
Buletin Teknik Elektro dan Informatika
(Bulletin of Electrical Engineering and Informatics)
Vol.2, No.2, June 2013, pp. 132~140
ISSN: 2089-3191 132

Received November 15, 2012; Revised February 3, 2013; Accepted March 5, 2013

GASA-JOSH: A Hybrid Evolutionary-Annealing
Approach for Job-Shop Scheduling Problem

Somayeh Kalantari*1, Mohamad Saniee Abadeh2
1Department of Electrical, IT and Computer, Islamic Azad University, Qazvin Branch, Qazvin, Iran

2Department of computer, Tarbiat Modares University, Tehran, Iran
*Corresponding author, e-mail: sk_kalantari@yahoo.com1, saniee@modares.ac.ir2

Abstract
The job-shop scheduling problem is well known for its complexity as an NP-hard problem. We

have considered JSSPs with an objective of minimizing makespan. In this paper, we develope a hybrid
approach for solving JSSPs called GASA-JOSH. In GASA-JOSH, the population is divided in non-
cooperative groups. Each group must refer to a method pool and choose genetic algorithm or simulated
annealing to solve the problem. The best result of each group is maintained in a solution set, and then the
best solution to the whole population is chosen among the elements of the solution set and reported as
outcome. The proposed approach have been compared with other algorithms for job-shop scheduling and
evaluated with satisfactory results on a large set of JSSPs derived from classical job-shop scheduling
benchmarks. We have solved 23 benchmark problems and compared results obtained with a number of
algorithms established in the literature.

Keywords: job-shop scheduling, genetic algorithm, simulated annealing

1. Introduction

Scheduling is one of the most important issues in the planning and operation of
manufacturing systems [1]. Bruker and Schile [2] were the first to address this problem in 1990.
They developed a polynomial graphical algorithm for a two-job problem. Exact algorithms are
not effective for solving JSP and large instances [3]. Several procedures such as dispatching
rules, local searches and meta-heuristics (such as taboo search, simulated annealing and
genetic algorithm) have been developed in recent years [4].
 GA is an effective meta-heuristic to solve combinatorial optimization problems, and has
been successfully adopted to solve the JSP. Recently more and more papers are talking about
this topic. They differ from each other in encoding and decoding schemes, initial population
method, and offspring generation strategy. Chen et al. [5] used an integrated approach to solve
the FJSP. Yang [6] proposed a GA-based discrete dynamic programming approach. Zhang and
Gen [7] proposed a multi stage operation-based genetic algorithm to deal with the problem from
the point view of dynamic programming. Ho et al. [8] proposed architecture for learning and
evolving of FJSP called Learnable Genetic Architecture (LEGA). Pezzella et al. [3] integrated
different strategies for generating the initial population, and selecting the individuals for
reproducing new individuals. Tay and Wibowo [9] combined the GA and a variable
neighbourhood descent (VND) for solving the FJSP. In this paper, we aimed to solve JSP using
a hybrid method. The method enjoys Genetic algorithm (GA) and Simulated annealing (SA). For
which sub populations, groups, use one of the algorithms, GA or SA, arbitrarily to solve JSP.
 The paper is organized as follows. Section 2 gives the description of the JSP. The
proposed hybrid approach along with the structure of the work is explained in section 3. Section
4 reports benchmark instances, experimental results and Parameter settings of GASA-JOSH. In
the last section we conclude the paper.

2. The Description of Job Shop Scheduling Problem

In the general JSSP, there are j jobs, job= {j1, j2 … j n}, and m machines, machine=
{m1, m2… m n}. Each job comprises a set of tasks which must each be done on a different

Buletin TEI ISSN: 2089-3191

GASA-JOSH: A Hybrid Evolutionary-Annealing Approach for Job-Shop… (Somayeh Kalantari)

133

machine for different specified processing times in given job-dependent order. Table 1 shows a
standard 6*6 benchmark problem (i.e. j=6 & m=6) from [10]. In this example, job 1 must go to
machine 3 for 1 unit of time, then to machine 1 for 3 units of time, and so on. The standard job-
shop scheduling problem makes the following constraints and assumptions [11]:

