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Abstract - This present study proposes a design and the analysis 

of the novel adaptive robust neural networks (ARNNs) based on 

the backstepping control method for industrial robot manipulators 

(IRMs). In this research, the ARNNs controller has combined the 

advantages of Radial Basis Function neural network (RBFNN), 

the robust term, and adaptive backstepping control technique 

without the requirement of prior knowledge. The RBFNN is used 

in order to approximate the unknown function to deal with 

external disturbances and uncertain nonlinearities. In addition, the 

disturbance of system is compensated by the robust Sliding Mode 

Control (SMC). All the parameters of ARNNs are determined by 

the Lyapunov stability theorem, are tuned online by an adaptive 

training law. Therefore, the stability, robustness, and desired 

tracking of the performance of ARNNs for IRMs are guaranteed. 

Key words - Adaptive control; sliding mode control; neural 

networks; Adaptive fuzzy logic control; industrial robot 

1. Introduction 

In recent years, interest in designing robust tracking 

control for industrial robot manipulator system has been 

increased, and a lot of significant research attentions have 

been attracted. However, IRMs are multi-input multi-

output non-linear systems and in the working process, they 

usually bear the nonlinear friction, payload variation, 

external disturbance, etc. in their dynamics. Hence, it is 

hard to design an exact controller without the knowledge 

of the robotic system. To solve these difficulties, many 

controllers for IRMs have been proposed, including PID 

control, adaptive control, intelligent control, SMC, 

backstepping control, fuzzy control and variable 

structureone, etc. [1-4]. 

In the past decade, the backstepping technique for 

designing an adaptive controller for nonlinear systems has 

been widely applied [5-8]. In [5], Chien – Wen Chung, 

Yaote Chang have applied this methods to deal with the 

regulation problems for nonlinear systems. The robustness 

and stability of the control system were improved by using 

the proposed controller. In [7], the combined advantages of 

SMC and the backstepping algorithm were proposed to 

improve the position tracking error of the 3-DOF PM 

spherical actuator. Here, by using the backstepping 

technique, the stability of the closed-loop system could be 

guaranteed and the disturbance of the system could be 

compensated by the robust term. Thus, the proposed 

controller could guarantee better tracking performance. In 

general, all investigations based on backstepping control 

methods in [5-8] were proposed suitable to control for 

nonlinear systems. However, this Backstepping design 

method still exits some problems such as the certain 

functions are “linear in the unknown parameters”, which is 

not satisfied in practice. Furthermore, determining and 

calculating the regression matrices are more acute. 

Recently, many researchers have successfully applied 

neural network techniques to solve the problem of 

unmodeled and unknown dynamics for IRMs by providing 

online learning laws [9-13]. In [9], the authors proposed an 

adaptive neural network control to deal with the problem 

of tracking control with unknown dynamics of the robot 

system. The unknown model of this system was 

approximated by using the neural network technique and 

the robust term was used to compensate for the 

uncertainties dynamic of the robot model. In [12], the 

authors studied an adaptive robust controller by the neural 

network to overcome the problem of nonlinear MIMO 

systems with time delays and external disturbance. In this 

controller, the impact of time delays could be eliminated 

by using the advance of Lyapunov Krasovskii theorem and 

Young’s inequality, and by using the robust term to 

eliminate external disturbance of systems. In addition, the 

RBFNNs have been applied extensively to control 

nonlinear dynamic systems. Because of simple network 

structure, fast training, and better approximation 

capabilities. Due to the popularity of RBFNNs, many 

researchers have been proposed, as shown in [14-17], for 

example. In [14], the neural network control by RBF 

functions was presented to deal with the problem of the 

uncertainties system of biped robots. This controller was 

used neural networks to approximate the unknown 

dynamic of the biped robot. The robustness and stability of 

this controller for biped robot systems were guaranteed and 

proved based on the stability Lyapunov theorem. In [17], 

the authors have been studied the tracking problem of 3 – 

DOF robotic based on an adaptive neural network 

controller. This controller has been considered both output 

feedback and state control schemes by using two neural 

networks. A neural network was employed to approximate 

the dynamics of the robot and another neural network was 

used to approximate the unknown hysteresis nonlinearity. 

