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Ensemble of Convolution Neural Networks for
Improving Automatic Modulation

Classification Performance
Ha-Khanh Le, Van-Sang Doan*, Van-Phuc Hoang

Abstract—This paper investigates convolutional neural networks (CNN) to classify 26 types of signal modulation under the

influence of five different fading channels and Gausian noise with SNR from -20 dB to +18 dB. Specifically, five CNN models,

including ResNet18, SqueezeNet, GoogleNet, MobileNet, and RepVGG, are taken into account for a accuracy competition

to discover the best one. As a result, the SqueezeNet model achieves the highest accuracy of 97.5% for the SNR value of

+8 dB. Based on the evaluation results of the single models, we propose an ensemble learning approach, which integrate

some robust networks to improve classification accuracy. The numerical results show that ensemble learning can improve

the automatic modulation classification accuracy compared to those single models. Specifically, the ensemble learning model

gains the accuracy of 52.7% at the SNR of -20 dB and 77% at the SNR of -2 dB. In addition, three types of ensemble methods

are considered for analysis and comparison. Consequently, the weighted ensemble provides a better performance in terms of

accuracy than unweighted one.

Index Terms—Automatic modulation classification; Deep learning; Convolutional neural network; ensemble learning.

✦

1. Introduction

AUTOMATIC modulation classification (AMC) is an
important task that holds the opportunity for

many different applications in civil and military sce-
narios. It is an intermediate step between signal de-
tection and demodulation for determining the modu-
lation scheme of a radio signal [1]. However, design-
ing a classifier that works well in noisy environments
and other conditions is very challenging. Generally,
AMC algorithms can be divided into two categories:
Likelihood-based (LB) and Feature-based (FB). The LB
methods can achieve a optimal classification accuracy
when they apply in perfect channel models and priory-
known parameters. Fundamentally, the LB methods
compares the probability ratio of the received signal
in the group of considered modulations. However, the
LB methods require the priory knowledge of channel
parameters, which make the the computational bur-
den becomes heavier [2]. In contrast, the FB methods
can also obtain high accuracy but less computational
complexity, especially, they are independent with the
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channel information. The performance of FB methods
mainly depends on extracted features, which are regu-
larly handcrafted by experts to suit the channel envi-
ronments. Furthermore, searching the efficient features
requires a significant concern in terms of data [3]. In
recent years, deep learning has evolved continuously
and outstripped other approaches. It can be employed
with both manual and automatic processes to learn
representative features of entities from the raw data
[4]. Current models, such as ResNet [5], DenseNet [6],
CLDNN [7], etc, demonstrate that deep learning is a
new modern approach for an efficient signal processing.
These models do not even need pre-processing and
denoising for classifying the signals. However, they still
exist some limitations with low SNR signals or under
multi-path fading conditions.

In order to improve the accuracy of modulation clas-
sification, the requirement for CNN models should con-
sider higher computational complexity, larger structures
such as deeper and wider models, which consequently
results in the increase in the learnable parameters. As
a result, the trade-off for training would cost a lot of
mathematical operations, computing memories, hard-
ware and time delay [8]. It is reported that an ensemble
learning method can help to leverage the advantages
of single models. Indeed, it can combine several simple
algorithms but still improves modulation classification
accuracy compared to a large model. In the ensemble
approach, CNN models are trained for an identical task
and dataset; then, their final prediction is judged by
some specific rules of output scores. Some advantages
of ensemble learning method in increasing signal classi-
fication performance can be listed as followed:
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• Avoid over-fitting: A CNN model can achieve
high accuracy when training on a small dataset
because its weights over-fit the dataset, but the
trained model provides inaccurate results on un-
seen new data. This phenomenon is called an
over-fitting problem. By combining the scores
of different algorithms for final judgement, the
ensemble method facilitates reducing the over-
fitting level; therefore, it can improve the overall
predictive performance.