Table 1. The 6×6 Benchmark Problem
 (m, t) (m, t) (m, t) (m, t) (m, t) (m, t)

Job1 3, 1 1, 3 2, 6 4, 7 6, 3 5, 6
Job2 2, 8 3, 5 5, 10 6, 10 1, 10 4, 4
Job3 3, 5 4, 4 6, 8 1, 9 2, 1 5, 7
Job4 2, 5 1, 5 3, 5 4, 3 5, 8 6, 9
Job5 3, 9 2, 3 5, 5 6, 4 1, 3 4, 1
Job6 2, 3 4, 3 6, 9 1, 10 5, 4 3, 1

Figure 1. An Optimal Schedule for 6×6 JSSP Benchmark

 The processing time for each operation using a particular machine is defined.
 There is a pre-defined sequence of operations that has to be maintained to

complete each job.
 Delivery times of the products are undefined.
 There is no setup or tardiness cost.
 A machine can process only one job at a time.
 Each job is performed on each machine only once.
 No machine can deal with more than one type of task.
 The system cannot be interrupted until each operation of each job is finished.
 No machine can halt a job and start another job before finishing the previous one.
 Each and every machine has full efficiency.

 The objective considered in this work is to minimize the total elapsed time between the
beginning of the first task and the completion of the last task, the makespan. Makespan is
defined as Equation (1). In that equation, the completion time is denoted by C .

 (1)

The other measures of schedule quality exist, but shortest make span is the simplest

and most widely used criterion. For the above problem the minimum make span is known to be
55 as in for example. The schedule is shown in Figure 1 [12].

3. The Proposed Hybrid Approach (GASA-JOSH)
In this approach, GASA-JOSH, using a random way the main population is created and

then divided in non-cooperative groups such that group boundary is closed. The whole
population incorporates individuals which are distributed in the search space globally. That is,
individuals of a group are not necessarily adjacent. These groups are of equal size. A method

 ISSN: 2089-3191

Buletin TEI Vol. 2, No. 2, June 2013 : 132 – 140

134

pool is considered which contains GA and SA method. Each group chooses a method from the
pool autonomously and the process of finding the best solution in each group is done by the
method selected. Evolution in the groups is carried out independently. The best result of each
group is saved. The best solution to the entire population is equivalent to the best of all groups.
The framework of the proposed approach, GASA-JOSH, is illustrated in Figure 2. In the
following sub sections Genetic algorithm along with the simulated annealing are described.

3.1. Genetic Algorithm

GA is a local search algorithm that follows the evolution paradigm. Starting from an
initial population, the algorithm applies genetic operators in order to produce off springs (in the
local search terminology, it corresponds to exploring the neighbourhood) which are presumably
more fit than their ancestors. At each generation, every new individual corresponds to a
solution, a schedule of the given JSP instance. The strength of GA with respect to other local
search algorithms is due to the fact that in a GA framework more strategies can be adopted
together to find individuals to add to the mating pool, both in the initial population phase and in
the dynamic generation phase. Then a more variable search space can be explored at each
algorithm step [3].

Procedure GASA-JOSH (GA- SA parameters, JSP data set) an optimal schedule

a) Initialize the GA parameters: population size, number of groups (Gnum), size of each group
(Gsize), maximum iteration number, crossover probability, and mutation probability.

b) Initialize the SA parameters: maximum iteration per each temperature, the first temperature,
the last temperature, alpha

c) Initialize population, evaluate individuals, divide them by Gnum and give Gsize individuals to
each group

 While (exist group)
 Group Pop= individuals of the group
 Select a method from method pool(SG)
 If SG=1 then
 While (not termination condition)

Crossover and create Cross over Pop
Mutation and create Mutate Pop
Evaluate pop (crossover+ mutate)
Get new population
(1/2 from the best individuals of the group +
1/2 from the best individuals of (Mutate Pop + Cross over Pop))
Evaluate Group Pop

 Else
While (not termination condition)
 While (not termination per temperature condition)
 Create neighbour of individuals as new solutions

 Evaluate new solutions
 Delta = (New Sol .Cost- Group Pop. Cost)/ Group Pop. Cost)

 If Delta<=0 then new solution is better
 Else with the probability of P , new solution is better

Figure 2. The Proposed Framework

3.1.1. Selection

The selection phase is in charge to choose the better individuals to prepare for the
crossover. In this paper the roulette wheel selection is adopted.