In this studding, an adaptive robust backstepping 

trajectory tracking control by RBFNNs is proposed for 

IRMs to deal with the problem of unknown models and 

uncertain dynamics. By using RBFNNs to approximate the 

unknown function to make the adaptive backstepping 

control have strong robustness for the uncertain model and 

external disturbances of IRMs. All parameters adaptation 

laws are calculated based on the Lyapunov stability 

theorem. Furthermore, the external disturbance of IRMs 

can be eliminated by employing sliding mode control. 

Therefore, the intelligent ARNNs prove that it can be 
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guaranteed desired to not only track performance but also 

the robustness, and stability of the robot manipulators 

control system. 

2. Problem formulation 

2.1. Model of robotic manipulators 

The dynamics of an n-link IRMs can be described as 

follows: 

( ) ( ) ( ) ( ) d
q q,q q q qq  + + + =M C G F+   (1) 

where   1

1 2   q n

n
q qq R

=    is the joint position vector, 

  1

1 2   q n

n
qq q R

=    is the velocity vector and 

  1

1 2   q n

n
q Rq q

=    is the acceleration vector. 

( )M q is the n n symmetric inertial Matrix. 

( )q,qC  is the n n Coriolis vector and Centripetal forces. 

( )qG  is an 1n  vector containing Gravity forces and 

torques. ( )F q is an 1n vector of friction term. d
  is an 

1n  unknown disturbances vector and is an 1n  vector 

of control input torque. For designing controller, the robot 

dynamics (1) has the following fundamental properties: 

Property 1: 𝑴(𝑞)  is the n n  symmetric inertial 

Matrix and bounded: 

( )2 2 1

1 2 ,T n
qx x x x x R     M   (2) 

with 1  and 2  are positive constants. 

Property 2: ( ) ( )2 q,qq − M C is skew symmetric 

matrix and satisfies: 

( )( ) ( )2 0T
x q,qq xq − = M C   (3) 

Property 3: ( ),q q qC  , ( )qG  and ( )qF  

are satisfied: 

( ) ( ) ( )2, , ,
k k k
q q G qq q q C F  G FC   (4) 

where 𝑀𝑘 , 𝐺𝑘, 𝐹𝑘 are positive constants. 

2.2. Backstepping controller 

The conventional Backstepping controller for the 

dynamic of the IRMs is described as follows: 

Step 1: the tracking error vector ( )1q
z t and derivative 

of ( )1q
z t  are define as the follows: 

( ) ( )1 1q d q d
q andz t q z t q q= =− −     (5) 

By using q  as the first virtual control input. Define an 

intermediate function as: 

( ) ( )1 1 1 1 1 1

1

 and 

with 0
q d q q q d q q

q

t q z t q z   

= + =


+
  (6) 

Consider the first following Lyapunov function 

candidate 𝐿1as: 

( )( )1 1 1 1

1

2

T

q q q qL zz t z=    (7) 

The tracking error vector 𝑍̅𝑞2(𝑡)  is define as the 

follows: 

( ) ( )2 1 1 1 1q q q q q
z zt t q z = − = +   (8) 

The derivative of 𝐿𝑞1 (𝑧𝑞̅1(𝑡)) is: 

( )( ) ( )( )1 1 1 1 1 2 1 1

T T

q q q q q q q q
L t z z zz ztz = = −   (9) 

Step 2: the derivative of 𝑧𝑞̅2(𝑡) along to time, we have 

( ) ( )2 1q q
z t t q= −   (10) 

where 𝑞̈̅ used as the second virtual control input. 

