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Abstract - This present study proposes a design and the analysis
of the novel adaptive robust neural networks (ARNNSs) based on
the backstepping control method for industrial robot manipulators
(IRMs). In this research, the ARNNSs controller has combined the
advantages of Radial Basis Function neural network (RBFNN),
the robust term, and adaptive backstepping control technique
without the requirement of prior knowledge. The RBFNN is used
in order to approximate the unknown function to deal with
external disturbances and uncertain nonlinearities. In addition, the
disturbance of system is compensated by the robust Sliding Mode
Control (SMC). All the parameters of ARNNSs are determined by
the Lyapunov stability theorem, are tuned online by an adaptive
training law. Therefore, the stability, robustness, and desired
tracking of the performance of ARNNSs for IRMs are guaranteed.

Key words - Adaptive control; sliding mode control; neural
networks; Adaptive fuzzy logic control; industrial robot

1. Introduction

In recent years, interest in designing robust tracking
control for industrial robot manipulator system has been
increased, and a lot of significant research attentions have
been attracted. However, IRMs are multi-input multi-
output non-linear systems and in the working process, they
usually bear the nonlinear friction, payload variation,
external disturbance, etc. in their dynamics. Hence, it is
hard to design an exact controller without the knowledge
of the robotic system. To solve these difficulties, many
controllers for IRMs have been proposed, including PID
control, adaptive control, intelligent control, SMC,
backstepping control, fuzzy control and variable
structureone, etc. [1-4].

In the past decade, the backstepping technique for
designing an adaptive controller for nonlinear systems has
been widely applied [5-8]. In [5], Chien — Wen Chung,
Yaote Chang have applied this methods to deal with the
regulation problems for nonlinear systems. The robustness
and stability of the control system were improved by using
the proposed controller. In [7], the combined advantages of
SMC and the backstepping algorithm were proposed to
improve the position tracking error of the 3-DOF PM
spherical actuator. Here, by using the backstepping
technique, the stability of the closed-loop system could be
guaranteed and the disturbance of the system could be
compensated by the robust term. Thus, the proposed
controller could guarantee better tracking performance. In
general, all investigations based on backstepping control
methods in [5-8] were proposed suitable to control for
nonlinear systems. However, this Backstepping design
method still exits some problems such as the certain
functions are “linear in the unknown parameters”, which is

not satisfied in practice. Furthermore, determining and
calculating the regression matrices are more acute.

Recently, many researchers have successfully applied
neural network techniques to solve the problem of
unmodeled and unknown dynamics for IRMs by providing
online learning laws [9-13]. In [9], the authors proposed an
adaptive neural network control to deal with the problem
of tracking control with unknown dynamics of the robot
system. The unknown model of this system was
approximated by using the neural network technique and
the robust term was used to compensate for the
uncertainties dynamic of the robot model. In [12], the
authors studied an adaptive robust controller by the neural
network to overcome the problem of nonlinear MIMO
systems with time delays and external disturbance. In this
controller, the impact of time delays could be eliminated
by using the advance of Lyapunov Krasovskii theorem and
Young’s inequality, and by using the robust term to
eliminate external disturbance of systems. In addition, the
RBFNNs have been applied extensively to control
nonlinear dynamic systems. Because of simple network
structure, fast training, and better approximation
capabilities. Due to the popularity of RBFNNs, many
researchers have been proposed, as shown in [14-17], for
example. In [14], the neural network control by RBF
functions was presented to deal with the problem of the
uncertainties system of biped robots. This controller was
used neural networks to approximate the unknown
dynamic of the biped robot. The robustness and stability of
this controller for biped robot systems were guaranteed and
proved based on the stability Lyapunov theorem. In [17],
the authors have been studied the tracking problem of 3 —
DOF robotic based on an adaptive neural network
controller. This controller has been considered both output
feedback and state control schemes by using two neural
networks. A neural network was employed to approximate
the dynamics of the robot and another neural network was
used to approximate the unknown hysteresis nonlinearity.