• Avoid the local minimum trap: Combining different
models can reduce the risk of reaching the local
minimum due to the diversity of learning pro-
cesses. In addition, there are fewer local minima
in learning of small models than that of large
models. Therefore, it can reduce the probability
of falling into the local minimum traps.

In some previous works, the dataset with Gaussian
noise is often used for the automatic modulation classi-
fication, such as RadioML 2018 in [9]. Nevertheless, the
signals in practice are often affected by different types
of noise, especially multi-path fading channels. For that
reason, we use another dataset, namely HisarMod2019.1
in [10], in this research work for a more comprehensive
evaluation of the actual signal classifiers. In this work,
we assess different networks for the modulation classi-
fication task on the mentioned dataset. Afterwards, sev-
eral ensemble learning methods are taken into account
to compare with the single models to exhibit the ro-
bustness of ensemble learning in the signal modulation
classification. Simulation shows that ensemble learning
models obtain accuracy higher than the individual ones
at low SNR, for example about 52.7% for SNR = -20 dB,
or 77% at SNR = -2 dB.

The rest of this paper is organized as follows. Sec-
tion II briefly describes the considered neural networks
and proposes ensemble learning techniques for signal
modulation classification. Then, the comparison results
in terms of classification performance between models
using the single and ensemble learning approaches are
discussed in Section III. Finally, Section IV will conclude
the results and directions of future works.

2. Deep Learning Networks for Automatic Modula-

tion Classification

Recent studies of deep learning networks are fo-
cusing on improving signal classification accuracy us-
ing the state-of-the-art models, such as ResNet [5],
SqueezeNet [11], MobileNet [12], GoogleNet [13], and
VGG [14]. Therefore, this work studies these models
in terms of classification accuracy to reveal their ad-
vantages and disadvantages. Then, the ensemble model
is proposed and applied to improve the accuracy of
automatic modulation classification.

2.1. Overview of Existing Networks

2.1.1. ResNet

The ResNet, a CNN model, is presented in ImageNet
and COCO 2015 [5]. The network has resolved the

vanishing and over-fitting problems by creating skip-
connections between different layers. The key of ResNet
is residual blocks as shown in Fig. 1, where we can
see that the feature map from the output of weight
layers is combined with input feature map (from skip-
connection) via an addition layer. This idea is to re-use
the former feature map, which can help to improve the
classification accuracy.

Fig. 1: Residual Block.

2.1.2. SqueezeNet

SqueezeNet is a network proposed in 2016 [11] to
classify images. Despite occupying fewer parameters,
SqueezeNet gains the same accuracy compared to some
other well-known models. The structure of SqueezeNet
is shown in Fig. 2a, which consists of a convolutional
layer (Conv1), 8 blocks (from fire2 to fire9) and a
convolutional layer (Conv10). The number of filters in
convolutional layers gradually increases from 16 filters
at the beginning to 256 filters at the end of the network.
It can be observed from Fig. 2b that the fire block is
constructed by a ”squeeze” layer, which is the convolu-
tional layer of 1 × 1 filters, and two “extended” layers,
which are convolutional layers of 1× 1 and 3× 3 filters.
Reducing the number of filters in the “squeeze” layer
helps to decrease the model learnable parameters.

Fig. 2: SqueezeNet Block.

2.1.3. MobileNet

MobileNet is a lightweight network model designed
by a Google team [12] for applying on compact devices
with limited resources. Not only on optimising latency,
but the MobileNet model also focuses on small struc-
tures for increasing speed. The structure of MobileNet
is built by a convolution method, so-called Depthwise
Separable Convolution (DSC), to reduce the model size
and computational complexity as presented in [12].

2.1.4. GoogLeNet

The GoogleNet is a network model launched in 2014
[13]. The model focuses on the problem of finding which
size of the convolutional filter is the best. Some good
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results can sometimes be achieved by combining filters
of different sizes. The basic convolution block in the
GoogleNet model is called Inception, as shown in Fig. 3,
where we can see that there are four parallel branches
in the Inception block.

