PENGURANGAN WAKTU PROSES PREPARATION TOOLS DALAM EVENT WORLD SKILLS COMPETITION DENGAN SINGLE MINUTE EXCHANGE OF DIES

Aditya Hartanto¹, Uly Amrina²

1,2) Program Studi Teknik İndustri, Fakultas Teknik, Universitas Mercu Buana Jl. Meruya Selatan, Kembangan, Jakarta Barat 11650 Email: uly.amrina@mercubuana.ac.id, adich12321@gmail.com

Abstrak

Waktu adalah sebuah hal berharga yang tidak dapat diulang kembali. Kompetisi pun juga menggunakan batas waktu dalam pelaksanaan dan pencapaiannya baik dari secara proses maupun kualitas. Dalam pelaksanaan kompetisi, waktu dibagi menjadi 3 yaitu programming, prepare dan machining. Terfokus kepada kegiatan prepare selama 15 menit yang tidak terpenuhi (melewati batas), hal ini menyebabkan penggunaan waktu machining untuk mencukupi waktu proses kerja di kegiatan prepare. Oleh karena itu perlu dilakukan analisa proses dengan micromotion study dan reduksi waktu dengan single minute exchange of dies. Setelah dilakukan observasi terhadap kegiatan prepare selama 18 menit 56 detik, dan telah dilakukan penerapan metode yang tepat, waktu proses preparation time berhasil masuk didalam limit waktu 15 menit menjadi 11 menit 56 detik yang berarti telah melakukan reduksi waktu sebesar 7 menit 0 detik (36.9%).

Kata kunci: Waktu, Prepare, Micromotion Study, Reduksi, Single Minute Exchange of Dies

Abstract

Time is the important things that cannot repeat again. The competition also use the limit time in implementation and achievement include the proses also quality. The time for competition split in 3 aspect, that is programming, prepare, and machining, Focusing for prepare 15 minutes not achieve (over time), it cause use machining time for replace the prepare time. From this problem, it need process analyse with micromotion study and reduction time use single minute exchange of dies. After observation in prepare activity during 18 minutes 56 second, and implementation with the right method, prepare time reach time less than 15 minutes became 11 minutes 56 second which success for reduce time 7 minutes 0 second (36.9%)

Keyword: Time, Prepare, Micromotion Study, Reduction, Single Minutes Exchange of Dies

PENDAHULUAN

World Skills Competition adalah kompetisi berbasis kemampuan/skills di tingkat internasional. Lomba yang dimulai pada tahun 1997 di Switzerland dan masih berlangsung hingga kini dengan periode 2 tahun sekali (tahun 2021 diundur karena corona). Tahun 2022, terdapat 63 bidang lomba yang akan dipertandingkan dan Indonesia akan mengikuti sebanyak 34 bidang lomba. Salah satu bidang lomba tersebut adalah CNC Milling. Untuk bidang CNC Milling, Kementerian Pendidikan dan Kebudayaan Indonesia telah melakukan kerjasama dengan PT DENSO INDONESIA untuk mendukung bidang lomba ini guna melatih atlet yang akan berlomba. Dukungan tersebut berupa pelatihan, peralatan, material dan uji tanding. Sejak tahun 2013, untuk bidang CNC Milling telah menyumbangkan 4 kali medallion of excellence (medali diatas rata rata nilai peserta). Medali tersebut didapatkan dari poin yang dicapai dalam 3 module selama 4 hari.

Tabel 1. Batas Waktu Perlombaan WSC Bidang *CNC Milling*

Module	Material	Programming	Preparation	Machining	Total
1	Aluminium	00:00	00:00	04:15	04:15
2	Besi	02:30	00:15	03:30	06:15
3	Besi	02:45	00:15	04:00	07:00

Cara mendapatkan poin adalah melalui hasil benda kerja tiap modul yang memiliki proses waktu pada tabel 1. Dimulai dari *programming*, peserta membuat program yang akan dijalankan sesuai fitur yang ada dan berdasar keinginan peserta. Kemudian dilanjutkan ke kegiatan *preparation*, peserta melakukan persiapan peralatan dan *setting* koordinat baik *tools* maupun benda kerja. Setelah semua selesai, dilanjutkan ke proses *machining* dengan melakukan operasional mesin untuk memotong benda kerja sesuai program yang dibuat.

Tabel 2. Data Waktu Pelatihan Kegiatan Prepare

Vatarangan	1	2	3
Keterangan	C-M0142	C-M0108	C-M0138
Prepare tool	00:06:27	00:06:26	00:06:36
Input Tools to MC	00:03:01	00:02:50	00:02:55
Setup	00:07:52	00:08:57	00:08:25
Total Preparation Time	00:17:20	00:18:13	00:17:56
Limit Preparation Time	00:15:00	00:15:00	00:15:00

