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Using a Bi-Level Optimization Model for
Assessing the Impact of Demand Forecast

Uncertainty on the Maximum Profit of Power
Distribution Companies Owning Energy

Storage Systems
Dang Vu Kien, Le Thi Minh Chau, Pham Quang Phuong, Pham Nang Van*

Abstract—This paper proposes a bi-level optimization model to maximize the net revenue of a power distribution company

owning energy storage systems. Furthermore, the proposed model also takes into account the uncertainty of load forecast

based on a set of multiple scenarios in order to assess its impact on the maximum net revenue of the power distribution

company. This bi-level optimization model is transformed into the single-level mixed-integer linear programming model by using

the Karush-Kuhn-Tucker optimality conditions and strong duality theorem. This single-level optimization formulation can be

effectively solved by using standard commercial solvers such as CPLEX. The proposed model and the effects of the load

forecast uncertainty on the net revenue of the power distribution company are validated and analyzed on an IEEE 24-bus

meshed transmission grid.

Index Terms—Bi-level optimization; energy storage systems; the demand forecast uncertainty; power distribution companies;

electricity markets.

✦

1. Introduction

W ITH renewables increasingly integrated into
power networks, there is a growing need for

enhancing operational flexibility. One of the solutions
to achieve this demand is to deploy energy storage (ES)
systems due to their capability of storing and releasing
electricity energy [1]. There are numerous contributions
devoted to the deployment of ES devices in power sys-
tems. Authors [2] addressed the problem of scheduling
ES systems using the mean-variance optimization, in
which the price uncertainty in day-ahead and balance
markets is taken into account. The strategy for optimally
bidding ES devices in power markets incorporating
battery cycle life and fast regulation capability was
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put forward in [3]. The method of robust optimization
was adopted in reference [4] to evaluate the scheduling
strategy of ES systems in energy markets combined with
ancillary service markets. In [5], the optimal operation
of synchronous generators and battery energy storage
in the energy market coupled with reserve markets
was proposed. The operation cost model of ES systems
taking account of degradation cost was introduced in
[6]. This paper will investigate the influence of the
utilization of ES devices on the net revenue or profit
of the power distribution company (PDC) in the energy
markets.

The power distribution company purchases electric-
ity from the wholesale markets and sells it to customers
at retail prices. Conventionally, the PDC forecasts the
electricity consumed and the spot price at the wholesale
electricity markets and uses them as input parameters
in order to calculate the operation schedule of ES sys-
tems. This means that, initially, the PDC forecasts those
parameters without the presence of ES devices. Then,
the power output of ES devices is determined based on
the forecasted spot price. Finally, the PDC calculates its
electricity bid for 24 hours of the day-ahead markets and
submits this to the market operator. However, because
the power output of ES devices changes the value of
the electricity bid, the actual spot price will be vastly
different from the forecasted value. This is due to the
fact that in the market-clearing process, the spot price is
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the result of the economic dispatch (ED) problem, which
takes the electricity bid as an input. Consequently, the
value of the output power of ES systems may not help
the PDC to achieve maximum revenue.

One way to resolve this problem is to recalculate the
spot price after the first set of power output values of ES
systems is achieved by solving the ED problem (mim-
icking the market-clearing process of market operators).
With the new spot price, new values of the power out-
put of ES devices are also obtained. The process is iter-
ated until it reaches a predefined tolerance. This method
is usually time-consuming and ineffective. Therefore,
this paper proposes a bi-level optimization model for
the strategic operation of ES devices to maximize the
net revenue of the PDC considering the uncertainty of
demand forecasting. Recently, there has been a variety
of works pertaining to the adoption of bi-level opti-
mization for energy storage in the technical literature.
Authors [7] coped with the problem of maximizing the
yearly revenue of the energy storage in the electricity
markets with considerable penetration of wind power.
The optimal placement and capacity of storage systems
constrained by recovering the investment cost were
addressed in [8]. The bidding strategy of ES systems in
the day-ahead markets was developed in [9]. Authors
[10] suggested a tool for a merchant owning energy
storage with the aim of making trading decisions in
the day-ahead and real-time markets. This research aims
at utilizing the bi-level optimization model to evaluate
the effects of the demand forecast uncertainty on the
maximum profit of the power distribution company
that possesses the energy storage devices. The main
contributions of this work encompass:

• Convert the bi-level optimization formulation
into the single-level mixed-integer linear pro-
gramming (MILP) model that can be effectively
solved by the standard commercial solvers;

• The impact of the demand forecast uncertainty
on the PDC’s maximum profit is analyzed and
compared.