Substituting (5, 6, 8, 10) into (1), we have: 

2 1 1 2  
q q q q d

zz    = + − + + + −M M C C G F  (11) 

Consider the second Lyapunov function 𝐿2as follows: 

( ) ( )( )2 1 2 1 1 2 2

1
 ,  

2

T

q q q q q q qz zL z L t z z= + M      (12) 

The derivative of 𝐿𝑞2 (𝑧𝑞̅1(𝑡), 𝑧𝑞̅2(𝑡)) is: 

( )( )2 1 2 1 1 2 2 2 2

1
 

2

T T T

q q q q q q q q qL z t z z z zz z= − + +M M  (13) 

Substituting (11) into (13) and use Property 2, we have: 

( )( )
( )

2 1 2 1 1 2 2

2 1 1 2

1

2

 

T T

q q q q q q q

T

q q q q d

L z z t z z z

z z



   

= − +

+ + − + + + −

M

M C C G F

 (14) 

( ) ( )
( )

2 1 2 1 1 1 2 2

2

1
  2

2
 

T T T

q q q q q q q q

T

q d

zL z t z

y

zz z

z



 

= − + −

+ + −

M C
  (15) 

  

Figure 1. Structure of RBFNN 

( ) ( )2 1 2 1 1 1 2  T T T

q q q q q q d
L z t z z yz z  − ++= −

L
 (16) 

With: 
1 1 +

q q
y G F = + +M C             (17) 
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To continue our design, the adaptive control law is 

presented as: 

2 2 1 SMCq q q
zy z  = + + +            (18) 

with 𝜆𝑞2 > 0 

Substituting (16) into (14), we have: 

2 1 1 1 2 2 2  0T T

q q q q q q q
L z zz z = − −           (19) 

Since (19),
2 0

q
L  , so 

( ) ( )( ) ( ) ( )( )2 1 2 2 1 2, 0 , 0
q q q q q q

L z t z t L z z .  

If ( ) ( )1 2,
q q

z t z t is bounded with 𝑡 > 0. By defining 

 ( ) 1 1 1 2 2 2€ T T

q q q q q q
t z zz z = − −   

so ( ) ( ) ( )( )2 1 2€ , 
q q q

t L t tz z − and integrate the €(𝑡) with 

respect to time as follows: 

( ) ( ) ( )( ) ( ) ( )( )2 1 2 2 1 2

0

0€ , , 0

t

q q q q q q
d L t z t L Z Zz   − +   

(20) 

Because ( ) ( )( )2 1 20 , 0
q q q

zL z  is a bounded function, and 

( ) ( )( )2 1 2,
q q q

z tL z t  is and non-increasing bounded, we have: 

( )
0

lim €
t

t
d 

→
                (21) 

According to Barbalat’s Lemma [18], when €̇(𝑡)  is 

bounded function. It can be shown that 𝑙𝑖𝑚𝑡→∞ ∫ €(𝑡)𝑑𝑡𝑡0 = 0. 

From this result, we see that, ( ) ( )1 2,
q q

z t z t will converge 

to zero when 𝑡 → ∞ and the global stability of the control 

system for IRMs is guaranteed. 

2.3. The Architecture of RBFNN 

The architecture of RBFNN is shown in Fig.1, which 

includes three-layer: Layer 1 (Input layer), Layer 2 

(Hidden layer), and Layer 3 (Output layer). 

The output of hidden layer is calculated as follows: 

2 2( ) [ ( ) / (2 )]; 1,2,..,j j js exp s c d j m= − = −  (22) 

where 𝑚 is the number of hidden nodes, 𝑐𝑗 = 𝑐𝑗1, … , 𝑐𝑗𝑛 is 

the center vector of neural net 𝑗 , 𝑑𝑗  notes the standard 

deviation of the 𝑗𝑡ℎ  radial basis function, 𝑑 = [𝑑1, … , 𝑑𝑚]𝑇 , and 𝛯𝑗  is Gaussian activation function 

for neural net 𝑗. 