Terfokus kepada waktu prepare yang tersedia pada tabel 1 di atas dan jika dibandingkan dengan data waktu pelatihan pada tabel 2 di atas, dapat disimpulkan bahwa waktu prepare yang dilakukan masih melebihi batas waktu yang dikehendaki. Hal ini menyebabkan waktu machining akan terpakai untuk prepare dan akan mempengaruhi pencapaian output produk tiap modul. Oleh karena itu, perlu dilakukan perbaikan guna mencapai batas waktu preparation yang disediakan. Waktu yang dijabarkan secara detail juga merupakan kunci yang penting agar kita dapat mengetahui detail kegiatan sehingga dapat melakukan reduksi proses secara detail. Setelah mengetahui waktu per kegiatan yang ada, dilakukan efisiensi proses agar waktu *preparation tools* dapat tercapai. Untuk mencapai hal tersebut, diperlukan metode *micromotion study* untuk mengetahui waktu proses secara detail dan diperlukan metode single minute exchange of dies untuk reduksi waktu proses. Setelah mengetahui masalah dan tujuan dari penelitian, tidak lupa kita perlu melihat faktor yang membatasi penelitian ini. Beberapa faktor nya adalah pelatihan kompetisi dengan bidang spesialis CNC Milling dilakukan di divisi training center di PT DENSO INDONESIA dan penelitian ini terkhusus dilakukan untuk preparation tools yang tetap mengacu kepada peraturan lomba CNC Milling (Technical Description, 2020)

Berdasarkan penelitian yang dilakukan Indrawati et al. (2018), Metode Single Minute Exchange of Dies yang dilakukan mampu melakukan reduksi waktu sebesassr 46% dan berdasarkan penelitian yang dilakukan Uly Amrina et al. (2018), Metode Single Minute Exchange of Dies yang dilakukan mampu melakukan reduksi kegiatan setup sebesar 37.7%. Hal ini menandakan bahwa penelitian yang digunakan sebagai referensi mampu menurunkan waktu setup yang berkorelasi terhadap kegiatan preparation time. Meskipun tidak dapat dihitung seberapa besar pengaruhnya terhadap output produksi seperti jurnal Uly Amrina (tidak dapat dihitung karena kegiatan training/kompetisi bukan produksi), namun diharapkan jurnal ini mampu memaksimalkan kondisi setting dengan kondisional peralatan yang ada.

TINJAUAN PUSTAKA

Pengukuran Waktu dan Gerakan

Sutalaksana et al. (1979) menyatakan bahwa *motion time* and *study* disebut juga dengan teknik tata cara kerja yang merupakan teknik dan prinsip untuk mendapatkan rancangan terbaik dari sistem kerja. Sistem kerja sendiri merupakan kesatuan/gabungan dari unsur manusia, bahan, perlengkapan, peralatan, lingkungan untuk tujuan tertentu.

Micromotion Study

Menurut Wignjosoebroto (2008), *micromotion study* adalah teknik pengambilan data dengan cara mengamati hasil rekaman gerakan kerja secara detail secara berulang.

Metode *Therblig*

Metode yang diperkenalkan oleh Gilbreth dan dikembangkan oleh Barnes yang membagi gerakan gasar menjadi 17 elemen kerja (Sutalaksana et al., 1979) yang bisa disebut juga metode jepang. Di dalam 17 elemen kerja tersebut, dibagi kedalam kegiatan efektif yang didalamnya mengelompokan physical basic divisions dan objective basic divisions dan kegiatan tidak efektif yang didalamnya mengelompokkan mental/semi mental basic divisions dan delay. Untuk metode Jepang, 17 elemen kerja tersebut dibagi menjadi 4 kelompok yaitu kelompok utama, penunjang, pembantu, dan elemen gerakan luar.

Single Minute Exchange of Dies (SMED)

Menurut Shingo (1985), sistem SMED adalah sistem atau metode yang merupakan serangkaian teknik yang memungkinkan untuk melakukan *setup* atau *changeover* kurang dari 10 menit. Tahapan dari SMED adalah :

- 1. Pemilahan kegiatan internal dan eksternal
- 2. Memindahkan kegiatan internal menjadi kegiatan eksternal
- 3. Reduksi waktu
- 4. Standarisasi proses

Pengujian Data

Uji keseragaman data merupakan perhitungan yang mampu menjabarkan / menentukan apakah suatu data masih didalam batas dari kumpulan data tersebut. Rumusnya adalah :

$$\sigma = \sqrt{\frac{(\sum_{i=1}^{n} x_i) - (\sum_{i=1}^{n} x_i^2)}{(n-1)}}$$
 (1)

$$BKA = Rata^2 data + k.\sigma \tag{2}$$

$$BKB = Rata^2 data - k.\sigma (3)$$

Dimana:

 σ : Standar deviasi (dapat juga menggunakan rumus stdev di excel)

BKA : Batas kendali atas BKB : Batas kendali bawah

k: Tingkat keyakinan (untuk keyakinan 99% menggunakan nilai 3, untuk keyakinan 95% menggunakan nilai 2, untuk keyakinan 90% menggunakan nilai 1)

Sedangkan uji kecukupan data merupakan perhitungan yang mampu menyatakan jumlah yang diperlukan untuk mencukupi suatu data agar dapat digunakan sebagai referensi. Rumusnya adalah :

$$N' = \left[\frac{\frac{k}{s} \sqrt{N \sum x^2 - (\sum x)^2}}{(\sum x)} \right]^2 \tag{4}$$

