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Abstract 
Two new designs of compact microstrip antennas, where metamaterials are placed on structure 

as superstrate, are proposed. The newly designed metamaterial unit cell and antenna feed position 
optimized by particle swarm optimization. It was found that the characteristics of novel microstrip antennas 
with designed metamaterials placed on the superstrate are comparable to the conventional patch 
antennas, while their gain, directivity and radiating efficiency are noticeably improved. Gain of microstrip 
antenna is increased 3dB to 4dB and level of back lobe is decresed. 
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1. Introduction 

Microstrip antenna has several excellent physical properties, such as light weight, low 
profile, low production cost, conformability, reproducibility and reliability, microstrip antennas 
(MSA) have been used in wireless communication equipments and solid state devices [1]. 
However, there are two major disadvantages associated with MSA: low gain and narrow 
bandwidth. Various techniques have been proposed to produce high directivity at broadside [2-
3]. Amongst techniques for gain enhancement, one novel method is to include metamaterial 
onto antenna’s superstrate. Several configurations of superstrates were used to improve 
antenna radiation properties, such as dielectric slabs [4], electromagnetic bandgap (EBG) 
structures [5], highly-reflective surfaces [6], and the most recently artificial magnetic 
superstrates [7]. 

Using magneto-dielectric materials with high positive permeability and permittivity values 
as the superstrate of microstrip patch antennas (MPA) decreases the wavelength in the media, 
leading to a lower profile of the whole structure [7]. In [8], the potential application of magneto-
dielectric materials as a superstrate to improve the gain of MPA was investigated without 
considering physical realization of the artificial superstrate. Latrach et al. [9] used edge-coupled 
split ring resonator (SRR) inclusions to provide artificial superstrate comprising alternately layers 
with negative permeability and positive index of refraction materials to increase the gain of patch 
antenna. Here, we are interested in studying the performances of a single patch antenna when a 
left-handed medium (LHM) is placed above it. 

Another problem in designing antenna is to determine the geometric parameters of the 
antenna, such as the patch dimensions and the feed position, to achieve the best design that 
satisfies a certain criterion. Many efforts have been expanded on the parametric study of various 
patch antennas [10]. However, these studies are not systematic and the conclusions are highly 
dependent on the antenna under investigation. Consequently, a trial-and-error process is 
inevitable in most patch antenna designs. 

Recently the particle swarm optimization (PSO) was introduced to the EM community [11] 
to accommodate this challenge. The initial PSO concept was developed in 1995 [12] as a novel 
evolutionary optimization(EO) methodology over a complex solution space.PSO starts by 
designing each position in the solution space as a potential design.A fitness function is then 
defined to quantify the performance of each design. Compared to conventional EO algorithms 
such as the genetic algorithm (GA) [13], PSO takes the advantage of its algorithmic simplicity and 
robustness. PSO has been applied to many EM applications, such as the one-dimensional (1-D) 
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and 2-D array synthesize [14-16], the corrugated horn design [17], and the reflector shaping [18]. 
The multiobjective optimizations [16, 19, 20] further enhance the performance of PSO by 
exploiting its inherit versatility and using multiple fitness functions [rahmatescholar]. 

In this paper a rectangular patch antennas loaded by new metamaterial structure that 
operating as LHM medium in order to miniaturize the patch antenna and increase the radiation 
patterns are proposed. 

 The proposed metamaterial structure printed on a dielectric substrate with permittivity 
 .௥=2.2. The unit cell is simulated by Ansoft HFSS and MATLAB and the results are describedߝ
PSO is applied in optimization of unit cells of metamaterial and position of coaxial cable and the 
better answers are selected to use in patch antenna. 

In the next part, a new miniaturized rectangular patch antenna is proposed. It is shown 
that in antenna with 9 number of first unit cells and 6 number of second structures  the size 
reduction is about 40% and 30%, respectively. Also the return loss of these antennas  are 
noticeably reduced. 

 
 

2. PSO Algorithm Architecture 
The original PSO formulae defined each particle as a potential solution to a problem in 

D-dimensional space, with particle i represented X୧. 
Each particle also maintains a memory of its previous best position, P୧ and a velocity 

along each dimension, represented as  V୧ At each iteration, the P vector of the particle with the 
best fitness in the local neighborhood, designated g, and the P vector of the current particle are 
combined to adjust the velocity along each dimension, and that velocity is then used to 
compute a new position for the particle.  

