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Abstract 
The job-shop scheduling problem is well known for its complexity as an NP-hard problem. We 

have considered JSSPs with an objective of minimizing makespan. In this paper, we develope a hybrid 
approach for solving JSSPs called GASA-JOSH. In GASA-JOSH, the population is divided in non-
cooperative groups. Each group must refer to a method pool and choose genetic algorithm or simulated 
annealing to solve the problem. The best result of each group is maintained in a solution set, and then the 
best solution to the whole population is chosen among the elements of the solution set and reported as 
outcome. The proposed approach have been compared with other algorithms for job-shop scheduling and 
evaluated with satisfactory results on a large set of JSSPs derived from classical job-shop scheduling 
benchmarks. We have solved 23 benchmark problems and compared results obtained with a number of 
algorithms established in the literature. 
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1. Introduction 

Scheduling is one of the most important issues in the planning and operation of 
manufacturing systems [1]. Bruker and Schile [2] were the first to address this problem in 1990. 
They developed a polynomial graphical algorithm for a two-job problem. Exact algorithms are 
not effective for solving JSP and large instances [3]. Several procedures such as dispatching 
rules, local searches and meta-heuristics (such as taboo search, simulated annealing and 
genetic algorithm) have been developed in recent years [4].  
     GA is an effective meta-heuristic to solve combinatorial optimization problems, and has 
been successfully adopted to solve the JSP. Recently more and more papers are talking about 
this topic. They differ from each other in encoding and decoding schemes, initial population 
method, and offspring generation strategy. Chen et al. [5] used an integrated approach to solve 
the FJSP. Yang [6] proposed a GA-based discrete dynamic programming approach. Zhang and 
Gen [7] proposed a multi stage operation-based genetic algorithm to deal with the problem from 
the point view of dynamic programming. Ho et al. [8] proposed architecture for learning and 
evolving of FJSP called Learnable Genetic Architecture (LEGA). Pezzella et al. [3] integrated 
different strategies for generating the initial population, and selecting the individuals for 
reproducing new individuals. Tay and Wibowo [9] combined the GA and a variable 
neighbourhood descent (VND) for solving the FJSP. In this paper, we aimed to solve JSP using 
a hybrid method. The method enjoys Genetic algorithm (GA) and Simulated annealing (SA). For 
which sub populations, groups, use one of the algorithms, GA or SA, arbitrarily to solve JSP. 
      The paper is organized as follows. Section 2 gives the description of the JSP. The 
proposed hybrid approach along with the structure of the work is explained in section 3. Section 
4 reports benchmark instances, experimental results and Parameter settings of GASA-JOSH. In 
the last section we conclude the paper. 
 
 
2. The Description of Job Shop Scheduling Problem 

In the general JSSP, there are j jobs, job= {j1, j2 … j n}, and m machines, machine= 
{m1, m2… m n}. Each job comprises a set of tasks which must each be done on a different 



Buletin TEI  ISSN: 2089-3191  
 

GASA-JOSH: A Hybrid Evolutionary-Annealing Approach for Job-Shop… (Somayeh Kalantari) 

133

machine for different specified processing times in given job-dependent order. Table 1 shows a 
standard 6*6 benchmark problem (i.e. j=6 & m=6) from [10]. In this example, job 1 must go to 
machine 3 for 1 unit of time, then to machine 1 for 3 units of time, and so on. The standard job-
shop scheduling problem makes the following constraints and assumptions [11]: 

 
 

Table 1. The 6×6 Benchmark Problem 
 (m, t) (m, t) (m, t) (m, t) (m, t) (m, t) 

Job1 3, 1 1, 3 2, 6 4, 7 6, 3 5, 6 
Job2 2, 8 3, 5 5, 10 6, 10 1, 10 4, 4 
Job3 3, 5 4, 4 6, 8 1, 9 2, 1 5, 7 
Job4 2, 5 1, 5 3, 5 4, 3 5, 8 6, 9 
Job5 3, 9 2, 3 5, 5 6, 4 1, 3 4, 1 
Job6 2, 3 4, 3 6, 9 1, 10 5, 4 3, 1 