In this studding, an adaptive robust backstepping
trajectory tracking control by RBFNNs is proposed for
IRMs to deal with the problem of unknown models and
uncertain dynamics. By using RBFNNs to approximate the
unknown function to make the adaptive backstepping
control have strong robustness for the uncertain model and
external disturbances of IRMs. All parameters adaptation
laws are calculated based on the Lyapunov stability
theorem. Furthermore, the external disturbance of IRMs
can be eliminated by employing sliding mode control.
Therefore, the intelligent ARNNs prove that it can be
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guaranteed desired to not only track performance but also
the robustness, and stability of the robot manipulators
control system.

2. Problem formulation
2.1. Model of robotic manipulators

The dynamics of an n-link IRMs can be described as
follows:

M(q)q+C(34)7+G(q)+F (g)+7, =7 (1)

M (c7 ) is the #nXn symmetric inertial Matrix.
c ((i, q ) is the nXn Coriolis vector and Centripetal forces.
G(c7 ) is an nx1 vector containing Gravity forces and

torques. F(g)is an nx1vector of friction term. 7, is an

nx1 unknown disturbances vector and 7 isan nx1 vector
of control input torque. For designing controller, the robot
dynamics (1) has the following fundamental properties:

Property 1: M(q) is the nXn symmetric inertial
Matrix and bounded:

x> <x"M(g)x < §x*,Vx e R™ )
with 9 and & are positive constants.
Property 2: [ M(7)-2C(g,4)] is skew symmetric
matrix and satisfies:
X [M(q)(q)—zc(q,z})]x=o 3)
Property 3:0(7,4)q .G(g) and F ()
are satisfied:
C(7.4)4<C,q".G(7)<G,.F(§)<F, @
where My, Gy, F, are positive constants.

2.2. Backstepping controller

The conventional Backstepping controller for the
dynamic of the IRMs is described as follows:

Step 1: the tracking error vector  Z,, (t) and derivative

of 7, (t) are define as the follows:
qu (t)zt_ld —q and Z;ql (t):q;d _q; )
By usingg as the first virtual control input. Define an
intermediate function as:
a, (t) =q,+ ApZ, and @, (t) =q,+ ﬂqlz;ql ©)
with 4, >0

Consider the first following Lyapunov function
candidate L as:

_ 1,
L, (z,(1)= > (7)

The tracking error vector Z_qz(t) is define as the
follows:

242 (t) =a, (t)_q; = éql +/1q12q1 (®)
The derivative of Lg; (Z_ql(t)) is:
qu (qu (t)) = ZquZ;ql = Zqu (Zqz (t) _ﬂqlfql) ©)

Step 2: the derivative of Z,,(t) along to time, we have

Za(0)=,(1)-4q (10)
where G used as the second virtual control input.
Substituting (5, 6, 8, 10) into (1), we have:
Mz,=Md,+Ca,-Cz,+G+F +7,—r (1)

Consider the second Lyapunov function L,as follows:

12)

L‘ﬂ (Zfil’zﬂ) = qu (qu (t))+%ZqT2MZq2

The derivative of Ly, (z_ql(t), Z_qz(t)) is:
. g _ 1_ ., .- _ .
qu = Zqu (ZqZ (t) - ﬂ’qlqu )+§ ZquMqu + ZquMqu (13)

Substituting (11) into (13) and use Property 2, we have:

. i _ 1_. .-
L,= qul (Zqz (t)—ﬂ,qlqu)+zquzMZqz

(14)
+EqT2(M0'zq1+Caql—CEq2+G+F +7, —r)
L,=7"Z T4z +izl (M-20)z
02 = Zq13q2 (t)_qu qlqu+§ZqZ( - )Zrﬂ (15)
+7,, (y+7,-7)
A -
fm
Output
layer
W1 o - A S . Wm
W2 | i —
5y 5 Jeoe Em Hidden
A T~ A% Cdir - layer
. e o o . Input
¥ 'y layer
<
Figure 1. Structure of RBFNN
Ly, =702, ()20 A2, + 20 (y+7,—7)  (16)
With: y=M¢,,+Ce,+G+F 17
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To continue our design, the adaptive control law is
presented as:

7= y+/122q2+z +Toe (18)
with 44,
Substltutmg (16) into (14), we have:
L “Zp A Zy 2 A2 <O (19)

Since (19), L,, <0, so
L,(Z,(1).2,, (1)< L,,(Z,(0).3,,(0)) .