According to [19], the output values of ideal RBFNNs 

determined as: 

( ) ( )T
f s s = +W              (23) 

Here, 𝑾 is ideal optimum weight values of RBFNNs. Г is modeling error of 𝑓 

The approximate value of the output RBF is designed as: 

ˆ ˆ( ) ( )T
f s s= W               (24) 

Assume that ( ) ( ) ( ), , ,q qqqM C G  and ( )qF are 

the output values of ideal RBFNNs and determined, 

respectively as: 

( ) ( ) ( )  *T

R M M M M
q q Гq= + =  +WM M    (25) 

( ) ( ) ( ), , * ,T

R C C C C
q q q q q q Г= +  = +C WC  (26) 

( ) ( ) ( )  *T

R G G G G
q q Гq= + =  +WG G     (27) 

( ) ( ) ( )*T

R F F F F
q q Гq== +  +F WF     (28) 

with 𝑾𝑀, 𝑾𝐶 , 𝑾𝐺 , and 𝑾𝐹  are ideal optimum weight 

values of RBF; 𝛯𝑀 , 𝛯𝐶 , 𝛯𝐺 , and 𝛯𝐹  are outputs of hiden 

layer, Г𝑀, Г𝐶 , Г𝐺  and Г𝐹  are modeling errors of 

( ) ( ) ( ), , ,q qqqM C G  and ( ) ,qF  respectively.
 

( ) ( ) ( )ˆ ˆˆ , , ,
R R R

q q Gq qM C  and ( )ˆ
R qF are the estimated 

values of the ( ) ( ) ( ), , , , ),(
R R R R

q q qq qM C G F respectively, 

and they are described as follows: 

( ) ( )ˆ ˆ *T

M MR
q q= WM             (29) 

( ) ( )ˆ ˆ, * ,
C

T

R C
q q q q= WC           (30) 

( ) ( )ˆ ˆ *T

R G G
q q= G W              (31) 

( ) ( )ˆ *ˆ T

R F F
q q= F W              (32) 

in which 𝑾̂𝑀 ,  𝑾̂𝑪, 𝑾̂𝑮, and 𝑾̂𝐹  are estimates of 𝑾𝑀, 𝑾𝐶 , 𝑾𝐺  and 𝑾𝐹, respectively. 

3. Design controller and stability analysis 

Here, we proposed an intelligent controller which 

combines adaptive neural networks control and the 

Backstepping technique to suppress the effects of the 

uncertainties and approximation errors. Thus, the unknown 

functions of the robot manipulator control system are 

estimated, and stability can be guaranteed. The block 

diagram of ARNNs is described in Figure 2. 

The ARNNs control law is presented as: 

2 2 1
ˆ ˆ

q q q SMC
zy z  = + + +            (33) 

where 𝜏̂𝑆𝑀𝐶  is a SMC robust term, and 𝑦̂  is the 

approximation of the function 𝑦 

Substituting (6), and (25-28) into (17), equation (17) 

can be rewritten as follows: 

( )( )( ) ( )
( )( )( ) ( )

1 1

1 1

* *

+ * , *

T T

d q q F F FM

T T

M M

dC C C q q G G G

y Г Гq q z q

q q Г q z q Г





=  + + +  +

 + + +  +

W W

W W
 

( )( ) ( )
( ) ( ) ( )
( )( )

1 1 1 1

1 1

1 1

*

* *

* ,

M M C

M

C

T

d q q d q q

T T

G G F F d q q

T

d q q G FC

y Г
W Г

q q z q

Г

z

q q q z

q q Гq z

 





=  + + +

+  +  + +

+  + + +

W

W

W

 

( )( ) ( )
( )( ) ( )

1 1

1 1

* *

* , *

T T

d q q G G

T T

d q q F

M M

C C F

q q z q

q

y

Гq q z q





=  + + 

+  + +  +

W W

W W
 (34) 

where ( ) ( )1 1 1 1d q q d qM q G FC
Г Г Гq z q z Г Г = + + + + +  

The approximation of 𝑦 is define as: 
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1 1
ˆ ˆˆ ˆˆ

q q
y  = + + +GM C F  (35) 