2. Bi-level optimization formulation

In the day-ahead market, the PDC, as a retailer,
purchases electricity from the market at spot price πi,t

for each bus i that it owns (set A) and for every period
t (hour). This spot price is the result of the market-
clearing process based on the economic dispatch (ED)
problem, which is implemented by the market operator.
Then, the PDC sells the electricity to the customers at a
retail price ηi,t. For each hour, the electricity purchased
at each bus i is the amount bid in DA market (PDi,t) ,
while the electricity sold to the customers at each bus

i is the forecast demand of PDC
(

P 0
Di,t

)

. Thus, the net

revenue (profit) of a PDC is

Rn =
24
∑

t=1

[

∑

i∈A

(

ηi,t × P 0
Di,t − πi,t × PDi,t

)

]

(1)

Without ES systems, the electricity bid PDi,t should
be equal to the forecasted demand P 0

Di,t. If the PDC

decides to install some ES devices at some of its buses
and these devices are regarded as power sources, the
electricity bids at ES buses can be calculated as

PDi,t = P 0
Di,t − Si,t, ∀i ∈ SC (2)

where, Si,t is the power output of ES devices on bus i at
time t, and SC is the set of buses where ES devices are
installed. Then, the net revenue of a PDC installing ES
systems can be expressed as

Rn =
24
∑

t=1

[

∑

i∈A

(ηi,t − πi,t)× P 0
Di,t +

∑

i∈SC

πi,t × Si,t

]

(3)

By adjusting the power output of ES devices (con-
sisting of discharging power P d

Si,t and charging power
P c
Si,t), the PDC can change its net revenue and ulti-

mately maximize the net revenue. Therefore, the calcu-
lation of PDC’s profit becomes an optimization problem
with the installation of ES devices. In other words, the
PDC must schedule the operation of ES systems in order
to obtain maximum profit.

In this paper, two optimization problems are solved
simultaneously, namely: maximizing the PDC’s net rev-
enue as the upper-level optimization problem and; mar-
ket clearing as the lower-level one. The diagram of
the bi-level optimization model is depicted in Figure 1.
From Figure 1, the spot price is obtained as the result
of the lower-level optimization problem and used as
input for the upper-level one. Furthermore, ES systems’
power output is the result of the upper-level problem
and is also used as input for the lower-level problem.

Upper-level: maximizing the PDC’s revenue

Lower-level: market-clearing

Si,t
πi,t

Fig. 1: The bi-level optimization model

The bi-level optimization model shown in Figure
1 can be expanded to integrate the uncertainty of the
demand forecast. It is assumed that the uncertainty of
load is described by a set of multiple scenarios (s=1 S)
with a probability set of ps. The load is assumed to
follow the Gaussian distribution N(u, σ). As such, for
each scenario s of the load P

0,s
Di,t, a market-clearing

problem must be solved, making the total number of the
lower-level problems to be S. Then, the PDC’s expected
revenue is calculated across all scenarios. This means
that in this new bi-level model, there are one upper-
level problem and S lower-level ones, which is sketched
in Figure 2.
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Fig. 2: The bi-level optimization model integrating load uncer-
tainty

2.1. Upper-level optimization formulation

In the upper-level problem, the objective is to max-
imize the PDC’s expected revenue, constrained by the
technical specifications of the ES devices.

maximize

{

Rn =
S
∑

s=1

ps ×

24
∑

t=1

[

∑

i∈A

(

ηi,t × P
0,s
Di,t

−πs
i,t × P

0,s
Di,t

)]

+
∑

i∈SC

πs
i,t × Ss

i,t

} (4)

s.t. P s
Di,t = P

0,s
Di,t − Ss

i,t, ∀i ∈ SC (5)