If Z,,(¢).Z,, () is bounded with t > 0. By defining
€(r)=

so €(t)<-L, (%, ().7,,(¢))and integrate the €(t) with

respect to time as follows:

Ie( d¢<-L,(7,(1).3,

—_T — —_T —
-z 1/1 lZ 1 _Zq2;{'q2zq2

( )) + qu (qu (O)’ZqZ (0))
(20)
<_ 1(0).z, (0)) is a bounded function, and

Because L .

q2

Z
L, (%, (t).%,,(t)) is and non-increasing bounded, we have:

lim [€(¢)d¢ <0

t—0

21

According to Barbalat’s Lemma [18], when €(t) is
bounded function. It can be shown that gim fot €(t)dt = 0.

From this result, we see that, Z,,(7),Z,, (1) will converge
to zero when t — oo and the global stability of the control
system for IRMs is guaranteed.
2.3. The Architecture of RBFNN

The architecture of RBFNN is shown in Fig.1, which

includes three-layer: Layer 1 (Input layer), Layer 2
(Hidden layer), and Layer 3 (Output layer).

The output of hidden layer is calculated as follows:

Ej(s)=exp[—(s—cj)2/(2df)];j=1,2,..,m (22)

where m is the number of hidden nodes, Cj = Cjqy e
the center vector of neural net j, d; notes the standard
deviation of the jth radial Dbasis function,
d = [dy, ..., d,,]", and 5 is Gaussian activation function
for neural net j.

According to [19], the output values of ideal RBFNNs
determined as:

F&=WEE)+T (23)

Here, W is ideal optimum weight values of RBFNNs.
I' is modeling error of f

Cj‘n 18

The approximate value of the output RBF is designed as:
f(s)=W'E(s)
Assume that M(E]),C(q,c?),G(cj) and F (c?) are

(24)

the output values of ideal RBFNNs and determined,
respectively as:

M(q)=M,(q)+T,, =W, *E,, (q)+ T,
C(7.4)=Cr (7.4

G(7)=G.(q)
F(q)=F,(q)+T

with Wy, W, W;,and W are ideal optimum weight
values of RBF; =y, Z¢, Z;,and Z are outputs of hiden
layer, 'y, I¢c, T and Tp are modeling errors of

M(7).C(7.4).G(g) and F(g),
MR(Z]),éR<67,C?),GR(Z]) and F, ( )are the estimated

(25)
q)+Tc =W *2.(7.q)+ T (26)
+T, =W, *E,(q)+ 1, 27)

=W, *E,(q)+ 1} 28)

respectively.

values of the M, (q).C, (g,q;),G,\, (7). F (@), respectively,

and they are described as follows:

M, (q)=W,*E,(q) (29)
C.(7.9)=W!*E.(7.9) (30)
G, (7)=W; *Z,(q) (31)
Fo(q)=W,*E,(q) (32)

in which W,, , W, Wg, and W, are estimates of
Wy, W, W and W, respectively.

3. Design controller and stability analysis

Here, we proposed an intelligent controller which
combines adaptive neural networks control and the
Backstepping technique to suppress the effects of the
uncertainties and approximation errors. Thus, the unknown
functions of the robot manipulator control system are
estimated, and stability can be guaranteed. The block

diagram of ARNNS is described in Figure 2.
The ARNNS control law is presented as:
=y +4,2,,