By using Eq (6), and Eqs (29-32), Eq (36) could be 

rewritten as follows: 

( )( ) ( )
( )( ) ( )

1 1

1 1

ˆ ˆˆ
ˆ

* *  

* ˆ,   *      

M M

C C

T T

d q q G G

T T

d q q F F

q q z q

q q z

y

q q





=  + + 

+  + + 

W W

W W
  (36) 

The robust term is signed as follows: 

( ) ( )

2 22 2
2

2

2

2 2

2

ˆ
4 4 4 4

q G G F F

SMC

q

C CM M

q

P q P q

q

z

z

z
sgn sz z

z
gn

  


  

 
= + + + 

 

+ = +

W WW W

  (37) 

where: 𝜉 = 𝜂𝑀𝑾𝑀24 + 𝜂𝐶𝑾𝑪𝟐4 + 𝜂𝐺𝑾𝐺24 + 𝜂𝐹𝑾𝐹24 ; 𝜂𝑃 ≥ ‖Г + 𝜏𝑑‖ 

By the above analysis, the online training laws of 

ARNNs controller are chosen as: 

( )( )
( )( )
( )
( )

1 1 2 2

1 1 2 2

2 2

F 2 2

,

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

M M M M M M

C

T

d q q q q

T

d q q q q

T

G G G q G G q G

T

F

C C C C

F

C

F q F q F

k z k

k q q z k

q q z

k q z k

k

z

q z z

z

q k zz

 

 





=  + −

=  + −

=  −

=











 −

W W

W W

W W

W W

 (38) 

where 𝑘𝑀 , 𝑘𝐶 , 𝑘𝐺 , 𝑘𝐹 , , 𝜂𝑀, 𝜂𝐶 , 𝜂𝐺 , 𝜂𝐹  are the positive and 

diagonal constant matrices. 

Theorem: Consider the dynamic of IRMs model in (1), 

the online training laws are signed in (39), and a robust 

term 𝜏𝑆𝑀𝐶  is given by (38), then the approximation 

tracking error and all parameters of the proposed controller 

are bounded, and 𝑧𝑞̅1, 𝑧𝑞̅2 → 0. 
The Lyapunov function candidate is chosen as follows: 

( ) ( )(
( ) ( ) ( ))

1

1 1 2 2

1 1 1

1 1 1

2 2 2

T T T

q q q q

T T T

G G G

M M M

C C C F F F

L t z z z z tr k

tr k tr k tr k

−

− − −

= + +

+ + +

W W

W

M

W W W W W

(39) 

where 𝑾̃𝑀 = 𝑾𝑀 − 𝑾̂𝑀,  𝑾̃𝐶 = 𝑾𝐶 − 𝑾̂𝐶 ,  𝑾̃𝐺 = 𝑾𝐺 − 𝑾̂𝐺, 𝑾̃𝐹 = 𝑾𝐹 − 𝑾̂𝐹 

The derivative of 𝐿(𝑡) along to time is: 

( ) ( )
( ) ( ) ( )

1

1 1 2 2 2 2

1 1 1

1

2
M M

T T T T

q q q q q q

T T T

G G G FC FC C F

M
L t z z z z z tr k

tr r

z

k tr k t k

−

− − −

= + + +

+ + +

W W

W W W W W

M

W

M
 (40) 

Substituting (11) and use Property 2 into (41), we have: 

( ) ( ) ( )
( ) ( )
( ) ( )

1 2 1 1 1 2

1 1

1 1

 T T T

q q q q q q d

T T

M M M C

T T

G G G F F F

C C

L t z t z z y

tr k tr k

z

tr k tr k

z  
− −

− −

= − + + −

+ +

+ +

W W W W

W W W W

   (41) 