3.1.2. Crossover

Crossover can be regarded as the backbone of genetic search. It intends to inherit
nearly half of the information of two parent solutions to one or more offspring solutions.

Buletin TEI ISSN: 2089-3191

GASA-JOSH: A Hybrid Evolutionary-Annealing Approach for Job-Shop… (Somayeh Kalantari)

135

Provided that the parents keep different aspects of high quality solutions, crossover induces a
good chance to find still better offspring [13].

3.1.3. Mutation

Mutation usually works on a single chromosome and creates another chromosome
through alternation of the value of a string position or exchange of the values of two string
positions in order to maintain the diversity of population. In this paper, an exchange order
mutation operator is used. That is, two operations are chosen randomly and then their positions
are exchanged [14].

3.1.4. Stopping Criteria

Fixed number of generations is considered as stopping criteria. If the stop criterion is
satisfied, the best chromosome is given as output and the algorithm ends.

3.2. Simulated Annealing

Simulated annealing (SA) is motivated by an analogy to annealing in solids. The idea of
SA comes from a paper published by Metropolis et al. in 1953 [15]. The algorithm in that paper
simulated the cooling of material in a heat bath. In 1982, Kirkpatrick et al. [16] took the idea of
the Metropolis's algorithm and applied it to optimization problems. The idea is to use simulated
annealing to search for feasible solutions and converge to an optimal solution [17].

The objective function is considered as a measure of the energy of the system and this
is maintained fixed for a certain number of iterations (a temperature cycle). In each of the
iterations, the parameters are changed to a nearby location in parameter space and the new
objective function value calculated. If it decreased, then the new state is accepted. If it
increased, then the new state is accepted with a probability that follows a Boltzmann distribution
(higher temperature means higher probability of accepting the new state). After a fixed number
of iterations, the stopping criterion is checked. If it does not come time to stop, then the system's
temperature is reduced and the algorithm continues. Simulated annealing is a stochastic
algorithm that is guaranteed to converge, if ran for an infinite number of iterations. It is one of
the most robust global optimization algorithms, although it is also one of the slowest.

Figure 3 shows the simulated annealing algorithm [18]. In this Figure, the VALUE
function corresponds to the total energy of the atoms in the material, and T corresponds to the
temperature. The schedule determines the rate at which the temperature is lowered. Individual
moves in the state space correspond to random fluctuations due to thermal noise. One can
prove that if the temperature is lowered sufficiently slowly, the material will attain a lowest-
energy (perfectly ordered) configuration. This corresponds to the statement that if schedule
lowers T slowly enough, the algorithm will find a global optimum.

Function SIMULATED-ANNEALING (Problem, Schedule) returns a solution state
Inputs: Problem, a problem, Schedule, a mapping from time to temperature
Local Variables: Current, anode
 Next, a node
 T, a “temperature” controlling the probability of downward steps
Current= MAKE-NODE (INITIAL-STATE[Problem])
For t=1 to ∞ do
 T= Schedule(t)
 If T=0 then return Current
 Next= a randomly selected successor of Current
 ∆E=VALUE[Next]-VALUE[Current]
 If ∆E>0 then Current=Next
 Else Current=Next only with probability exp(-∆E/T)

Figure 3. Simulated Annealing Algorithm

 ISSN: 2089-3191

Buletin TEI Vol. 2, No. 2, June 2013 : 132 – 140

136

4. Computational Experiments
4.1. Benchmark Instances

The benchmark instances considered in the experiments are summarized in Table 2. In
that table, the first column shows the instance name and the second one shows the relevant
literature specification.

Table 2. Benchmark Instances

4.2. Features of the Computing Device Used and Parameters Setting

GASA-JOSH was implemented in Matlab. The tests were run on a computer with a
2.8GHz Pentium five CPU and 2GB RAM on Microsoft windows XP operating system. The
parameters used in this approach are chosen experimentally to get a satisfactory solution in an
acceptable time span. Through experimentation, name and value of the parameters considered
are shown in Table 3.