The portion of the adjustment to the velocity influenced by the individual’s previous 
best position (P) is considered the cognition component, and the portion influenced by the best 
in the neighborhood is the social component [21]-[23]. In Kennedy’s early versions of the 
algorithm, these formulae are: 
 

v୧ୢ ൌ v୧ୢ ൅ jଵ ∗ randሺሻ ∗ ሺp୧ୢ  െ x୧ୢሻ ൅ jଶ ∗ randሺሻ ∗ ሺp୧ୢ  െ x୧ୢሻ                          (1) 
 

x୧ୢ ൌ v୧ୢ ൅ x୧ୢ                           (2) 
 

Constants j 1 and j 2 determine the relative influence of the social and cognition 
components, and are often both set to the same value to give each component (the cognition 
and social learning rates) equal weight. 

 A constant, V୫ୟ୶, was used to arbitrarily limit the velocities of the particles and improve 
the resolution of the search [24]. Eberhart and Shi show that PSO searches wide areas 
effectively, but tends to lack local search precision [25]. Their solution in that paper was to 
introduce w, an inertia factor , that dynamically adjusted the velocity over time, gradually focusing 
thePSO into a local search: 

 
v୧ୢ ൌ w ∗ v୧ୢ ൅ jଵ ∗ randሺሻ ∗ ሺp୧ୢ  െ x୧ୢሻ ൅ jଶ ∗ randሺሻ ∗ ሺp୧ୢ  െ x୧ୢሻ      (3) 

 
More recently, Maurice Clerc has introduced a constriction factor [26], K, that improves 

PSO’s ability to constrain and control velocities. In [27], Shi and Eberhart found that K, combined 
with constraints on V୫ୟ୶, significantly improved the PSO performance. K is computed as: 

 
k ൌ

ଶ

ቚଶିφିඥφమିସφቚ
            (4) 

 
߮ ൌ ߮ଵ ൅ ߮ଶ              (5) 

 
 Finally, the PSO formulae is: 

 
v୧ୢ ൌ v୧ୢ ൅ ߮ଵ ∗ randሺሻ ∗ ሺp୧ୢ  െ x୧ୢሻ ൅ ߮ଶ ∗ randሺሻ ∗ ሺp୧ୢ  െ x୧ୢሻ           (6) 
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3. Unit Cell Design 
The proposed metamaterial unit cells are shown in Figure 1. PSO optimizes g which is 

playing key role in reducing return loss.  
 
 

 
 

 
(a) 

 
 

 
 

(b) 
 

Figure1. Dimension of (a) first (b) second unit cell 
 
 

For the simulation of the unit cell in HFSS, boundary conditions of magnetic and electric 
wall are applied respectively according to axes y and x. The structure is polarized so that the 
magnetic field is directed along x axis, the electric field is directed along y axis, the wave vector 
is according to the z axis. The Simulation is made on a frequency band between 6GHz and 
16GHz with a 0.01GHz increment. The simulated S parameters for these structures are shown 
in Figure 2 and Figure 3, respectively. 

As shown in Figure 2, there is a transmission peak around 12.7GHz, which indicates 
the existence of a resonance frequency which is due to the capacitive effect created by the 
geometry of the structure. So, we have an LC resonator, who has a resonance frequency which 
depends only on the inductance and capacitance of the equivalent structure, where: 

 
߱ ൌ

ଵ

√௅஼
                   (7) 

4mm g 

5mm 

g 
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The second unit cell show resonance behavior around 16.2GHz.  
 
 

 
 

 

Figure 2. Return Loss of the First Unit Cell Figure 3. Return Loss of the Second Unit 
Cell 

 
 

4. PSO OPTIMIZATION 
In these cases, Visual Basic Script (VBS) is used as an interface between MATLAB and 

HFSS. Optimized unit cells return loss compared with unit cells that were originally designed in 
Figure 4. This will ultimately increase the gain of microstripantenna, which array of unit cells are 
placed as superstrate. 

Optimization algorithms can be reduced significantly the return losses that will be 
causes 25dB and 15dB loss reduction of the first and the second  unit cell, respectively. 

The initial value for g in the first and second unit cell is 0.15mm, 0.3mm, respectively. 
Optimization has been performed 100 times and optimized value is 0.3mm for the first unit cell 
and 0.42mm for the second unit cell. 

 
 

 
(a) 

 
(b) 

 
Figure 4. Optimization of the g for (a) the first unit cell (b)  the second unit cell 

 
 

5. Extract Permittivity and Permeability 
The effective permittivity  eff and permeability eff  of the structure can be found from 

the refractive index n and wave impedance Z as Equation (8) and (9), respectively. 
 