Substituting (34), (35), (37), (39) into (42), could be 

rewritten as follows: 

( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( )
( )

1 1 1 2 2 2 2 1 1

2 1 1

2 2

1 1

2 2

1 1

*

* ,

* *

ˆ ˆ   ˆ

ˆ ˆ

T T T T

q q q q q q q d q q

T T

q d q q

T T T T

q G G q F F

T T T T

q d q S

M M

C C

MMC

T T

G G G F F

M M C C C

z z q q z

q q q

L t z z z

z

z z

z Г z tr k tr k

tr k t

q q

r

z

k

  



  − −

− −

 = − − +  + 
 +  + 

  +  +    

+ + − − −

− −

W

W

W W

W W W W

W W W W( )F

 

 

Figure 2. The block diagram of ARNNs 

( ) ( )
( ) ( )
( ) ( )

1 1 1 2 2 2 2

2 2

2 2

2

   

   

(42)ˆ

T T T

q q q q q q q d

T T

q G q G G G

T T

F q F F F q

T

q

C C C C

M M M M

SMC

L t z z z Г
tr z tr

tr tr

z

z

z z

z

z  
 

 


= − − + +

+ − + −

+ − + −

−

W W W W W W

W W W W W W
  

By using  

( ) ( ) 2 2

,T
tr − = −  −W W W W W W W W W  

and substituting (38) into the inequality (43) could be 

rewritten as follows: 
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( )

1 1 1 2 2 2 2

2

2

2

2

2

2

2

2

2 22

2

2

( ) ( )

qT
M M M M q

C C C C

G G G G

T
F F F

T T T
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and integrate the €𝐿(𝑡) with respect to time as follows: 
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Because ( ) ( )1 20 , )( , , , ,0
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According to Barbalat’s Lemma [18], when €̇𝐿(𝑡) is 

bounded function. So 𝑙𝑖𝑚𝑡→∞ ∫ €𝐿(𝑡)𝑑𝑡𝑡0 = 0. From this result 

we see that, 𝑧𝑞̅1(𝑡), 𝑧𝑞̅2(𝑡)  will converge to zero when 𝑡 → ∞ and the global stability of the control system for 

IRMs is guaranteed. 

4. Simulation results 

Here, a three-link IRMs is applied to confirm the 

efficiency of the suggested control method based on 

ARNNs for illustrative purposes. The detailed system 

parameters of three-link IRMs model (Figure 3) are given 

as following: 

 

Figure 3. The model of three-joint IRMs 
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                + 12 𝑙2(𝑙1 + 𝑙3 𝑐𝑜𝑠(𝑞2 + 𝑞3) + 𝑙2 𝑐𝑜𝑠(𝑞22)) 

 𝑀12 = 14 𝑝2𝑙22 + 112 𝑝1𝑙32 + 14 𝑝3𝑙22 

            + 112 𝑝1𝑙32 𝑐𝑜𝑠(𝑞2 + 𝑞3)2 + 112 𝑝1𝑙22 𝑐𝑜𝑠(𝑞22) 

            +𝑝3𝑙1𝑙3 𝑐𝑜𝑠(𝑞2 + 𝑞3) + 2𝑝3𝑙2𝑙3 𝑐𝑜𝑠(𝑞3) 

 𝑀23 = 𝑀32 = 112 𝑝1𝑙32 + 14 𝑝3𝑙2𝑙3 𝑐𝑜𝑠(𝑞3) 

 𝑀33 = ( 112 𝑝1 + 14 𝑝3) 𝑙32 

 𝑀12 = 𝑀13 = 𝑀21 = 𝑀31 = 0 
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where 𝑝1 , 𝑝2, 𝑝3 are links masses; 𝑙1, 𝑙2, 𝑙3 are links lengths; 𝑔 = 10(𝑚/𝑠2). 
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The parameters of three link IRMs are given as follows: 𝑝1 = 4.5 (𝑘𝑔), 𝑝2 = 3.2 (𝑘𝑔), 𝑝3 = 1.6 (𝑘𝑔); 𝑙1 = 450 (𝑚𝑚), 𝑙2 = 340 (𝑚𝑚), 𝑙3 = 220 (𝑚𝑚); 