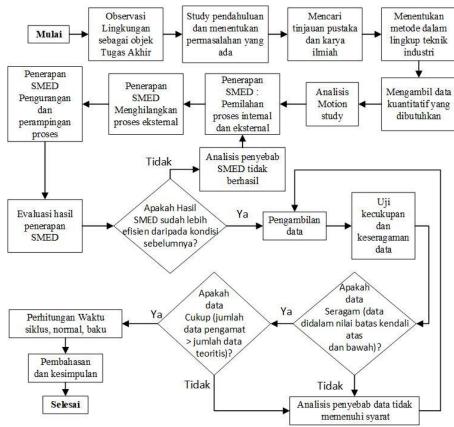
Dimana:

k : Tingkat keyakinan (99% = 3,95%=2,90%=1)

s : Derajat ketelitianN : Jumlah data pengamat

N': Jumlah data secara teoritis yang diperlukan

Studi Waktu


Waktu Siklus adalah rata rata waktu yang diperlukan oleh seseorang untuk menyelesaikan aktivitas. Dari waktu siklus yang didapatkan, ditambahkan faktor penyesuaian westinghouse yang ditambahkan guna menjaga kewajaran kerja agar tidak terjadi kekurangan waktu dalam proses tersebut. Metode westinghouse ini sendiri dilakukan dengan dengan penilaian objektif terhadap suatu kondisi yang dikonversikan ke nilai yang ada. Westinghouse memiliki 4 faktor kerja yaitu ketrampilan, konsistensi,usaha dan kondisi kerja. Setelah mendapatkan nilai dari faktor westinghouse, dilanjutkan dengan menghitung waktu normal. Waktu normal adalah waktu yang memperhitungkan penyesuaian terhadap kondisi kerja dari pekerja. Dari waktu normal yang didapatkan, ditambahkan faktor kelonggaran guna memberikan toleransi terhadap pelaku kerja dengan kondisi lingkungan kerja yang ada dan dengan kebutuhan yang memang diperlukan pelaku kerja tersebut. Faktor kelonggaran dibagi berdasar 7 item yaitu berdasar tenaga yang dikeluarkan, sikap kerja, gerakan kerja, kelelahan mata, temperatur kerja, keadaan atmosfer, dan keadaan lingkungan yang baik. Setelah mendapatkan faktor kelonggaran tersebut, nilainya akan dihitung menjadi waktu baku. Waktu baku adalah waktu yang diperlukan pekerja untuk memiliki tingkat kemampuan rata rata terhadap suatu pekerjaan.

METODE PENELITIAN

Metode penelitian yang akan dilakukan adalah sesuai pada gambar 1 di halaman berikutnya. Dimulai dari observasi lingkungan, dilanjutkan dengan studi pendahuluan dan penentuan masalah, kemudian mencari tinjauan pustaka dan penentuan metode. Setelah penentuan tersebut dilakukan pengambilan data waktu, kemudian dilakukan analisis *motion study* dengan metode *Therblig* dan penerapan dari *Single Minute Exchange of Dies*. Diterapkan penerapan SMED mulai dari tahap 1-3, dan pada tahap akhir dilakukan dengan .pembuatan standarisasi. Standarisasi dilakukan dengan pencatatan SOP yang berubah dan juga penentuan waktu yang dilakukan dengan pengujian data dan penentuan studi waktu sebagai referensi yang digunakan untuk acuan waktu untuk beraktifitas. Objek penelitian adalah pelaku perlombaan yang merupakan peserta perlombaan World Skills Competition yang sudah terlatih dalam melakukan keseluruhan kegiatan baik *program, prepare*, maupun *machining*. Untuk peralatan yang digunakan adalah sama seperti umumnya berupa mesin dan attachment untuk proses mesin CNC Milling yang dapat dilihat pada tabel 3 di bawah

Tabel 3. Peralatan yang digunakan pada kegiatan *Prepare*

No	Nama Barang	Gambar	Fungsi
1	Toolbox		Tempat menyimpan peralatan yang dipakai untuk setting maupun alat alat perlombaan
2	Cutting Tools	or year the tax year (6.5) and tax year (6.5)	Alat yang di <i>setting</i> di <i>holder</i> dan di putar di <i>spindle</i> mesinuntuk memotong benda kerja
3	Holder dan Collet		Alat penghubung collet dan cutting tools
4	Toolboy dan Kunci holder	3 -	Stand penahan <i>holder</i> dan kunci untuk mengunci tutup <i>holder</i>
5	Vernier Caliper	* Triber	Alat pengukur ketinggian tools pada holder
6	Clamping dan Ragum		Alat untuk menahan ragum dan alat untuk menjepit benda kerja yang di proses cutting tools
7	Kunci Ring	0	Alat untuk mengencangkan mur clamping ragum
8	Dial Indikator + Stand	1	Alat untuk menempelkan dial pada mesin untuk men sejajarkan posisi ragum terhadap mesin
9	3D Master	3 .	Alat yang digunakan positioning koordinat XY benda kerja
10	Base Master		Alat yang digunakan positioning koordinat Z benda kerja
11	Kamera 1		Kamera yang digunakan untuk mengambil gambar dari depan (area kerja secara keseluruhan)
12	Kamera 2		Kamera yang digunakan untuk mengambil gambar dari samping (area kerja dari sisi kiri)
13	Software Movavi		Aplikasi yang digunakan untuk memilah waktu secara detail dengan bantuan <i>split time</i> dan <i>editing</i>
14	Mesin CNC Milling	9	Mesin yang digunakan untuk memproses benda kerja pada pelatihan WSC CNC Miling(DMC850V)