Zneff                               (8) 
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Zneff                               (9) 

 
Where n and Z can be determined from the measurement ofthe reflection coefficients 

and transmission coefficients [28, 29] of a wave normally incident on a slab of the metamaterial, 
followed by the application of a retrieval algorithm [30].  

As shown in Figure 5(a), the real part of the permeability of the first unit cell shows 
Lorentz response behavior, it is negative in the 12.7GHz. In addition, the permittivity real part  is 
negative in the frequency in 12.7GHz, which is in good agreement with the Drude model as it 
appears on the Figure 5(b). 

As shown in Figure 6 negative real parts of the permittivity and permeability lies in the 
negative band (1.6−1.8GHz). Also, the permittivity and permeability show Drude and Lorentz 
response behavior in the studied frequency region, respectively [31-32].  

 
 

 
(a) 

 
(b) 

 
Figure 5. (a) Permeability (b) permittivity of the first unit cell 

 
 

 
(a) 

 
(b) 

 
Figure 6. (a) Permeability (b) permittivity of the second unit cell 

 
 

6. Antenna Structure 
The first step in designing the antenna is position of a coaxial cable. The importance of 

this is that the input impedance can be matched to 50Ω. One method is to use a microstrip 
quarterwave matching section, printed on the same substrate, which matches the edge 
impedance to 50Ω.  

However, the microstrip matching section is itself a radiating element due to the 
discontinuity in line width, and the radiation from it may add to that of the antenna in ways that 
are difficult to determine. 
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In this paper feed position initialized by Computer Aided Design (CAD) formulae [33] 
then, PSO find the best position. The results of the optimization algorithm for 12.7GHz and 
16.2GHz are 11.4mm and 7.2mm, respectively. 

 
 

Table 1. Dimension of Antenna 
Frequency Patch Dimension Substrate Dimension 

12.7GHz 6.9mm×7.9mm 16.5mm×17.8mm 
16.2GHz 5mm×5.7mm 14.6mm×15.3mm 

 
 
After this step, dimensions of substrate and rectangular patch due to resonance 

frequency are calculated. These values are shown in Table 1. The thick ness of substrate is 
1.6mm and permittivity is 2.2. As shown in Figure 7(a), a 4×4 array of the first unit cell is placed 
above the patch antenna. The gain of the antenna as shown in Figure 7(a). The second 
structure of metamaterial is used as a 3×2 array above the patch antenna as shown in Figure 
7(b). 

 
 

 
(a) 

 
(b) 

 
Figure 7. Configuration of the Patch Antenna Using (a) the first unit cell, (b) the second unit cell 

 
 
The simulated antenna present a return loss -23dB around GHz and the gain is 

8dB.The distance between superstrate  and rectangular patch is about quarter of wave length. 
Thickness and permittivity is the same as  previous structure. 

The maximum return loss of this antenna is -25dB and gain is 7.3dB. As shown in 
Figure 8(a) and 9(a), the gain of the antenna which is used the first structure is higher than the 
second structure. Gain of patch antennas which resonate at 12.7GHz and 16.2GHz are shown 
in Figure 8(b) and 9(b),respectively.  

 
 

 
(a) 

 
(b) 

 
Figure 8. Gain of the Microstrip Patch Antenna (a) using the first unit cell, (b) without 

metamaterial 
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(a) 

 

 
(b) 

Figure 9. Gain of the Microstrip Patch Antenna (a) using the second unit cell, (b) without 
metamaterial 

 
 

 
(a) 

 
(b) 

 
Figure 10. Directivity of the Microstrip Patch Antenna (a) using the first unit cell, (b) without 

metamaterial 
 
 

 
(a) 

 
(b) 

 
Figure 11. Directivity of the Microstrip Patch Antenna (a) using the second unit cell, (b) without 

metamaterial 
 
 

Directivity of the first and second antenna which is used metamaterial as a superstrate 
is compared with antenna without superstrate are shown in Figure 10 and 11, respectively. 
Directivity is increased significantly and level of back lobe is reduced. By comparing these 
figures, we can conclude optimized metamaterials enhance the gain and directivity and reduced 
level of back lobe, significantly. This makes one of the major disadvantages of microstrip 
antenna and improves its performance at microwave frequencies. 
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7. Conclusion 
Metamatrial unit cells are optimized and placed on conventional microstrip antennas. 

These  design and placement enhance the radiation pattern; hence the gain and directivity of 
the microstrip are improved. The location of the operating frequency is tuned effectively by the 
magnetic resonance of the structures.This technique can be another option employed to reduce 
the size of patch antenna and better efficiency simultaneously. 
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