Fig. 3: Inception Block.

2.1.5. RepVGG

RepVGG network is developed from the VGG net-
work to have a simple structure that ensures efficiency,
where the max-pooling layer is not used [15]. It used
method called reparameterisation. This is a technique
to transform a set of parameters from one architecture
to another, so even though the two architectures are
different, they can still share the weights. The RepVGG
model comprises five stages; each stage will include
structurally similar blocks, as shown in Fig. 4.

Fig. 4: RepVGG Block.

2.2. Proposed Ensemble Method

The ResNet, MobileNet, GoogleNet, SqueezeNet,
and RepVGG models are popularly applied in many
fields. However, when using these models for the mod-
ulation signal classification task, the signal classification
accuracy at the low SNRs is low, for instance, less than
60% accuracy for SNR ≤ -2 dB of all models. Meanwhile,

with high SNRs, some model achieves much better accu-
racy; concretely, the ResNet18 model achieves more than
92.67% for SNR ≥ +6 dB, as shown in Fig. 5. In order to
eliminate the above-mentioned issue, we use ensemble
learning to improve the accuracy of models on the same
data set because of its diversity. Indeed, models in an
ensemble one will have different predictive abilities, so
that a good combination will be more efficient than an
single model. Therefore, it can improve overall perfor-
mance compared to using the models individually [8],
[16]. Ensemble learning is a method that incorporates
the predictions from all the base learners or creates an
ensemble of well-chosen strong and diverse models.
Ensemble models gain more accuracy and robustness by
combining data from numerous modeling approaches.

In this section, we propose a method that combines a
number of CNN models to provide a higher AMC accu-
racy. With performing an ensemble classifier, we assess
how the classification capability of an ensemble classi-
fier outperforms each individual classifier. Accordingly,
three ensemble techniques, including majority voting
and two mean probability (weighted and unweighted)
ones are utilized, as follows:

2.2.1. Unweighted Average

In this method, the Softmax function is applied to
calculate the predicted probability value at the output
of the final class of CNN models. Then, an unweighted
average of the probability values of the models is com-
puted. As a result, the decision for the highest proba-
bility will subsequently be made [17]. The unweighted
average formula is defined as follows:

pj =
1

n

n
∑

i=1

yij (1)

where yij is the score vector of the jth modulation class
and n is the number of CNN models.

2.2.2. Unweighted majority vote

In this method, instead of averaging, the highest
probabilities of all CNN models is firstly taken at the
output. Then, they are voted by counting the majority
from all of the predicted labels and the final decision is
made afterward. The unweighted majority vote formula
is expressed as follows:

ŷij =

{

yij for yij = max(yi)
0 for yij 6= max(yi)

(2)

pj =
1

n

n
∑

i=1

ŷij (3)

where ŷij the highest probability value of the score
vector yij and n is the number of CNN models.

2.2.3. Weighted average

The weighted average method is implemented by
multiplying the different weighted values at the CNN
outputs, supposed that the sum of the weighted values
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is equal to one. The equation of the weighted average
method is given:

pj =
1

n

n
∑

i=1

αijyij (4)

where yij is the score vector of jth modulation class and
n is the number of CNN models.

3. Results

3.1. Dataset

In some previous works, the dataset with Gaussian
noise is often used for the automatic modulation classi-
fication, such as RadioML 2018 in [9]. Nevertheless, the
signals in practice are often affected by different types
of noise, especially multi-path fading channels. For that
reason, we use another dataset, namely HisarMod2019.1
in [10], in this research work for a more comprehensive
evaluation of the actual signal classifiers. The dataset
includes 26 modulation types from 5 different modu-
lation families: analogue modulations, frequency shift
keying (FSK) modulations, pulse amplitude modula-
tions (PAM), phase shift keying (PSK) modulations, and
quadrature-phase modulations (QAM). All modulation
types can be summarized as follows:

• Analog modulation: AM-DSB, AM-SC, AM-USB,
AM-LSB, FM, PM.