Gambar 1. Diagram Bagan Langkah Penelitian

HASIL DAN PEMBAHASAN

Telah dilakukan pengambilan data dengan kondisi awal seperti yang biasanya dilakukan. Didapatkan bahwa dalam satu kegiatan preparation secara keseluruhan, terdapat 5 kegiatan kerja yaitu prepare tools, input tools to MC, set vice, set G54 dan set G43. Secara lebih detail dengan melihat sub kegiatannya terdapat 24 sub kegiatan yang akan dijabarkan mirip seperti format SMED yang dibuat oleh Monteiro et al. (2019), Vieira et al. (2019) dan Setyawan (2018). Dengan bantuan *micromotion study* yang digabungkan dalam penerapan/analisa kondisi yang ada seperti yang dilakukan Waseem et al. (2021) dan singh (2017), didapatkan bahwa total kegiatan kerja yang dilakukan sebanyak 268 langkah kerja. Setelah melakukan pengambilan data, dilakukan pengolahan data dengan penerapan SMED tahap awal dengan melakukan pemilahan kegiatan internal dan memindahkan kegiatan yang dapat langsung dilakukan di eksternal. Dapat dilihat pada tabel 4 di halaman berikutnya didapatkan bahwa sebanyak 22 kegiatan kerja selama 1 menit 34 detik dapat dihilangkan/dilakukan di luar kegiatan preparation sehingga mampu mengalami reduksi waktu menjadi 17 menit 22 detik atau reduksi sebesar 8.3% dari kondisi awal.

Setelah melakukan pemilahan kegiatan dan telah memindahkan kegiatan eksternal, dilakukan perbaikan guna memindahkan kegiatan internal menjadi eksternal dengan alat bantu, maupun dilakukan perbaikan guna mereduksi waktu agar dapat mencapai waktu yang dikehendaki. Dapat dilihat pada tabel 5 di bawah beberapa contoh perbaikan yang telah dilakukan guna mereduksi waktu seperti yang dilakukan oleh Desai (2017) dan Heriansyah (2017). Perbaikan juga dapat dilakukan dengan perubahan alat, modifikasi alat, maupun perubahan layout jika diperlukan seperti yang dilakukan oleh Roswandi (2019) dan Setiawan et al (2021).

Setelah melakukan perbaikan, dilakukan pengambilan data waktu dengan kondisi sesudah perbaikan untuk pertama kali. Dapat dilihat pada tabel 6 di bawah, bahwa perpindahan kegiatan internal menjadi eksternal dengan bantuan alat dan reduksi waktu proses telah berhasil dan mampu mereduksi waktu menjadi 13 menit 40 detik atau mampu mereduksi waktu sebesar 27.8% dari waktu awal. Kemudian itu dilakukan pembuatan SOP setelah perbaikan seperti yang dilakukan oleh Yildirim et al. (2018) yang dapat dilihat pada gambar 2 di bawah dan juga dilakukan pengambilan data sebanyak 46 kali. Data tersebut kemudian dihitung kecukupan dan keseragaman datanya, kemudian dapat digunakan sebagai referensi waktu siklus yang dapat dilihat pada tabel 7 di bawah.

Dilakukan observasi dan penentuan nilai penyesuaian dengan metode *Westinghouse* sama seperti penelitian yang dilakukan oleh Utomo (2018), Bahri et al. (2019), dan Sugarinda et al. (2019) yang dapat dilihat pada tabel 8 di bawah. Didapatkan faktor penyesuaian sebesar +0.17. Setelah dihitung pada contoh perhitungan 8 di bawah, didapatkan waktu normal prepare tools sebesar 1 menit 22 detik. Hasil dari perhitungan dapat dilihat pada tabel 9 di bawah dengan total waktu normal sebesar 9 menit 54 detik.

Waktu normal yang telah dihitung kemudian dihitung dengan nilai faktor kelonggaran yang ditetapkan pada tabel 10 di bawah dan dapat dilihat contoh perhitungannya pada contoh perhitungan 9. Didapatkan hasil perhitungan waktu baku pada tabel 11 di bawah. Waktu pada tabel 10 yang akan digunakan sebagai referensi waktu yang akan diperlukan untuk kegiatan preparation secara keseluruhan. Untuk detail dari tiap kegiatan juga dapat digunakan sebagai acuan waktu per proses nya karena memiliki faktor yang sama.