+ %+ e (33)

where Tgyc is a SMC robust term,
approximation of the function y

Substituting (6), and (25-28) into (17), equation (17)
can be rewritten as follows:

y=(WiE, (7)+ T, )G, + 2,2, )+ W, *E,.(q)+ I,
+(WCT*EL'(‘_1"7)+FC)( 9y + 24,2 ql)+WGT*EG (‘_1)+FG
(@) + 2 )+ T (s + 2nZ)
q)+WFT*~ ( )+F ( +ﬂq,§q.)
7.9 na )+F +T,

and ¥y is the

+;Lq,2ql)+WG *2,(7)
. (E})+F

( +4,2, )+FG+FF

(34)

where F:['M( +4, qu)

The approximation of y is define as:
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&:qul+éaql+é+ﬁ (35)

By using Eq (6), and Eqgs (29-32), Eq (36) could be
rewritten as follows:

5=Wy *2,, (7)(q) + Au2 )+ Wa *E4(7)

The robust term is signed as follows:

iz(nMWﬁ e nWe W j
37

‘[A =
sme-— = 4 4 4

q2

+77Psgn(2q2) = %5 + npsgn(fqz)

q2

w3 w w w
where: & = nM4 M +77C4 C+77G4 £ +nF4 Enp = |IT + 74l

By the above analysis, the online training laws of
ARNNS controller are chosen as:
W, =ky,Ey (‘?)(qd + ﬂ’qlz;ql )Zz;rz L ZqZWM
W.=k.E. (‘7’5_1)(‘7{1 + ﬂ’qlfql )Equ _Uckchzwc
W, =k.E; (‘7)252 - nGkGZqZWG

A

We=k.E, (?I)Z;Tz _anFZqZWF

(38)

where ky, ke, ke, ke, , My, e, Ne, N are the positive and
diagonal constant matrices.

Theorem: Consider the dynamic of IRMs model in (1),
the online training laws are signed in (39), and a robust
term Tgyc is given by (38), then the approximation
tracking error and all parameters of the proposed controller

are bounded, and Zq1, Zgz 0.

The Lyapunov function candidate is chosen as follows:

L(r)=

tr (W kW )+t (We kg W, )+ or (W] ke W, ))

| l_r 1 Ty T,
> Za%a +5zq2MZq2 +E(tr(WMkM WM) (39)

WG :WG_Wg,WF ZWF_WF
The derivative of L(t) along to time is:

WC = WC_W(:,

r —T = 1_ . - - ~ &
L(1)= 2%, +3 T M, + ZLME,, +tr(w;kM'WM ) w0)

+tr (ngg‘lf/c ) + tr(WGTkg]WG ) +tr (WFTk;lVl;’F )

Substituting (11) and use Property 2 into (41), we have:

L(t) = ZqTIZﬂ (t) - Zquﬂ'quql + ZqTZ (y 7 _T)

+ zr(W; KW, )+ zr(WCT KW, ) @41)

+tr (WGTk(;lWL’G ) +tr (ng;IV‘;’F )

Substituting (34), (35), (37), (39) into (42), could be
rewritten as follows:

L(t) = _Zquﬂ’quql - Z{;Tzﬂ“quqz + Zqu |: /\Z TEy (‘7):|(‘7d + ﬂ“qlz;ql )

+ 25 (W B (7.4) (40 + 20%0)

13 (M 41,) - —tr(W;k;WM )_tr(wgkgwc)

—tr (WGTkg]W;’G ) —tr (WFTk;‘WF )

ka ke ke ke M tic, Mg, kne q1 g m
________ | / dt]
darGa
Reference
TarGar da
dq Ag1
|
vy v
g Industrial 7
._‘ aq(t) =g+ Ag1Zg | | " R_obclnt >
LAz anipulator
-) a1
e 4 -
dg1 l l TsMc
v B
F ] Zoga Robust term
T Yad | @® - |z, )
=& +e SQR(Zqz)

12|l

Figure 2. The block diagram of ARNNs

L(t) =2} A% — T A2 + T (T +7,)
2 W (We =W )+ 1,2, trW (W, - W)
+771"Zq2 IVWZ (WF _WF )+77M Zqz trWA; (WM _WM )