 

 
Figure 1. An Optimal Schedule for 6×6 JSSP Benchmark 

 
 

 The processing time for each operation using a particular machine is defined. 
 There is a pre-defined sequence of operations that has to be maintained to 

complete each job. 
 Delivery times of the products are undefined. 
 There is no setup or tardiness cost. 
 A machine can process only one job at a time. 
 Each job is performed on each machine only once. 
 No machine can deal with more than one type of task. 
 The system cannot be interrupted until each operation of each job is finished. 
 No machine can halt a job and start another job before finishing the previous one. 
 Each and every machine has full efficiency. 

      The objective considered in this work is to minimize the total elapsed time between the 
beginning of the first task and the completion of the last task, the makespan. Makespan is 
defined as Equation (1). In that equation, the completion time is denoted by C . 
 

 (1) 
 
The other measures of schedule quality exist, but shortest make span is the simplest 

and most widely used criterion. For the above problem the minimum make span is known to be 
55 as in for example. The schedule is shown in Figure 1 [12]. 

 
 

3. The Proposed Hybrid Approach (GASA-JOSH) 
In this approach, GASA-JOSH, using a random way the main population is created and 

then divided in non-cooperative groups such that group boundary is closed. The whole 
population incorporates individuals which are distributed in the search space globally. That is, 
individuals of a group are not necessarily adjacent. These groups are of equal size. A method 
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pool is considered which contains GA and SA method. Each group chooses a method from the 
pool autonomously and the process of finding the best solution in each group is done by the 
method selected. Evolution in the groups is carried out independently. The best result of each 
group is saved. The best solution to the entire population is equivalent to the best of all groups. 
The framework of the proposed approach, GASA-JOSH, is illustrated in Figure 2. In the 
following sub sections Genetic algorithm along with the simulated annealing are described. 
 
3.1. Genetic Algorithm 

GA is a local search algorithm that follows the evolution paradigm. Starting from an 
initial population, the algorithm applies genetic operators in order to produce off springs (in the 
local search terminology, it corresponds to exploring the neighbourhood) which are presumably 
more fit than their ancestors. At each generation, every new individual corresponds to a 
solution, a schedule of the given JSP instance. The strength of GA with respect to other local 
search algorithms is due to the fact that in a GA framework more strategies can be adopted 
together to find individuals to add to the mating pool, both in the initial population phase and in 
the dynamic generation phase. Then a more variable search space can be explored at each 
algorithm step [3]. 
 
 
Procedure GASA-JOSH ( GA- SA parameters, JSP data set) an optimal schedule 

a) Initialize the GA parameters: population size, number of groups (Gnum), size of each group 
(Gsize), maximum iteration number, crossover probability, and mutation probability. 

b) Initialize the SA parameters: maximum iteration per each temperature, the first temperature, 
the last temperature, alpha  

c) Initialize population, evaluate individuals, divide them by Gnum and give Gsize individuals to 
each group 

 
   While (exist group) 
   Group Pop= individuals of the group 
   Select a method from method pool(SG) 
   If  SG=1  then   
       While (not termination condition) 

Crossover and create Cross over Pop 
Mutation and create Mutate Pop 
Evaluate pop (crossover+ mutate) 
Get new population  
(1/2 from the best individuals of the group +                     
1/2 from the best individuals of (Mutate Pop + Cross over Pop)) 
Evaluate Group Pop  

   Else  
While (not termination condition) 
   While (not termination per temperature condition) 
       Create neighbour of individuals as new solutions 

             Evaluate new solutions 
      Delta = (New Sol .Cost- Group Pop. Cost)/ Group   Pop. Cost) 

             If Delta<=0 then new solution is better 
             Else with the probability of  P , new solution is better

 
Figure 2. The Proposed Framework 

 
 
3.1.1. Selection 

The selection phase is in charge to choose the better individuals to prepare for the 
crossover. In this paper the roulette wheel selection is adopted. 
 