Table 3. Parameter Settings
Parameter Name value

Number of generations
Maximum number of iterations per temperature
Number of groups
Size of each group
Size of the Population
Probability of Crossover
Probability of Mutation
Initial Temperature
Final Temperature
Cooling Factor

150
10
6

100
600
0.8

0.01
10

0.001
0.91

4.3. Experimental results

In this paper, in order to give a rough idea about the quality achieved, we confine to the
23 famous problems of Muth & Thompson [10] and Lawrence [19]. We ran the proposed
approach five times on the same instance to obtain meaningful results. The results appear in
Table 4. It respectively lists problem name, problem size (number of jobs × number of
operations), the best known solution (BKS), and the best solution obtained in this paper (GASA-
JOSH). The solutions obtained by the following literature: Park et al. [20], Gao et al. [21], and
Yang et al. [22] along with the relative deviations, Dev (%), are shown in the next columns of the
table. Dev (%) columns imply the relative deviation of those algorithms with respect to GASA-
JOSH. The relative deviation is defined in Equation (2).

 (2)

Instance Literature
ft06-ft10- ft20 Muth, J. F. & Thompson, G. L. (1963)”Industrial Scheduling”, Prentice Hall, Englewood

Cliffs, New Jersey, pp225-251.
la01-la40 Lawrence, S. (1984)”Resource constrained project scheduling: an experimental

investigation of heuristic scheduling techniques (Supplement)”, Graduate School of
Industrial Administration, Carnegie-Mellon University, Pittsburgh, Pennsylvania.

abz5-abz9 Adams, J. & Balas, E. & Zawack, D. (1988)”The shifting bottleneck procedure for job shop
scheduling”, Management Science 34, pp391-401.

orb01-orb10 Applegate, D. & Cook, W. (1991)” A computational study of the job-shop scheduling
instance”, ORSA Journal on Computing 3, pp149-156. (they were generated in Bonn in
1986)

swv01-swv20 Storer, R.H. & Wu, S.D. & Vaccari R. (1992)”New search spaces for sequencing instances
with application to job shop scheduling”, Management Science 38, pp1495-1509.

yn1-yn4 Yamada, T. & Nakano, R. (1992)”A genetic algorithm applicable to large-scale job-shop
instances”, North-Holland, Amsterdam, pp281-290.

Buletin TEI ISSN: 2089-3191

GASA-JOSH: A Hybrid Evolutionary-Annealing Approach for Job-Shop… (Somayeh Kalantari)

137

 Where, MKGASA-JOSH is the makespan obtained by our approach, and MK comp is the
makespan of the algorithm we compared to. Results show that for 78.26% of the cases, the
underlined numbers shown in GASA-JOSH column of Table 3, our approach outperforms the
other algorithms.
 GASA-JOSH is firstly tested on Lawrence's data set (LA01-LA20). Applied instances of
this data set consist of 20 problems with 10, 15 or 20 jobs, 5 or 10 machines, and 5 or 10
operations. Secondly, it is tested on Thompson's data set (Ft06-Ft10-Ft20). The number of jobs
in that data set ranges from 6 to 20, the number of machines ranges from 5 to 10, and the
number of operations for each job ranges from 5 to 10.

Figure 4. Makespan of the Proposed Approach Obtained in Each Group for La01

Table 4. Experimental Results

In Table 4, the compared computational results show that for LA16 the best makespan
of GASA-JOSH over five runs is better than that of the others. For LA01-LA15, and LA18 the
proposed approach could gain the same good results as the other literature. In Figure 4, we
draw the best makespan value obtained by each group of the whole population over five runs
for the La01 problem with 10 jobs and 5 machines. For this problem the best known makespan
in the other literature is 666. As said before, the second test of the approach was run on Muth &

667

708
696

666

666

730

600

650

700

750

group 1 group 2 group 3 group 4 group 5 group 6

Problem: La01

Problem Size BKS GASA-
JOSH

Gao
(2011)

Dev
(%)

Yang
(2008)

Dev
(%)

Park
(2003)

Dev
(%)