Jurnal Penelitian dan Aplikasi Sistem dan Teknik Industri (PASTI) Vol. XVI, No. 1, April 2022, 37-48 p-ISSN 2085-5869/ e-ISSN 2598-4853

Tabel 4. Hasil penerapan pengolahan SMED setelah pemilahan kegiatan internal dan eksternal

NI.	Code Wassisters	Kondisi Awal	Jumlah	Kegiatan	Jumla	ıh Waktu
No	Sub Kegiatan	Relatif (mm:ss.sss)	Kegiatan Internal	Kegiatan Eksternal	Kegiatan Internal	Kegiatan Eksternal
1	Ambil tools dari laci storage	00:23.530	12	1	0:00:20.919	0:00:02.611
2	Keluarkan tools dari box tools	00:25.051	1	0	0:00:25.051	
3	Kembalikan box tools ke laci storage	00:07.737	0	4		0:00:07.737
4	Persiapan tools yang akan di setting	00:11.314	1	0	0:00:11.314	
5	Buka tutup <i>holder</i>	00:13.050	1	1	0:00:00.939	0:00:12.111
6	Ambil <i>collet</i> dan pasang ke tutup <i>holder</i>	00:28.801	14	1	0:00:25.664	0:00:03.137
7	Pasang tutup holder ke holder	00:27.894	10	0	0:00:27.894	
8	Setting ketinggian tools	02:10.752	19	1	0:01:01.689	0:00:12.929
8	Setting ketinggian tools	01:08.353	21	0	0:00:56.134	
9	Kencangkan tutup holder		23	0	0:01:08.353	
10	Input list tools yang digunakan	01:01.642	3	0	0:01:01.642	
11	Input tools yang digunakan ke magazine	01:04.669	23	0	0:01:04.669	
12	Prepare	00:19.618	0	4		0:00:19.618
13	Memasukkan <i>clamping</i>	00:13.064	0	5		0:00:13.064
14	Mengangkat ragum	00:20.823	0	4		0:00:20.823
15	Positioning kerataan ragum dengan mata	00:23.626	6	1	0:00:20.999	0:00:02.627
16	Home position relative untuk dial	00:06.956	2	0	0:00:06.956	
17	Dial kesejajaran ragum	00:55.335	12	0	0:00:55.335	
18	Kencangkan clamping	00:20.675	4	0	0:00:20.675	
19	Pemasangan <i>probe</i>	00:14.805	5	0	0:00:14.805	
20	Home position untuk probe	00:20.604	3	0	0:00:20.604	
21	Positioning G54	00:41.596	8	0	0:00:41.596	
22	Pelepasan <i>probe</i>	00:20.375	5	0	0:00:20.375	
23	Set length tool	06:42.103	71	0	0:06:44.795	
24	Home positioning untuk proses machining	00:14.540	2	0	0:00:11.768	
	Total	18:56.913	246	22	0:17:22.176	0:01:34.657

Tabel	5.	Improvement v	yang dilakukan untu	ık memindahkan	kegiatan interna	l meniadi	eksternal	dan untuk	reduksi wakt
Ianci	◡•	IIIIDI OVCIIICIII	yang anakakan anu	ik ilicililidalikali	Noziatan interna	i iliciijaai	CKStCIIIai	uan untuk	icuunsi want

No	Kegiatan	Kondisi sebelum	Keterangan Kondisi sebelum	Kondisi sesudah	Keterangan kondisi sesudah	Estimasi Reduksi	Benefit
1	A. Prepare tools	4	Pengukuran ketinggian tools dengan vernier caliper	1 2 3 4 5 a 1 2	Pengukuran ketinggian tools dengan penggaris	1 detik per tools	Reduksi waktu karena tidak perlu pendekatan ukuran
2	A. Prepare tools		Pengukuran ketinggian tools dengan vernier caliper (sudah di rubah dengan penggaris)	8	Modifikasi tools dengan neck agar memiliki ketinggian awal yang pasti (dilakukan trial dan konfirmasi ke operator untuk nilai pastinya)	4 detik per tools	Tidak perlu setting ketinggian
3	A. Prepare tools	O	Collet dipasang di dalam waktu internal		Collet sudah dipasang sebelum kegiatan preparation (dilakukan konfirmasi ke operator terhadap variasi collet yang digunakan)	5 detik per tools	Reduksi waktu karena tidak perlu memasang collet
4	C.Set Vice		Clamping 4 buah		Clamping 2 buah	5 detik	Reduksi repetisi pengencangan clamping
5	E. <i>Set</i> <i>G43</i>		Setting G43 di atas ragum		Setting G43 di base dekat tool change (dengan tambahan base)	4 detik <i>per</i> tools	Reduksi waktu karena jarak jangkau lebih pendek

Tabel 6. Hasil Pengambilan Data Setelah Perbaikan dan Reduksi Waktu

Kode	Kegiatan	No	Sub Kegiatan	Akululatif (hh:mm:ss.sss)	Relatif (hh:mm:ss.sss)
В	Input tools to MC	1	Install library tools	0:00:09.171	0:00:09.171
A	Prepare tools	2	Prepare tools	0:02:59.500	0:02:50.329
В	Input tools to MC	3	Input list tools yang digunakan ke sistem	0:03:52.753	0:00:53.253
В	Input tools to MC	4	Input list tools yang digunakan ke magazine	0:04:39.574	0:00:46.821
C	Setting Vice	5	Prepare dan home position relative untuk dial	0:04:54.580	0:00:15.006
С	Setting Vice	6	Positioning kerataan ragum dengan mata	0:05:06.576	0:00:11.996
C	Setting Vice	7	Dial kesejajaran ragum	0:05:34.887	0:00:28.311
C	Setting Vice	8	Kencangkan clamping	0:05:53.514	0:00:18.627
D	Setting G54	9	Pemasangan probe	0:06:01.472	0:00:07.958
D	Setting G54	10	Positioning G54	0:06:35.977	0:00:34.505
D	Setting G54	11	Pelepasan probe	0:06:44.647	0:00:08.670
Е	Setting G43	12	Set length tools	0:13:26.333	0:06:41.686
Е	Setting G43	13	Home positioning untuk proses machining	0:13:40.459	0:00:14.126
	·		Total waktu	0:13:40.459	