3.1.2. Crossover 

Crossover can be regarded as the backbone of genetic search. It intends to inherit 
nearly half of the information of two parent solutions to one or more offspring solutions. 
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Provided that the parents keep different aspects of high quality solutions, crossover induces a 
good chance to find still better offspring [13].  
 
3.1.3. Mutation 

Mutation usually works on a single chromosome and creates another chromosome 
through alternation of the value of a string position or exchange of the values of two string 
positions in order to maintain the diversity of population. In this paper, an exchange order 
mutation operator is used. That is, two operations are chosen randomly and then their positions 
are exchanged [14]. 

 
3.1.4. Stopping Criteria 

Fixed number of generations is considered as stopping criteria. If the stop criterion is 
satisfied, the best chromosome is given as output and the algorithm ends. 
 
3.2. Simulated Annealing 

Simulated annealing (SA) is motivated by an analogy to annealing in solids. The idea of 
SA comes from a paper published by Metropolis et al. in 1953 [15]. The algorithm in that paper 
simulated the cooling of material in a heat bath. In 1982, Kirkpatrick et al. [16] took the idea of 
the Metropolis's algorithm and applied it to optimization problems. The idea is to use simulated 
annealing to search for feasible solutions and converge to an optimal solution [17].  

The objective function is considered as a measure of the energy of the system and this 
is maintained fixed for a certain number of iterations (a temperature cycle). In each of the 
iterations, the parameters are changed to a nearby location in parameter space and the new 
objective function value calculated. If it decreased, then the new state is accepted. If it 
increased, then the new state is accepted with a probability that follows a Boltzmann distribution 
(higher temperature means higher probability of accepting the new state). After a fixed number 
of iterations, the stopping criterion is checked. If it does not come time to stop, then the system's 
temperature is reduced and the algorithm continues. Simulated annealing is a stochastic 
algorithm that is guaranteed to converge, if ran for an infinite number of iterations. It is one of 
the most robust global optimization algorithms, although it is also one of the slowest.  

Figure 3 shows the simulated annealing algorithm [18]. In this Figure, the VALUE 
function corresponds to the total energy of the atoms in the material, and T corresponds to the 
temperature. The schedule determines the rate at which the temperature is lowered. Individual 
moves in the state space correspond to random fluctuations due to thermal noise. One can 
prove that if the temperature is lowered sufficiently slowly, the material will attain a lowest-
energy (perfectly ordered) configuration. This corresponds to the statement that if schedule 
lowers T slowly enough, the algorithm will find a global optimum. 
 
  

Function SIMULATED-ANNEALING (Problem, Schedule)   returns a solution state 
Inputs:  Problem, a problem, Schedule, a mapping from time to temperature 
Local Variables:  Current, anode 
                             Next, a node 
                             T, a “temperature” controlling the probability of downward steps 
Current= MAKE-NODE (INITIAL-STATE[Problem]) 
For   t=1 to ∞ do 
     T= Schedule(t) 
     If T=0 then return Current 
     Next= a randomly selected successor of Current 
     ∆E=VALUE[Next]-VALUE[Current] 
     If ∆E>0 then Current=Next 
     Else Current=Next only with probability exp(-∆E/T) 

Figure 3. Simulated Annealing Algorithm 
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4. Computational Experiments  
4.1. Benchmark Instances 

The benchmark instances considered in the experiments are summarized in Table 2. In 
that table, the first column shows the instance name and the second one shows the relevant 
literature specification.  
 
 

Table 2. Benchmark Instances 

 
     
4.2. Features of the Computing Device Used and Parameters Setting  

GASA-JOSH was implemented in Matlab. The tests were run on a computer with a 
2.8GHz Pentium five CPU and 2GB RAM on Microsoft windows XP operating system. The 
parameters used in this approach are chosen experimentally to get a satisfactory solution in an 
acceptable time span. Through experimentation, name and value of the parameters considered 
are shown in Table 3. 
 