FT06 6×6 55 55 55 0 55 0 55 0
FT10 10×10 930 943 930 -1.4 930 -1.4 936 -0.75
FT20 20×5 1165 1178 1165 -1.12 1165 -1.12 1177 -0.08
LA01 10×5 666 666 666 0 666 0 666 0
LA02 10×5 655 655 655 0 655 0 666 1.65
LA03 10×5 597 597 597 0 597 0 597 0
LA04 10×5 590 590 590 0 590 0 590 0
LA05 10×5 593 593 593 0 593 0 593 0
LA06 15×5 926 926 926 0 926 0 926 0
LA07 15×5 890 890 890 0 890 0 890 0
LA08 15×5 863 863 863 0 863 0 863 0
LA09 15×5 951 951 951 0 951 0 951 0
LA10 15×5 958 958 958 0 958 0 958 0
LA11 20×5 1222 1222 1222 0 1222 0 1222 0
LA12 20×5 1039 1039 1039 0 1039 0 1039 0
LA13 20×5 1150 1150 1150 0 1150 0 1150 0
LA14 20×5 1292 1292 1292 0 1292 0 1292 0
LA15 20×5 1207 1207 1207 0 1207 0 1207 0
LA16 10×10 945 941 945 0.42 945 0.42 977 3.68
LA17 10×10 784 785 784 -0.13 784 -0.13 787 0.25
LA18 10×10 848 848 848 0 848 0 848 0
LA19 10×10 842 850 842 -0.95 844 -0.71 857 0.82
LA20 10×10 902 907 902 -0.55 907 0 910 0.33
Average improvement +4.21 -1.21 -0.42

 ISSN: 2089-3191

Buletin TEI Vol. 2, No. 2, June 2013 : 132 – 140

138

Thompson instances (Ft06, Ft10, and Ft20). Ft06 was solved to optimality (best makespan
=55). Meanwhile, Ft10 and Ft20 were respectively solved with makespan of 943 and 1178.
Makespan of the best known solution, makespan of the best GASA-JOSH solution, and a
comparison with the other three approaches addressed in Table 4 are shown in Figures 5 and 6
respectively for Lawrence and Thompson datasets. Figure 7 shows the relative deviation of the
best known makespan with respect to GASA-JOSH.
 To summarize, for 17 out of 23 problems GASA-JOSH could gain the same good
results as the literature and for 1 problem could gain better results than the other papers.

Figure 5. Makespan Comparison Chart for La01-La20

Figure 6. Makespan Comparison Chart for Ft06, Ft10, and Ft20

LA01 LA02 LA03 LA04 LA05 LA06 LA07 LA08 LA09 LA10 LA11 LA12 LA13 LA14 LA15 LA16 LA17 LA18 LA19 LA20

BKS 666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207 945 784 848 842 902

GASA‐JOSH 666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207 941 785 848 850 907

Gao (2011) 666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207 945 784 848 842 902

Yang (2008) 666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207 945 784 848 844 907

Park (2003) 666 666 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207 977 787 848 857 910

0

200

400

600

800

1000

1200

1400

M
ak
e
sp
an

0

200

400

600

800

1000

1200

1400

FT06 FT10 FT20

BKS

GASA‐JOSH

Gao (2011)

Yang (2008)

Park (2003)

Buletin TEI ISSN: 2089-3191

GASA-JOSH: A Hybrid Evolutionary-Annealing Approach for Job-Shop… (Somayeh Kalantari)

139

Figure 7. The Relative Deviation of the Best Known Makespan with Respect to GASA-JOSH

5. Conclusion

In this paper, a new evolutionary-annealing approach (GASA-JOSH) uses Genetic
algorithm and simulated annealing algorithm for solving job-shop scheduling problem is
proposed. The approach is compared with some algorithms in the literature. It is tested on a set
of 23 standard instances and compared with 3 other approaches. The computational results
show that the approach, GASA-JOSH, could produce the Best Known Solution on 78.26% of all
instances tested. That is it could gain results which are better or equal to the BKS on 18 out of
23 problems.

References
[1] Zhang G, Gao L, Shi Y. A genetic algorithm and taboo search for solving flexible job shop schedules.