- Zqufmc (42)

By using
W (W W)= (W)W <] Iw] -]

and substituting (38) into the inequality (43) could be
rewritten as follows:
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L(t) ST ATy — ZondgnZg + 20 (T H7,)

snu ol (Fal -l )55 2
q

el e el el “)
e el Wl -

A (LA LA LA AR
L(t) <=2 ATy — ZaaAgaZgn

il | el e ]| 42

ol %2 el - ol 2]
L(t) <220 Z0 ~Zh AT (44)

From (45), L(Z,(t).2,, (t).W, . We, W, W, )<0

L(qu (1).2,, (1) W,, W W,

semidefinite function,

L(z, (1),

If z, (l),Zqz (t),WM W.,W,,W,. are bounded with ¢ > 0.

By defining €, (1) =-7,4,,
So €, (t) < _L(qu (’)’Zqz

and integrate the €, (t) with respect to time as follows:

A (1
W ) is a  negative

(1) W, W W, W, )< L(z,(0).5,
I_ZqZ/quZqZ
(1), W, . W, W, W,)

t

J€.(€)ag <=Lz, (1). 2, (1) W, . We . We. W, )

+L(z,,(0),2,,(0).W,, . W., W, W,)

q
L(z, (O)iqz

Because

is non-increasing and bounded, we have

lim J.€

11—

)d¢ <o (46)
According to Barbalat’s Lemma [18], when €, (t) is
bounded function. So gim f0t€ L (®)dt = 0. From this result

we see that, Z;;(t),Zg,(t) will converge to zero when
t — oo and the global stability of the control system for
IRMs is guaranteed.

4. Simulation results

Here, a three-link IRMs is applied to confirm the
efficiency of the suggested control method based on
ARNNSs for illustrative purposes. The detailed system
parameters of three-link IRMs model (Figure 3) are given
as following:

(0.1, W W, W, ).

Figure 3. The model of three-joint IRMs

M, M, M, ¢, C, G, G,
M=\M, M, M, ;€= G, Cy Cy ;G = G,
M, M, M, G, G, Gy G,

1 2 9
My, =p, (ll + Elz COS(Qz)) + gpll%

+§lz(l1 + l3cos(qz + q3) + 1, COS(QZZ))

M, = ipzl% +1_12P1l§ +ipsl%
+%p1l§ cos(qz + q3)% + %pﬂ% cos(qz2%)
+p3lils cos(qz + q3) + 2pslyls cos(gs)
My3 = M3, = %pll?% + %Pslzlz cos(qs)

My = (5501 +3p)

My =Mz =My, = Msy =0

Ci, ==2(p, + ps )Ly sin(q,) G, —2p;l Ly sin (g, ) 4
—2p,l 1 sin (q2 +4, )(qz +4, )

C, =—(p, + py)LLysin(gq, )4, — pshilysin(q, +45)(4,)
—2pyll;sin(q,) g, —2pslLsin(g, + g5 ) 4,

C, =—psblysin(q;) g, — p,lLysin(g, +4;) g,

C, = —(p2 + p3)1112 Sin(qz)c}2 -pill Sin(q2 +q3)(cj2 +q3)
=2p,Ll; sin (%)c}3 +(p2 + p3)lll2 Sin(qz)(q2 +q'1)
+pllysin(q, +q;) (4, + 4, +45)

C,, =-2p,Ll, sin(qs)q3

C,, =—p,Ll, Sin(q3 )q3

C,, =—pillysin(q, +q,) (g, + 45 ) — psblysin(g;) g
+plilysin(q, + ;) (G, + 4, +¢3)
+pblysin(q, +4,)(2¢, + ¢, +45)

Cy, = pshlysin(q;)d,;Cyy = 0;

G, =(p,+p,+p;)glsin(q,)
+(p, + py) glysin(q, +q,)+ pyglysin(q, +q, +q;)

G, :(p2 +p3)glzsin(q1 +q2)-|-p3gl3sin(ql +q, +q3)