 

Table 3. Parameter Settings 
Parameter Name value 

Number of generations 
Maximum number of iterations per temperature 
Number of groups 
Size of each group 
Size  of the Population 
Probability of Crossover 
Probability of Mutation 
Initial Temperature 
Final Temperature 
Cooling Factor 

150 
10 
6 

100 
600 
0.8 

0.01 
10 

0.001 
0.91 

 
 
4.3. Experimental results 

In this paper, in order to give a rough idea about the quality achieved, we confine to the 
23 famous problems of Muth & Thompson [10] and Lawrence [19]. We ran the proposed 
approach five times on the same instance to obtain meaningful results. The results appear in 
Table 4. It respectively lists problem name, problem size (number of jobs × number of 
operations), the best known solution (BKS), and the best solution obtained in this paper (GASA-
JOSH). The solutions obtained by the following literature: Park et al. [20], Gao et al. [21], and 
Yang et al. [22] along with the relative deviations, Dev (%), are shown in the next columns of the 
table. Dev (%) columns imply the relative deviation of those algorithms with respect to GASA-
JOSH. The relative deviation is defined in Equation (2). 
 

 (2) 

Instance Literature 
ft06-ft10- ft20 Muth, J. F. & Thompson, G. L. (1963)”Industrial Scheduling”, Prentice Hall, Englewood 

Cliffs, New Jersey, pp225-251. 
la01-la40 Lawrence, S. (1984)”Resource constrained project scheduling: an experimental 

investigation of heuristic scheduling techniques (Supplement)”, Graduate School of 
Industrial Administration, Carnegie-Mellon University, Pittsburgh, Pennsylvania. 

abz5-abz9 Adams, J. & Balas, E. & Zawack, D. (1988)”The shifting bottleneck procedure for job shop 
scheduling”, Management Science 34, pp391-401. 

orb01-orb10 Applegate, D. & Cook, W. (1991)” A computational study of the job-shop scheduling 
instance”, ORSA Journal on Computing 3, pp149-156. (they were generated in Bonn in 
1986) 

swv01-swv20 Storer, R.H. & Wu, S.D. & Vaccari R. (1992)”New search spaces for sequencing instances 
with application to job shop scheduling”, Management Science 38, pp1495-1509. 

yn1-yn4 Yamada, T. & Nakano, R. (1992)”A genetic algorithm applicable to large-scale job-shop 
instances”, North-Holland, Amsterdam, pp281-290. 
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      Where, MKGASA-JOSH is the makespan obtained by our approach, and MK comp is the 
makespan of the algorithm we compared to. Results show that for 78.26% of the cases, the 
underlined numbers shown in GASA-JOSH column of Table 3, our approach outperforms the 
other algorithms. 
     GASA-JOSH is firstly tested on Lawrence's data set (LA01-LA20). Applied instances of 
this data set consist of 20 problems with 10, 15 or 20 jobs, 5 or 10 machines, and 5 or 10 
operations. Secondly, it is tested on Thompson's data set (Ft06-Ft10-Ft20). The number of jobs 
in that data set ranges from 6 to 20, the number of machines ranges from 5 to 10, and the 
number of operations for each job ranges from 5 to 10. 

 
 

  
 

Figure 4. Makespan of the Proposed Approach Obtained in Each Group for La01  
 

 
Table 4.  Experimental Results 

 
 

In Table 4, the compared computational results show that for LA16 the best makespan 
of GASA-JOSH over five runs is better than that of the others. For LA01-LA15, and LA18 the 
proposed approach could gain the same good results as the other literature. In Figure 4, we 
draw the best makespan value obtained by each group of the whole population over five runs 
for the La01 problem with 10 jobs and 5 machines. For this problem the best known makespan 
in the other literature is 666. As said before, the second test of the approach was run on Muth & 