• FSK modulation: 2FSK, 4FSK, 8FSK, 16FSK.
• PAM modulation: 4PAM, 8PAM, 16PAM.
• PSK modulation: BPSK, QPSK, 8PSK, 16PSK,

32PSK, 64PSK.
• QAM modulation: 4QAM, 8QAM, 16QAM,

32QAM, 64QAM, 128QAM, 256QAM.

The dataset provides wireless signals under ideal,
static, Rayleigh, Rician with k = 3 and Nakagami-m
with m = 2 channel conditions. Channels that have
additive white Gaussian noise (AWGN) only are called
ideal channels. For a static channel, its coefficients are
set randomly at the beginning and remain unchanged
during the propagation time. In Rayleigh fading chan-
nel, there are reflected, scattered, and diffracted compo-
nents of the incoming signal at the receiver without line-
of-sight signal. In contrast, for Rayleigh fading channel,
the distribution is Rice with shape parameter of k = 3
including the light of sight signal to the receiver. Fur-
thermore, the distribution of received power is selected
as Nakagami–m with a shape parameter of m = 2.
As a result, all of the signals in the dataset are set up
with different fading models. Therefore, more realistic
channel conditions can be learned by the DL-based
AMC methods. In the dataset, each modulation type
has 1500 signals of 1024×2 I/Q sample length. In total,
the dataset has 780,000 signals covering 26 modulation
types with the signal to noise ratios from -20 dB to +18
dB, steps of 2 dB. The dataset is divided into 520,00
signals (occupy 80%) for training and the rest (20%)
for testing. The input data to the model is an I/Q data
array structure of size 1024 × 2. The AMC accuracy is
measured on the test dataset. The models are trained

with 10 epochs, a mini-batch size of 64, and an initial
learning rate of 0.001. The device used for the simulation
is a computer with a 3.70 GHz CPU, 2x16GB RAM, and
an NVIDIA GeForce RTX 3060ti GPU.

3.2. Network Performance Metrics

The performance metrics, including Precision, Re-
call, F1-Score, and Accuracy, are used to evaluate and
compare different models in this paper [18]. While Pre-
cision is the ratio of correct modulation classification
of a class to the total number observations of that class,
Recall is the ratio of correct classification of a class to the
all observations in actual class. F1-Score is the weighted
average of Precision and Recall. Accuracy is the most
intuitive performance measure of deep neural networks
and it is a ratio of correct modulation prediction to the
total observations. These metric parameters are com-
puted as follows:

Accuracy = TP+TN
TP+TN+FP+FN

Precision = TP
TP+FP

Recall = TP
TP+FN

F1− score = 2×Precision×Recall
Precision+Recall

(5)

where TP is the True Positive, FP is the False Positive,
TN is the True Negative, and FN is the False Negative.

3.3. Discussion of Results

3.3.1. Comparison between different CNN models
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Fig. 5: Comparison of the classification accuracy of different single
CNN models.

In this section, we use Matlab as a simulation tool
to evaluate the effectiveness of ResNet18, SqueezeNet,
MobileNet, GoogleNet, and RepVGG networks. The
comparison result in terms of AMC accuracy of the
different models is shown in Fig. 5, where we observe
that the GoogleNet model obtains the lowest accuracy.
Its highest accuracy is only 56.76% at +18 dB SNR.
Two models MobileNet and RepVGG gain significantly
higher accuracy than GoogleNet by about 10% and 15%
for SNR from -20 dB to +18 dB, respectively. ResNet
and SqueezeNet achieve very good modulation clas-
sification accuracy for the high SNRs from +2 dB to
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+18 dB. Especially, the SqueezeNet model yields the
highest correct modulation classification rate compared
to other models, specifically 97.5% for SNR ≥ +8 dB.