Tabel 7. Waktu Siklus Preparation Time

Kode	Kegiatan	Waktu Siklus (hh:mm:ss.sss)
A	Prepare tools	01:39.3
В	Input tools to MC	01:49.7
С	Setting Vice	01:35.6
D	Setting G54	00:55.2
Е	Setting G43	05:56.8
	TOTAL	11:56.6

	PT. DENSO Training Center Division West Center Milities		STANDARD	OPERATIO		CEDURE	Approved	Checked	Dibuat
	WSC CNC MILLING			(STANDAR ORUTA	AN KERJA)		Nur Ali	Reno W	Aditya I
DEPAR	RTEMEN : Training Center	NO.SOP	: S O P P R E O O	1 - 0 0 0 3 KODE	PROSES : PRE	001-0003	DOKUMEN PENDUKUN	KG	STATUS DOKUMEN
SEKSI	: Competition	TANGGAL	: 26 Januari 2022	PEKER	JAAN : Setti	ing Vice		\neg	
LINE	: CNC Milling	NAMA PRO	OSES : Preparation	PERAL	ATAN : -				
No	Urutan Proses	Faktor	Bagaimana melakukan 8	t Poin Penting	A	lasan	ILUSTRA	ASI	
1 Bul	ka pintu mesin	P	1.1 Mengetahui letak menu software dan h 1.2 Mengetahui berat dan batas jarak mem		Mempercepat pros Minimalisir sarak d				
					Minimates jarak d	an optimasi kelpatan	2)	
2 Ann	ibil clamp dan pasang clamp ke mesin	P	2.1 Mengetahui letak perkiraan clamp yang	g akan di setting	Mempercepat pros	es berikutnya	1		P AN
3 Be	rsihkan alas ragum	Q	3.1 Pastikan bersih dari burry		Mempengaruhi ker	ataan hasil cutting	THE REAL PROPERTY.		Table 1
4 Bal	išk ragum dan angkat ke mesin	S	41 Ragum berat, pastikan posisi tangan da	ın beban telah dipahami	Resiko kecelakaan	kerja			
					(tangan terkilir dar	n ragum jatuh j	*	4)	-
	sisikan ragum mendekati sejajar dengan bed	Р	sı Kesejajaran sedekat dan sebaik mungk	in	Mempercepat pros	es berikutnya		-	No. of Lot
me	esin	-							
6 Am	ıbil dial dan pasang ke body spindle	5	6.1 Pemasangan dial tidak boleh di area sp		mempengaruhi kur		- CO.		
+		S	62 Magnet dalam mode ON ketika terpasa	ng	dial akan jatuh ket	rika daya magnet hilang		- "	No.
7 Am	ıbil kunci ring dan kencangkan baut kanan as ragum (pandangan atas)	P	2.1 Pengencangan secukupnya untuk baut	kanan atas	Akan mempengaru kemudahan proses	hi kesulitan / no 11			
8 Del	katkan dial ke posisi ragum	P	81 Dekatkan dengan perkiraan 100mm dia	tas ragum	Mempercepat pros	es setting berikutnya	8		
	transferrer sensor rear greatest roughers		82 Dekatkan dengan perkiraan dial mende				9		
9 Set	tting 0 dial	Q	8.1 Referensi nol harus dengan sudut 15'		Akan mempengaru	hi kualitas nilai dial		-	
\pm			9.2 Pastikan ada stroke bebas measuring		dan paralax • Digunakan untuk p	10	(12)		OF STREET
									<u>et</u>
10 Ge	rakan ke Axis X untuk cek kesejajaran	Q	10.1 Pastikan tip tidak over dari ragum 10.2 Pastikan stroke cukup sebesar 0,2mm		Dial terhentak dan Limit dial 0.24mm	rusak (11)			
	tting hingga ragum sejajar dengan memukul	Q	11.1 Memukul dengan tenaga secukupnya			tioning awal tahap no 9	(13)	Name of Street	
	gian belakang ragum	P	11.1 Memukul dengan tenaga secukupnya 11.2 Memukul dengan target nilai sesuai den	ngan target dial	Mencegah terjadi ;		1	***	
-		-						-	
12 Ku	nci clamp ragum dengan kunci ring	Q	12.1 Dilakukan zigzag menyilang		Distribusi bentanga	an./			
+		+	12.2 Lakukan dengan torsi setengah secara r penuh secara menyeluruh	menyeluruh, kemudian	Distribusi gaya				
	eck ulang kesejajaran ragum stikan tetap 0	Q	23.1 Memastikan kualitas setelah pengencar	ngan masih presisi	Mempengaruhi has	il cutting			
1A Are	ibil dial dan kunci ragum dari mesin	E	14.1 Ambil tanpa meninggalkan barang selai	in ranum dan clamn	Akan mengganggu	proses marbining			
		A PERBAIKAN	DIFFERSA I DISTAT	CRITE	RIA	ALAT PELINDUNG DIRI YA	NG DIPAKAI	N	o.List
1	1/27/2022 No 2 improve dart 4 clamp mentati 2 cla	imp		Q : QUALITY		1 Hetmet / Cap 2 Kaca Mata Safe	ty v		
3	1/27/2022 No 2,3, dan 4 mprove dengan SMED, suc 1/27/2022 No 10 pendekatan dengan program	san diletakan di		c : cost		3 Masker 4 Ear Plug			
				P : PRODUCTIVITY		5 Arm Protector 6 Wrist Protector	-		
				S : SAFETY		8 Apron	Katun 6 Benang/Kulit v		
Е				E : ENVRONMENT		9 Leg Protector 10 Sepatu Safety	-		