Ss
i,t = P

d,s
Si,t − P

c,s
Si,t (6)

(

Emin
i − Ei0

)

≤

t
∑

τ=1

(

ςcP
c,s
Si,τ −

1

ςd
P

d,s
Si,τ

)

(7)

t
∑

τ=1

(

ςcP
c,s
Si,τ −

1

ςd
P

d,s
Si,τ

)

≤ (Emax
i − Ei0), (8)

∀i ∈ SC, t = 1, . . . , 24, s = 1, . . . , S

0 ≤ P
c,s
Si,t ≤ P

c(max)
Si α

c,s
i,t (9)

0 ≤ P
d,s
Si,t ≤ P

d(max)
Si α

d,s
i,t (10)

α
c,s
i,t + α

d,s
i,t ≤ 1 (11)

where Emax
i and Emin

i are maximum and minimum

energy of the ES device at bus i, respectively; P
c(max)
Si

and P
d(max)
Si are the maximum charging/discharging

power of the ES device at bus i; Ei0 is the the initial
state of ES device at node i; ςc and ςd are charging and

discharging effiency of ES, respectively; αc,s
i,t and α

d,s
i,t

denote binary variables.
Equation (4) is the objective function of the upper-

level problem, which is to maximize the expected net
revenue of the PDC across all scenarios. Mathemati-
cal expressions (5) are the demand bid at ES buses.
Statements (6) are the power output of the ES at bus
i, which is positive for discharging and negative for
charging. The energy of the ES system in hour t is
limited according to (7) and (8). Constraints (9) and
(10) are the limits of charging and discharging power,
respectively. Constraint (11) ensures that the ES cannot
discharge and charge at the same time (only one status
is allowed to be active at a specific time).

2.2. Lower-level optimization formulation for scenario s

Each lower-level problem is a market-clearing pro-
cess corresponding to scenario s of the load. The ob-
jective of the problem is to minimize the production
cost of conventional power plants while satisfying the
constraints of the power system (the ED problem). The
ED problem for scenario s is as follows:

minimize
24
∑

t=1

N
∑

i=1

ci,t × P s
Gi,t (12)

s.t.
N
∑

i=1

P s
Gi,t =

N
∑

i=1

P s
Di,t : λ

s
t (13)

− Limitl ≤

N
∑

i=1

GSFl−i ×
(

P s
Gi,t − P s

Di,t

)

≤ Limitl : µ
min,s
l,t , µ

max,s
l,t , ∀l = 1, 2, . . . ,M

(14)

Pmin
Gi ≤ P s

Gi,t ≤ Pmax
Gi : ωmin,s

i,t , ω
max,s
i,t (15)

RRmin
i ≤ P s

Gi,t+1 − P s
Gi,t ≤ RRmax

i : ξmin,s
i,t , ξ

max,s
i,t ,

(16)
∀i = 1, 2, . . . , N, ∀t = 1, 2, . . . , 24

where (12) is the objective function; (13) guarantees that
generation must meet demand at any given time; (14)
enforces the power flow on transmission lines to be
within upper and lower limits (power flow is expressed
as a function of the nodal power); (15) is the maximum
and minimum capacity of the power plant at bus i;
(16) is the ramp-rate limits of the power plant at bus
i. The variables on the right side of the colons are the
dual variables related to the corresponding equality or
inequality constraints on the left side of the colons.

2.3. Locational marginal price for scenario s

The spot price πi,t is the electricity price at each bus
which is calculated at the time of transaction. This nodal
price is called the locational marginal price (LMP) and
is one of the results of the ED problem. Mathematically,
the LMP is the partial derivative of the Lagrangian
function of the ED problem with respect to the nodal
demand. It can be formulated from the dual variables in
(13) and (14). The Lagrangian function and the LMP for
scenario s are expressed as follows.