3.3.2. Analysis of ensemble models and their comparison
with single models

From the evaluation results of single models, we
propose to combine the models to improve the mod-
ulation classification accuracy. Accordingly, we com-
bine the considered models to build the following
ensemble models: EnCNN5 (combined by ResNet18,
SqueezeNet, GoogleNet, MobileNetV2, and RepVGG),
EnCNN3 (combined by ResNet18, SqueezeNet, and
RepVGG), and EnCNN2 (combined by RepVGG and
SqueezeNet). These ensemble models aim to improve
modulation classification accuracy, especially at the low
SNRs from -20 dB to +2 dB.
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Fig. 6: Accuracy of different ensemble and single models.
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Fig. 7: F1-score of different ensemble and single models.

Experimental results in Fig. 6 show that the three
ensemble methods can increase the AMC accuracy.
Specifically, four models EnCNN5, EnCNN2 (using un-
weighted average), EnCNN3w, and EnCNN2w (using
weighted average) obtain higher accuracy than single
individual ones at SNR from -20 dB to +18 dB. With
SNRs from -20 dB to +2 dB, the ensemble models signif-
icantly outperform the ResNet18 and RepVGG models
about 10% and 4% accuracy, respectively. With the high
SNRs, the ensemble models gain about 20% higher ac-
curacy than RepVGG, and 8% higher than SqueezeNet
for SNRs from +2 dB to +8 dB. From the combination of
CNN models, we find that the model that combines the

SqueezeNet, ResNet18 and RepVGG using the weighted
average method yields the highest AMC accuracy com-
pared to other considered ones. Specifically, its accuracy
is achieved 52.2% at SNR = -20 dB and 99% at SNR =
+18 dB.
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Fig. 8: Precision of different ensemble and single models.
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Fig. 9: Performance of ensemble models with different lengths of
signal.

Besides comparing the average accuracy, we also
use the F1-score and Accuracy to measure the model
performance. The results in Fig. 7 and Fig. 8 indicate
that the EnCNN3w model has the highest overall micro-
averaged F1-scores and Precision. This result is reason-
able because the SqueezeNet, ResNet18 and RepVGG
models have remarkably better performance than other
considered ones. Fig. 6, Fig. 7, and Fig. 8, show that the
ensemble models improve the signal classification accu-
racy significantly, especially at the low SNR segment.
Specifically, the accuracy yield 51.2% at -20 dB SNR and
over 75% for SNR ≥ -2 dB. Meanwhile, the single mod-
els provide lower modulation accuracy than the ensem-
ble ones, as shown in Fig. 5. Concretely, the RepVGG
model provide only 49% correct modulation classifica-
tion at SNR = -20 dB; and the SqueezeNet model obtain
only 68% accuracy at SNR = -2 dB. The classification
results of the single models indicate that SqueezeNet
and RepVGG have higher signal classification accuracy
at low SNR than other ones, in which RepVGG is the
highest. In contrast, ResNet and SqueezeNet achieve the
highest correct classification probability at high SNRs.
The above evaluation reveals that the ensemble learning
method can help improving the classification perfor-
mance in terms of accuracy.
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(a) ResNet
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(b) SqueezeNet
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(c) MobileNet
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(d) GoogleNet