Gambar 2. Standard Operational Procedure Untuk Kegiatan Set Vice

Tabel 8. Faktor Penyesuaian Berdasar Westinghouse Untuk Preparation Time

Penyesuaian	Kelas	Simbol	Nilai
Ketrampilan	Excellent Skill	B2	+0.08
Usaha	Excellent	B2	+0.08
Kondisi Kerja	Average	D	+0.00
Konsistensi	Good	C	+0.01
		TOTAL	+0.17

Tabel 9. Perhitungan Waktu Normal

Kode	Kegiatan	Waktu Siklus	Faktor	Waktu Normal
Nouc	Regiatan	(hh:mm:ss.sss)	Penyesuaian	(hh:mm:ss.sss)
A	Prepare tools	01:39.3	_	01:22.4
В	Input tools to MC	01:49.7	_	01:31.1
C	Setting Vice	01:35.6	- 0.83	01:19.3
D	Setting G54	00:55.2	0.63	00:45.8
Е	Setting G43	05:56.8	_	04:56.1
_	TOTAL	11:56.6	-	09:54.8

Tabel 10. Faktor Kelonggaran Berdasar Westinghouse Untuk Preparation Time

				Nilai % Ke	longgaran
	Faktor Kelonggar	ran	Keterangan	Yang diizinkan	yang diberikan
1	Tenaga yang dikeluarkan	Sangat ringan	0~kg-2.25~kg	6% - 7.5%	6
2	Sikap Kerja	Berdiri diatas dua kaki		1% - 2.5%	1.5
3	Faktor gerakan kerja	Normal	Gerakan tidak dibatasi	0	0
4	Kelelahan mata	Pencahayaan baik	Pandangan terus menerus dengan focus berubah ubah	7.5% - 19%	7.5
5	Temperatur kerja	Tinggi	30'C	5% - 40%	5
6	Keadaan atmosfer	Baik		0%	0
7	Keadaan Lingkungan	Siklus berulang	5-10 detik	0% - 1%	0.5
8	Kebutuhan pribadi	Pria		0% - 2.5%	0.5
				Total	21%

Tabel. 11 Tabel Perhitungan Waktu Baku

Kode	Kegiatan	Waktu Normal	Kelonggaran	Waktu Baku
		(hh:mm:ss.sss)	-	(hh:mm:ss.sss)
A	Prepare tools	01:22.4	- - - 1.21 -	01:39.7
В	Input tools to MC	01:31.1		01:50.2
С	Setting Vice	01:19.3		01:36.0
D	Setting G54	00:45.8		00:55.4
Е	Setting G43	04:56.1		05:58.3
	TOTAL	09:54.8	_	11:59.7

PENUTUP

Simpulan

Telah tercapainya target analisa dan perbaikan terhadap kegiatan preparation secara keseluruhan. Telah dilakukan analisa *motion study* untuk tiap kegiatan kerja dan dilakukan juga micromotion study dengan bantuan kamera untuk mempermudah pencatatan waktu serta memastikan keakuratan waktu. Pencatatan waktu awal sebelum dilakukan perbaikan sebesar 18 menit 56 detik, yang kemudian dilakukan pemilahan kegiatan eksternal dan internal yang dapat dilihat pada tabel 4. Kemudian dilakukan penerapan SMED hingga tahap akhir dan didapatkan hasil akhir waktu tercapai sebesar 11 menit 56 detik yang dapat digunakan sebagai acuan waktu proses yang dapat dilihat pada tabel 7. Dari waktu yang ada , dihitung dengan studi waktu dan dapat disimpulkan bahwa batas waktu kegiatan preparation sebesar 11 menit 59 detik pada tabel 11. Hal ini dapat disimpulkan bahwa batas waktu dipastikan aman dalam batas waktu kurang dari 15 menit dan terjadi reduksi waktu sebesar 37% dari kondisi awal karena mampu mereduksi waktu dari 18 menit 56 detik menjadi 11 menit 56 detik. Meskipun sudah mencukupi dari batas waktu yang diizinkan, tentunya kita tetap perlu melakukan perbaikan terus menerus guna mereduksi waktu sehingga mampu menyisihkan waktu lebih banyak yang dapat dimanfaatkan untuk kegiatan lain. Pastikan juga perbaikan telah dianalisis secara matang baik dari segi waktu maupun pergerakan kerja karena akan dijadikan sebagai standarisasi.