L(x) =
24
∑

t=1

{

N
∑

i=1

ci,t × P s
Gi,t

− λs
t ×

[

N
∑

i=1

P s
Gi,t −

N
∑

i=1

P s
Di,t

]

−

M
∑

l=1

µ
max,s
l,t ×









Limitl

−

N
∑

i=1

GSFl−i ×
(

P s
Gi,t − P s

Di,t

)









−

M
∑

l=1

µ
min,s
l,t ×









Limitl

+
N
∑

i=1

GSFl−i ×
(

P s
Gi,t − P s

Di,t

)








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−

N
∑

i=1

[

ω
max,s
i,t ×

(

Pmax
Gi − P s

Gi,t

)

+ ω
min,s
i,t ×

(

P s
Gi,t − Pmin

Gi,t

)

]}

−

23
∑

t=1

N
∑

i=1

[

ξ
max,s
i,t ×

(

RRmax
i − P s

Gi,t+1 + P s
Gi,t

)

+ ξ
min,s
i,t ×

(

P s
Gi,t+1 − P s

Gi,t −RRmin
i

)

]

(17)

πs
i,t = λs

t +
M
∑

l=1

GSFl−i

(

µ
min,s
l,t − µ

max,s
l,t

)

, (18)

∀i = 1, 2, . . . , N, ∀t = 1, 2, . . . , 24

where (17) states the Lagrangian function of the ED
problem; (18) is the formulation of the LMP πs

i,t, which
consists of the system marginal price component and
the congestion component. The loss component of the
LMP is ignored since (12)-(16) utilize the DC power flow
model.

3. Single-level MPEC formulation

Currently, there is no direct method to solve a bi-
level optimization problem. Therefore, the bi-level prob-
lem must be transformed to be solvable. In the lower-
level problem, DC-Optimal Power Flow (DC-OPF) is
utilized. DC-OPF is a linear model; hence, there exists
only one solution to the lower-level problem, and the
solution must satisfy the Karush-Kuhn-Tucker (KKT)
optimality conditions. Then, the bi-level problem can
be transformed into a single-level MPEC (Mathematical
programming with equilibrium constraints) one by con-
verting the lower-level problem into its KKT conditions.
Eventually, the MPEC problem consists of the upper-
level problem and complementary constraints repre-
senting the lower-level one.

maximize (4) (19)

s.t. (5)− (11) (20)

ci,t = λs
t +

M
∑

l=1

GSFl−i(µ
min,s
l,t − µ

max,s
l,t )

+ ω
min,s
i,t − ω

max,s
i,t + ξ

max,s
i,t − ξ

min,s
i,t , ∀t = 1

(21)

ci,t = λs
t +

M
∑

l=1

GSFl−i(µ
min,s
l,t − µ

max,s
l,t ) + ω

min,s
i,t

− ω
max,s
i,t + ξ

max,s
i,t − ξ

min,s
i,t + ξ

min,s
i,t−1 − ξ

max,s
i,t−1 ,

∀t = 2, . . . , 23

(22)

ci,t = λs
t +

M
∑

l=1

GSFl−i(µ
min,s
l,t − µ

max,s
l,t )

+ ω
min,s
i,t − ω

max,s
i,t + ξ

min,s
i,t−1 − ξ

max,s
i,t−1 , ∀t = 24

(23)
N
∑

i=1

P s
Gi,t =

N
∑

i=1

P s
Di,t, ∀t = 1, . . . , 24 (24)

0 ≤ µ
min,s
l,t ⊥Limitl +

N
∑

i=1

GSFl−i ×
(

P s
Gi,t − P s

Di,t

)

≥ 0

(25)

0 ≤ µ
max,s
l,t ⊥Limitl−

N
∑

i=1

GSFl−i ×
(

P s
Gi,t − P s

Di,t

)

≥ 0

(26)

∀l = 1, . . .M, ∀t = 1, . . . , 24

0 ≤ ω
min,s
i,t ⊥P s

Gi,t − Pmin
Gi ≥ 0, ∀t = 1, . . . , 24 (27)

0 ≤ ω
max,s
i,t ⊥Pmax

Gi − P s
Gi,t ≥ 0, ∀t = 1, . . . , 24 (28)

0 ≤ ξ
min,s
i,t ⊥P s

Gi,t+1−P s
Gi,t−RRmin

i ≥ 0, ∀t = 1, . . . , 23
(29)

0 ≤ ξ
max,s
i,t ⊥RRmax

i −P s
Gi,t+1+P s

Gi,t ≥ 0, ∀t = 1, . . . , 23
(30)

∀s = 1, . . . S

where the perpendicular sign ⊥ represents a zero cross-
product of of the corresponding variables in vector
form.