Proc. computational intelligence and design International symposium. 2008; 369-372.
[2] Brucker P, Schile R. Job-shop scheduling with multi-purpose machines. Computing. 1990; 45(4): 369-

375.
[3] Pezzella F, Morganti G, Ciaschetti G. A genetic algorithm for the flexible job-shop scheduling problem.

Computers and Operations Research. 2007; 5(10): 3202–3212.
[4] Zhang G, Gao L, Shi Y. An effective genetic algorithm for the flexible job-shop scheduling problem.

Expert system with applications. 2011; 38: 3563-3573.
[5] Chen H, Ihlow J, Lehmann C. A genetic algorithm for flexible job shop scheduling. IEEE international

robotics and automation conference. 1999; 1120-1125.
[6] Yang JB. GA-based discrete dynamic programming approach for scheduling in FMS environments.

IEEE Transaction on Systems, Man, and Cybernetics, Part B. 2001; 31(5): 824–835.
[7] Zhang HP, Gen M. Multistage-based genetic algorithm for flexible job shop scheduling problem”,

Journal of Complexity International. 2005; 48: 409–425.
[8] Ho NB. Tay JC, Edmund M, Lai K. an effective architecture for learning and evolving flexible job shop

schedules. European Journal of Operational Research. 2007; 179: 316–333.
[9] Tay JC, Wibowo D. An effective chromosome representation for evolving flexible job shop schedules”,

GECCO 2004, Lecture notes in computer Science. 2004; 3103: 210–221.
[10] Muth JF, Thompson G. Industrial Scheduling, Prentice Hall, Englewood Cliffs, New Jersey. 1963; 225-

251.
[11] Giovanni L, Pezzella F. An improved genetic algorithm for the distributed and flexible job shop

scheduling problem. European journal of operational research. 2010; 200: 395-408.
[12] Fang H, Ross P, Corne D. A promising genetic algorithm approach to: job shop scheduling.

rescheduling and open shop scheduling problems. Fifth international conference on genetic
algorithms. 1993; 375-382.

[13] Bierwirth C. A generalized permutation approach to job shop scheduling with genetic algorithms. OR
Spectrum. 1995; 1787-1792.

[14] Xing YJ, Wang ZQ, Sun J, Meng J. A multi objective fuzzy genetic algorithm for job shop scheduling
problems. Journal of achievements in materials and manufacturing engineering. 2006; 17: 297-300.

[15] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller A, Teller E. Equation of State Calculation by
Fast Computing Machines. J. of Chem. Phys. 1953; 21: 1087-1091.

[16] Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by Simulated Annealing. Journal of Science. 1983;
220: 671-680.

FT06 FT10 FT20 LA01 LA02 LA03 LA04 LA05 LA06 LA07 LA08 LA09 LA10 LA11 LA12 LA13 LA14 LA15 LA16 LA17 LA18 LA19 LA20

Dev% 0 ‐1.4 ‐1.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.42 ‐0.1 0 ‐1 ‐0.6

‐1.5

‐1

‐0.5

0

0.5

1

D
e
v%

 ISSN: 2089-3191

Buletin TEI Vol. 2, No. 2, June 2013 : 132 – 140

140

[17] Kendall G. http://www.cs.nott.ac.uk/ ~gxk/aim/notes/simulatedannealing.doc.
[18] Russell S, Norvig P. Artificial Intelligence: A Modern Approach, Prentice Hall. 1995.
[19] Lawrence S. Supplement to resource constrained project scheduling: An experimental investigation of

heuristic scheduling techniques. Pittsburgh, PA: GSIA, Carnegie Mellon University. 1984.
[20] Park BJ, Choi HR, Kim HS. A hybrid genetic algorithm for the job shop scheduling problems. J of

Computers & Industrial Engineering. 2003; 45(4): 597–613.
[21] Gao L, Zhang G, Zhang L, Li X. An effective memetic algorithm for solving the job- shop scheduling

problem, journal of Computers and Industrial engineering. 2011; 60: 699-705.
[22] Yang J, Sun L, Lee H, Qian Y, Liang Y. Clonal Selection Based Memetic Algorithm for Job Shop

Scheduling Problems. Journal of Bionic Engineering. 2008; 5: 111-119.