1
2

8
Q

A
M

1
6

F
S

K
1

6
P

A
M

1
6

P
S

K
1

6
Q

A
M

2
5

6
Q

A
M

2
F

S
K

3
2

P
S

K
3

2
Q

A
M

4
F

S
K

4
P

A
M

4
Q

A
M

6
4

P
S

K
6

4
Q

A
M

8
F

S
K

8
P

A
M

8
P

S
K

8
Q

A
M

A
M

-D
S

B
A

M
-D

S
B

-S
C

A
M

-L
S

B
A

M
-U

S
B

B
P

S
K

F
M

P
M

Q
P

S
K

Predicted Class

128QAM
16FSK

16PAM
16PSK

16QAM
256QAM

2FSK
32PSK

32QAM
4FSK

4PAM
4QAM
64PSK

64QAM
8FSK

8PAM
8PSK

8QAM
AM-DSB

AM-DSB-SC
AM-LSB
AM-USB

BPSK
FM
PM

QPSK

T
ru

e
 C

la
ss

(e) RepVGG

1
2

8
Q

A
M

1
6

F
S

K

1
6

P
A

M

1
6

P
S

K

1
6

Q
A

M

2
5

6
Q

A
M

2
F

S
K

3
2

P
S

K

3
2

Q
A

M

4
F

S
K

4
P

A
M

4
Q

A
M

6
4

P
S

K

6
4

Q
A

M

8
F

S
K

8
P

A
M

8
P

S
K

8
Q

A
M

A
M

-D
S

B

A
M

-D
S

B
-S

C

A
M

-L
S

B

A
M

-U
S

B

B
P

S
K

F
M

P
M

Q
P

S
K

Predicted Class

128QAM
16FSK

16PAM
16PSK

16QAM
256QAM

2FSK
32PSK

32QAM
4FSK

4PAM
4QAM
64PSK

64QAM
8FSK

8PAM
8PSK

8QAM
AM-DSB

AM-DSB-SC
AM-LSB
AM-USB

BPSK
FM
PM

QPSK

T
ru

e
 C

la
ss

(f) EnCNN5

1
2
8
Q

A
M

1
6
F

S
K

1
6
P

A
M

1
6
P

S
K

1
6
Q

A
M

2
5
6
Q

A
M

2
F

S
K

3
2
P

S
K

3
2
Q

A
M

4
F

S
K

4
P

A
M

4
Q

A
M

6
4
P

S
K

6
4
Q

A
M

8
F

S
K

8
P

A
M

8
P

S
K

8
Q

A
M

A
M

-D
S

B

A
M

-D
S

B
-S

C

A
M

-L
S

B

A
M

-U
S

B

B
P

S
K

F
M

P
M

Q
P

S
K

Predicted Class

128QAM
16FSK

16PAM
16PSK

16QAM
256QAM

2FSK
32PSK

32QAM
4FSK

4PAM
4QAM
64PSK

64QAM
8FSK

8PAM
8PSK

8QAM
AM-DSB

AM-DSB-SC
AM-LSB
AM-USB

BPSK
FM
PM

QPSK

T
ru

e
 C

la
ss

(g) EnCNN3W

1
2

8
Q

A
M

1
6

F
S

K
1

6
P

A
M

1
6

P
S

K
1

6
Q

A
M

2
5

6
Q

A
M

2
F

S
K

3
2

P
S

K
3

2
Q

A
M

4
F

S
K

4
P

A
M

4
Q

A
M

6
4

P
S

K
6

4
Q

A
M

8
F

S
K

8
P

A
M

8
P

S
K

8
Q

A
M

A
M

-D
S

B
A

M
-D

S
B

-S
C

A
M

-L
S

B
A

M
-U

S
B

B
P

S
K

F
M

P
M

Q
P

S
K

Predicted Class

128QAM
16FSK

16PAM
16PSK

16QAM
256QAM

2FSK
32PSK

32QAM
4FSK

4PAM
4QAM
64PSK

64QAM
8FSK

8PAM
8PSK

8QAM
AM-DSB

AM-DSB-SC
AM-LSB
AM-USB

BPSK
FM
PM

QPSK

T
ru

e
 C

la
ss

(h) EnCNN2

1
2

8
Q

A
M

1
6

F
S

K
1

6
P

A
M

1
6

P
S

K
1

6
Q

A
M

2
5

6
Q

A
M

2
F

S
K

3
2

P
S

K
3

2
Q

A
M

4
F

S
K

4
P

A
M

4
Q

A
M

6
4

P
S

K
6

4
Q

A
M

8
F

S
K

8
P

A
M

8
P

S
K

8
Q

A
M

A
M

-D
S

B
A

M
-D

S
B

-S
C

A
M

-L
S

B
A

M
-U

S
B

B
P

S
K

F
M

P
M

Q
P

S
K

Predicted Class

128QAM
16FSK

16PAM
16PSK

16QAM
256QAM

2FSK
32PSK

32QAM
4FSK

4PAM
4QAM
64PSK

64QAM
8FSK

8PAM
8PSK

8QAM
AM-DSB

AM-DSB-SC
AM-LSB
AM-USB

BPSK
FM
PM

QPSK

T
ru

e
 C

la
ss

(i) EnCNN2W

Fig. 10: Matrix confusion different single models at the SNR of +10 dB.

TABLE 1: Computational speed.

Model Time (ms)
EnCNN5 3.22
EnCNN3w 2.15
EnCNN2 0.62
EnCNN2w 0.62

Accordingly, this paper compares different models
through computational speed as shown in Table 1. Here,
it can be seen that the EnCNN5 model has the most
significant number of parameters include five models,
so it also has an enormous processing time (3.22 ms).
Meanwhile, the EnCNN2 and EnCNN2w models have

the same number of parameters and fastest processing
time (0.62 ms) because they only use two models to
combine.

In the next simulation, we build three types of