DAFTAR PUSTAKA

- Amrina, U., Junaedi, D., & Prasetyo, E. (2018). Setup Reduction in Injection Moulding Machine Type JT220RAD by Applying Single Minutes Exchange of Die (SMED). IOP Conference Series: Materials Science and Engineering, 453(1). https://doi.org/10.1088/1757-899X/453/1/012033
- Bahri, S., Syarifuddin, S., Muhammad, M., & Hasanah, M. (2019). Usulan Perbaikan Metode Kerja Berdasarkan Micromotion Study Pada CV. X. *Industrial Engineering Journal*, 8(1), 49–56. https://doi.org/10.53912/iejm.v8i1.381
- Desai, M. S., & Rawani, A. M. (2017). Productivity improvement of shaping division of an automobile industry by using single minute exchange of die (SMED) methodology. ARPN Journal of Engineering and Applied Sciences, 12(8), 2615–2629.
- Heriansyah, E., & Ikatrinasari, Z. F. (2017). Peningkatan kinerja operator pada mesin fukui 600 ton menggunakan metode *exchange of dies (SMED)*. *PASTI XI*(2), 142–148.
- Indrawati, S., Pratiwi, M. E., Sunaryo, & Azzam, A. (2018). The effectiveness of single minute exchange of dies for lean changeover process in printing industry. MATEC Web of Conferences, 154, 0–4. https://doi.org/10.1051/matecconf/201815401064
- Muhammad Waseem, Usman Ghani, Tufail Habib, Sahar Noor, Tauseef Khan (2021). Productivity Enhancement at Molding Compound Manufacturing Plant by Applying Time and Motion Analysis. Mehran University Research Journal of Engineering and Technology E-ISSN: 2413-7219, 40(4), 761–774. https://doi.org/https://doi.org/10.22581/muet1982. 2104.07
- Monteiro, C., Ferreira, L. P., Fernandes, N. O., Sá, J. C., Ribeiro, M. T., & Silva, F. J. G. (2019). *Improving the machining process of the metalworking industry using the lean tool SMED. Procedia Manufacturing*, 41, 555–562. https://doi.org/10.1016/j.promfg.2019.09.043
- Roswandi, I. (2019). Lean Manufacturing Konsep Untuk Meningkatkan Efektivitas Mesin *Moulding* Menggunakan Pendekatan Smed Di Pt Xyz. PASTI XIII(1), 17–25.
- Setyawan, L. (2018). Peningkatan *Cycle Time* Proses Mesin Drawing Tembaga Dengan Metodologi Smed Pada Industri Kabel Di Tangerang. *PASTI XII*(2), 184–194.

- Setiawan, F., Lee, A. J. A., Pramesthiwardhani, M. V., & Eigia, C. (2021). Implementasi Teknik *Lean Manufacturing* untuk Meningkatkan Produksi *Joint* di PT Pratamaeka Bigco Indonesia. PASTI XIV(3) 211-229.
- Shingo, S. (1985). A Revolution in Manufacturing: The SMED System. Cambridge: Productivity Press
- Singh, J., & Brar, G. S. (2017). Process improvement and setup time reduction in manufacturing industry: A case study. International Journal of Advanced Multidisciplinary Research, 9(1), 15–23.
- Sugarindra, M., Ikhwan, M., & Suryoputro, M. R. (2019). Single Minute Exchange of Dies as the Solution on Setup Processes Optimization by Decreasing Changeover Time, A Case Study in Automotive Part Industry. IOP Conference Series: Materials Science and Engineering, 598(1). https://doi.org/10.1088/1757-899X/598/1/012026
- Sutalaksana, I. Z., Anggawisastra, R., Tjakraatmadja, J. H. (1979). Teknik Tata Cara Kerja, Jurusan Teknik Industri ITB, Bandung.
- Vieira, T., Sá, J. C., Lopes, M. P., Santos, G., Félix, M. J., Ferreira, L. P., ... & Pereira, M. T. (2019). Optimization of the cold profiling process through SMED. *Procedia Manufacturing*, 38, 892-899.
- Technical Description CNC Milling (2020). World Skills International TD07, 8.0.1, 0–32. https://doi.org/10.1007/978-1-4842-5565-0_3
- Utomo, W. G. (2018). Analisis Perhitungan Waktu Baku Dengan Menggunakan Metode Jam Henti Pada Produk *Pulley*. Jurnal PASTI, XII(2), 169–183.
- Wignjosoebroto, S. (2008). "Ergonomi studi Gerak dan Waktu. Edisi Pertama" Jakarta: Guna Widya.
- Yildirim, I. S., Ayhan, M. B., & Otur, B. (2018). Single minutes exchange of die (smed) applications at the color changeover process of plastic bottles. Pressacademia VII(1) 233–236. https://doi.org/10.17261/pressacademia.2018.887