4. MILP formulation

The non-linearity of the MPEC model (19)-(30) lies in
the product term πs

i,t×Ss
i,t in the objective function and

the complementary constraints (25)-(30). This makes it
difficult to find the solution using available commercial
software. However, the model can be transformed into
a MILP model, which is then easily solved. According
to the strong duality theory, the objective of the primal
problem is equal to that of the dual one [11]. Then, the
equality between the objective of the ED problem and
that of the corresponding dual one is expressed as

24
∑

t=1

[

λs
t ×

N
∑

i=1

P s
Di,t

+
M
∑

l=1

µ
max,s
l,t ×

(

−Limitl −

N
∑

i=1

GSFl−i × P s
Di,t

)

+
M
∑

l=1

µmin s
l,t ×

(

−Limitl +
N
∑

i=1

GSFl−i × P s
Di,t

)

+
N
∑

i=1

(

ωmin s
i,t × Pmin

Gi − ωmax s
i,t × Pmax

Gi

)

]

+
23
∑

t=1

N
∑

i=1

(

ξmin s
i,t ×RRmin

i

)

−

23
∑

t=1

N
∑

i=1

(

ξmax s
i,t ×RRmax

i

)

=
24
∑

t=1

N
∑

i=1

ci,t × P s
Gi,t

(31)
From the LMP expression in (18), the term πs

i,t × Ss
i,t in

(19) can be rewritten as

24
∑

t=1

[

λs
t ×

∑

i∈SC

Ss
i,t

+
M
∑

l=1

∑

i∈SC

GSFl−i

(

µ
min,s
l,t − µ

max,s
l,t

)

× Ss
i,t

]

=
24
∑

t=1

∑

i∈SC

πs
i,t × Ss

i,t

(32)



Dang Vu Kien et al.: BI-LEVEL OPTIMIZATION MODEL FOR POWER DISTRIBUTION COMPANY OWNING ESS 73

Replace the term P s
Di,t in (31) with the term in (5), then

substitute (32) into (31), equation (33) is obtained.

24
∑

t=1

∑

i=SC

πs
i,t × Ss

i,t =
24
∑

t=1











λs
t ×











∑

i∈SC

P
0,s
Di,t

+
∑

i/∈SC

P s
Di,t











+
M
∑

l=1

µ
max,s
l,t ×











− Limitl −
∑

i∈SC

GSFl−i × P
0,s
Di,t

−
∑

i/∈SC

GSFl−i × P s
Di,t











+
M
∑

l=1

µ
min,s
l,t ×











− Limitl +
∑

i∈SC

GSFl−i × P
0,s
Di,t

+
∑

i/∈SC

GSFl−i × P s
Di,t











+
N
∑

i=1

(

ω
min,s
i,t × Pmin

Gi − ω
max,s
i,t × Pmax

Gi

)

−

N
∑

i=1

ci,t × P s
G,t

]

+
23
∑

t=1

N
∑

i=1

(

ξ
min,s
i,t ×RRmin

i − ξ
max,s
i,t ×RRmax

i

)

(33)
Then, the objective function in (19) is converted to a
linear function in equation (34).