The desired position trajectories of the three link 

industrial robot manipulators are chosen by: 

 𝑞̅𝑑 = [𝑞𝑑1 𝑞𝑑2 𝑞𝑑3]𝑇         = [sin(1.5𝑡) 0.5 sin(2𝑡) sin(1.5𝑡)]𝑇; 

Initial positions of joints are  0 0.1 0 0.1
T

q = − , and 

initial velocities of joints are  0 0.0 0.0 0.0 .
T

q =  

External disturbances and friction force in this 

simulation are selected as following: 
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The architecture of the ARNNs proposed controller can 

be characterized by n=5 nodes. The initial weight values of 

neural network are chosen as following: 
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The proposed controller parameter values are chosen as 

follows: 

 𝜆𝑞1 = 𝑑𝑖𝑎𝑔(80, 80,80); 𝜆𝑞2 = 𝑑𝑖𝑎𝑔(60, 60,60); 
 𝜆𝑞2 = 𝑑𝑖𝑎𝑔(40, 40,40); 
 𝐾𝑀 = 𝐾𝐶 = 𝐾𝐺 = 𝐾𝐹 = 𝑑𝑖𝑎𝑔(15, 25,25, 20); 
 𝜂𝑀 = 𝜂𝐶 = 𝜂𝐺 = 𝜂𝐹 = 0.5; 
 𝜂𝑃 = 𝑑𝑖𝑎𝑔(0.5,0.07,0.05); 

Here, Figure 4 are the results of the simulated 

comparison of the proposed ARNNs, and RBFNN [3] and 

Figure 5 are the results of the simulated comparison of the 

propsed ARNNs with disturbance and without disturbance. 

From the simulated results, we see that in all two cases the 

tracking position of RBFNN and the proposed intelligent 

controller are good. The tracking errors of ARNNs, and 

RBFNN are converged. However, the tracking errors of the 

proposed intelligent control system converge faster than 

the RBFNN systems. Moreover, from Figure 4 we can 

observe that, the control force of the proposed ARNNs is 

smoother and has a smaller oscillation than the RBFNN to 

achieve the requested level of performance when the 

tracking errors each the big value. It proves that all updated 

parameters in the dynamic structure ARNNs and the 

number of law nodes are adjusted, the approximation 

ability of the dynamics structure ARNNs is also better than 

the RBFNN systems. The robustness and control 

performance of the ARNNs scheme is still better than the 

RBFNN controller [3] under parameter variation and when 

the external disturbance. 

 

Figure 4. The tracking error performances, control efforts, 

tracking errors of ARNNs, RBFNN, Robust term of ARNNs,  

and Approximation function of ARNNs 

 

Figure 5. The tracking error performances, control efforts, 

tracking errors of ARNNs with disturbance and  

without disturbance, Robust term of ARNNs,  

and Approximation function of ARNNs without disturbance 

5. Conclusions 

In this studding, an adaptive robust backstepping 

controller combined with structure RBFNNs has been 

proposed. It has been also successfully implemented to 

control the joints of a three-link IRMs for achieving high 

precision position tracking by combining the advantages of 

RBFNNs, sliding mode robust term function, and adaptive 
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backstepping control technique. The difficulty to find 

approximate values of the unknown dynamic of IRMs has 

been solving by RBFNNs control. All the adaptive online 

trainings for the weights of the proposed intelligent control 

system are obtained by the Lyapunov theorem and trained 

online by an adaptive learning algorithm. From the 

Simulation results of three-links IRMs, we can find that the 

efficiency of the ARNNs proposed control is improved so 

much. The proposed ARNNs control system can also be 

applied to control for other systems, such as AC servo, MMR 

systems. This application could require further investigations. 
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