by Commission error 8.3% and Omission error 74.8%. 

From two validation research explained above, the same value of threshold gave different accuracy when it applied 
in fire detection algorithm within different areas. MOD14 algorithm has lower accuracy for MODIS datasets over 
Indonesia compare to MODIS datasets over South Africa. We know that Indonesia as located in tropical area has lower 
average temperature compared to South Africa which mostly occupied by desert areas. 

 
Conclusions 

We conclude that fire detection algorithm for satellite data especially MODIS has been developed but for regional 
detection it will better to adjust threshold value regarding regional condition and environmental parameters. Varying 
threshold value of T4 in MOD14 algorithm caused different number of fire hotspot (FHS) detected. The steep changing 
curve values show which value is significant in fire detection and finding the best threshold is important. From validation 
results, the accuracy detection is different depend on area datasets so for regional detection, threshold value should be 
adjusted to get the best accuracy in result. 
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