ensemble model, including EnCNN3w, EnCNN2, and
EnCNN2w, from the aforementioned CNN models to
analyze the performance of these three ensemble models
with varying signal lengths, such as 128, 256, 512, and
1024. The results in Fig. 9 show that changing the
signal length at the input of the models causes the
significant change of the signal classification accuracy.
When the signal length is 1024, we can see that the
ensemble models have similar accuracy and are not
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significantly different. However, as the input length
signal is reduced, the classification accuracy gap of the
three EnCNN3, EnCNN2, EnCNN2w models changes
significantly. Specifically, the signal length is 128, 256,
and 512, the EnCNNw model always has the highest ac-
curacy and is higher than the other two models by 28%,
22%, and 12%, respectively. It can be concluded that the
longer the signal is, the more representative information
for individual modulation is extracted. Consequently,
the higher modulation classification accuracy can be
obtained. Specifically, the models with length 1024 give
the highest classification accuracy, whereas the models
with length 128 give the lowest classification accuracy.

In addition, confusion matrices of 26 modulations
of the single models and ensemble models at the SNR
of +10 dB are shown in Fig. 10. From the confusion
matrices, it can be seen that some lower-order modu-
lation types, such as AM and FM have less confusing
classification results, specifically more than 85% and
99% accuracy at +10 dB SNR for the single modes and
ensemble models. With higher-order modulations, such
as PSK and QAM, the accuracy of single models is
less than 70% at +10 dB SNR; meanwhile, ensemble
models have an accuracy of around 95.4%. It can be seen
that although the high-order modulated signals give
faster transmission speed, they cannot used for the far
distance of communication because the AMC accuracy
is quite low. Still, the modulation classification changes
a lot as the error rate increases because the signal con-
stellation distribution is close together. When affected
by noise, the modulation classification efficiency will be
degraded. Therefore, the combination of single models
has significantly improved the signal classification accu-
racy, especially for high-order modulation signals such
as PSK or QAM.

4. Conclusion

This paper has demonstrated that the ensemble deep
learning approach can help to improve the accuracy
of modulation classification. Specifically, we have an-
alyzed three types of ensemble methods and compared
them with each other and with other single models. Sim-
ulation results indicate that the ensemble models have
remarkably outperformed the single ones, especially for
the low SNR values. In addition, the weighted ensemble
provided better performance in terms of accuracy than
unweighted one. In the future work, we will develop
the ensemble method for lightweight models, which can
ensure a high speed and a high AMC accuracy. More-
over, the experimental measurements will be performed
to verify the proposed method.
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