G, = p,glssin(q, +q, +4q;)

where py, p,, p; are links masses; [y, l,, [5 are links lengths;
g =10(m/s?).
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The parameters of three link IRMs are given as follows:

p1 = 4.5 (kg),p2 = 3.2 (kg), p; = 1.6 (kg);

[, =450 (mm), l, = 340 (mm), l; = 220 (mm);

The desired position trajectories of the three link
industrial robot manipulators are chosen by:

Gg = [dar a2 qa3]”

= [sin(1.5t) 0.5sin(2t) sin(1.5t)]7;

Initial positions of joints are g :[0.1 0 —O.I]T,and
initial velocities of joints are g, =[0.0 0.0 0.0]".

External disturbances and friction force in this

simulation are selected as following:

2sin () 2sign(q,)
T, = ZSin(t) ;F(c']): 2sign(qz)
2sin (1) 2sign(q,)

The architecture of the ARNNSs proposed controller can
be characterized by n=5 nodes. The initial weight values of
neural network are chosen as following:

-1 =05 0 05 1
-05 0 05 1
-1 =05 0 05 1

-1 —05 0 05 1
-1 —05 0 05 1
W, - -1 =05 0 05 1
-1 =05 0 05 1
-1 —05 0 05 1
-1 -05 0 05 1]
(-1 =05 0 -05 1
W;=|-1 =05 0 05 1
-1 -05 0 05 1
(-1 =05 0 -05 1
W,=[-1 =05 0 05 1
-1 =05 0 05 1

The proposed controller parameter values are chosen as
follows:

Agr = diag(80,80,80); A, = diag(60,60,60);
Aq2 = diag(40,40,40);
KM = KC = KG = KF = dlag(ls, 25,25,20);

Ny =Mc =N =1 = 0.5;
np = diag(0.5,0.07,0.05);

Here, Figure 4 are the results of the simulated
comparison of the proposed ARNNs, and RBFNN [3] and
Figure 5 are the results of the simulated comparison of the
propsed ARNNs with disturbance and without disturbance.
From the simulated results, we see that in all two cases the
tracking position of RBFNN and the proposed intelligent
controller are good. The tracking errors of ARNNs, and

RBFNN are converged. However, the tracking errors of the
proposed intelligent control system converge faster than
the RBFNN systems. Moreover, from Figure 4 we can
observe that, the control force of the proposed ARNNS is
smoother and has a smaller oscillation than the RBFNN to
achieve the requested level of performance when the
tracking errors each the big value. It proves that all updated
parameters in the dynamic structure ARNNs and the
number of law nodes are adjusted, the approximation
ability of the dynamics structure ARNNSs is also better than
the RBFNN systems. The robustness and control
performance of the ARNNs scheme is still better than the
RBFNN controller [3] under parameter variation and when
the external disturbance.

ARNNs REFNN

[ Bl
£ et

Rt e (1)

Figure 4. The tracking error performances, control efforts,
tracking errors of ARNNs, RBFNN, Robust term of ARNN,
and Approximation function of ARNNs

Figure 5. The tracking error performances, control efforts,
tracking errors of ARNNs with disturbance and
without disturbance, Robust term of ARNNZ,
and Approximation function of ARNNs without disturbance

5. Conclusions

In this studding, an adaptive robust backstepping
controller combined with structure RBFNNs has been
proposed. It has been also successfully implemented to
control the joints of a three-link IRMs for achieving high
precision position tracking by combining the advantages of
RBFNN:g, sliding mode robust term function, and adaptive
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backstepping control technique. The difficulty to find
approximate values of the unknown dynamic of IRMs has
been solving by RBFNNs control. All the adaptive online
trainings for the weights of the proposed intelligent control
system are obtained by the Lyapunov theorem and trained
online by an adaptive learning algorithm. From the
Simulation results of three-links IRMs, we can find that the
efficiency of the ARNNs proposed control is improved so
much. The proposed ARNNs control system can also be
applied to control for other systems, such as AC servo, MMR

systems. This application could require further investigations.
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