667
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666

730

600

650

700

750

group 1 group 2 group 3 group 4 group 5 group 6

Problem: La01

Problem Size BKS GASA-
JOSH 

Gao 
(2011) 

Dev 
(%) 

Yang 
(2008) 

Dev 
(%) 

Park 
(2003) 

Dev 
(%) 

FT06 6×6 55 55 55 0 55 0 55 0 
FT10 10×10 930 943 930 -1.4 930 -1.4 936 -0.75 
FT20 20×5 1165 1178 1165 -1.12 1165 -1.12 1177 -0.08 
LA01 10×5 666 666 666 0 666 0 666 0 
LA02 10×5 655 655 655 0 655 0 666 1.65 
LA03 10×5 597 597 597 0 597 0 597 0 
LA04 10×5 590 590 590 0 590 0 590 0 
LA05 10×5 593 593 593 0 593 0 593 0 
LA06 15×5 926 926 926 0 926 0 926 0 
LA07 15×5 890 890 890 0 890 0 890 0 
LA08 15×5 863 863 863 0 863 0 863 0 
LA09 15×5 951 951 951 0 951 0 951 0 
LA10 15×5 958 958 958 0 958 0 958 0 
LA11 20×5 1222 1222 1222 0 1222 0 1222 0 
LA12 20×5 1039 1039 1039 0 1039 0 1039 0 
LA13 20×5 1150 1150 1150 0 1150 0 1150 0 
LA14 20×5 1292 1292 1292 0 1292 0 1292 0 
LA15 20×5 1207 1207 1207 0 1207 0 1207 0 
LA16 10×10 945 941 945 0.42 945 0.42 977 3.68 
LA17 10×10 784 785 784 -0.13 784 -0.13 787 0.25 
LA18 10×10 848 848 848 0 848 0 848 0 
LA19 10×10 842 850 842 -0.95 844 -0.71 857 0.82 
LA20 10×10 902 907 902 -0.55 907 0 910 0.33 
Average improvement   +4.21   -1.21   -0.42 
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Thompson instances (Ft06, Ft10, and Ft20). Ft06 was solved to optimality (best makespan 
=55). Meanwhile, Ft10 and Ft20 were respectively solved with makespan of 943 and 1178. 
Makespan of the best known solution, makespan of the best GASA-JOSH solution, and a 
comparison with the other three approaches addressed in Table 4 are shown in Figures 5 and 6 
respectively for Lawrence and Thompson datasets. Figure 7 shows the relative deviation of the 
best known makespan with respect to GASA-JOSH. 
     To summarize, for 17 out of 23 problems GASA-JOSH could gain the same good 
results as the literature and for 1 problem could gain better results than the other papers. 
 

 

 
 

Figure 5. Makespan Comparison Chart for La01-La20 
 
 

 
 

Figure 6. Makespan Comparison Chart for Ft06, Ft10, and Ft20 
 

 

 

 

LA01 LA02 LA03 LA04 LA05 LA06 LA07 LA08 LA09 LA10 LA11 LA12 LA13 LA14 LA15 LA16 LA17 LA18 LA19 LA20

BKS 666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207 945 784 848 842 902

GASA‐JOSH 666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207 941 785 848 850 907

Gao (2011) 666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207 945 784 848 842 902

Yang (2008) 666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207 945 784 848 844 907

Park (2003) 666 666 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207 977 787 848 857 910
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Figure 7. The Relative Deviation of the Best Known Makespan with Respect to GASA-JOSH 
 
 
5. Conclusion 

In this paper, a new evolutionary-annealing approach (GASA-JOSH) uses Genetic 
algorithm and simulated annealing algorithm for solving job-shop scheduling problem is 
proposed. The approach is compared with some algorithms in the literature. It is tested on a set 
of 23 standard instances and compared with 3 other approaches. The computational results 
show that the approach, GASA-JOSH, could produce the Best Known Solution on 78.26% of all 
instances tested. That is it could gain results which are better or equal to the BKS on 18 out of 
23 problems. 
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