Rn =
S
∑

s=1

ps×



























24
∑

t=1















∑

i∈A

(

ηi,t − πs
i,t

)

× P
0,s
Di,t

+ λs
t ×





∑

i∈SC

P
0,s
Di,t +

∑

i/∈SC

P s
Di,t





+
M
∑

l=1

µ
max,s
l,t ×











− Limitl −
∑

i∈SC

GSFl−i × P
0,s
Di,t

−
∑

i/∈SC

GSFl−i × P s
Di,t











+
M
∑

l=1

µ
min,s
l,t ×











− Limitl +
∑

i∈SC

GSFl−i × P
0,s
Di,t

+
∑

i/∈SC

GSFl−i × P s
Di,t











+
N
∑

i=1

(

ω
min,s
i,t × Pmin

Gi − ω
max,s
i,t × Pmax

Gi

)

−

N
∑

i=1

ci,t × P s
Gi,t

]

+
23
∑

t=1

N
∑

i=1

(

ξ
min,s
i,t ×RRmin

i − ξ
max,s
i,t ×RRmax

i

)

}

(34)
Finally, the MPEC model is transformed into a MILP
model below.

maximize 34 (35)

s.t. (20)− (24) (36)

0 ≤ µ
min,s
l,t ≤ Mmin

µ ν
min,s
µ,l,t (37)

0 ≤ Limitl +
N
∑

i=1

GSFl−i

(

P s
Gi,t − P s

Di,t

)

Limitl +
N
∑

i=1

GSFl−i

(

P s
Gi,t

− P s
Di,t

)

≤ Mmin
µ

(

1− ν
min,s
µ,l,t

)

(38)

0 ≤ µ
max,s
l,t ≤ Mmax

µ ν
max,s
µ,l,t (39)

0 ≤ Limitl −

N
∑

i=1

GSFl−i

(

P s
Gi,t − P s

Di,t

)

Limitl−

N
∑

i=1

GSFl−i

(

P s
Gi,t

− P s
Di,t

)

≤ Mmax
µ

(

1− ν
max,s
µ,l,t

)

(40)

0 ≤ ω
min,s
i,t ≤ Mmin

ω ν
min,s
ω,i,t (41)

0 ≤ P s
Gi,t − Pmin

Gi ≤ Mmin
ω

(

1− ν
min,s
ω,i,t

)

(42)

0 ≤ ω
max,s
i,t ≤ Mmax

ω ν
max,s
ω,i,t (43)

0 ≤ Pmax
Gi − P s

Gi,t ≤ Mmax
ω

(

1− ν
max,s
ω,i,t

)

(44)

0 ≤ ξ
min,s
i,t ≤ Mmin

ξ ν
min,s
ξ,i,t (45)

0 ≤ P s
Gi,t+1−P s

Gi,t−RRmin
i ≤ Mmin

ξ

(

1− ν
min,s
ξ,i,t

)

(46)

0 ≤ ξ
max,s
i,t ≤ Mmax

ξ ν
max,s
ξ,i,t (47)

0 ≤ RRmax
i − P s

Gi,t+1 + P s
Gi,t ≤ Mmax

ξ

(

1− ν
max,s
ξ,i,t

)

(48)
where Mmin

µ , Mmax
µ , Mmin

ω , Mmax
ω , Mmin

ξ and Mmax
ξ

are sufficiently large constants [12] and ν
min,s
µ,l,t , νmax,s

µ,l,t ,

ν
min,s
ω,i,t ,νmax,s

ω,i,t ,νmin,s
ξ,i,t and ν

max,s
ξ,i,t are the auxiliary binary

variables. In this model, the retail price ηi,t is treated as
a constant.

5. Results and discussions

In this section, the proposed model is validated
using the IEEE 24-bus electrical system with some mod-
ifications [13]- [14]. The calculation results are imple-
mented using GAMS 25.1.3 software [15], and the MILP
model is solved using CPLEX solver.

System load profiles that correspond to this system
are shown in Fig. 3. In Fig. 3, the standard deviation σ

is 5% of mean load u corresponding to scenario 3 (s3).
A total of five scenarios are selected to denote the load
uncertainty. The load values of each scenario s1, s2, s3,
s4 and s5 are [u+2σ; u+σ; u; u−σ; u−2σ], respectively,
and the corresponding probabilities are [0.023; 0.135;
0.684; 0.135; 0.023]. The more load scenarios there are,
the more appropriate the probability of each scenario is.
However, more number of load scenarios mean more
computational time to solve the problem. Thus, it is im-
portant to choose the suitable number of load scenarios
to ensure the efficiency of the method.
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Fig. 3: System demand profile

The PDC provides electricity for demands at buses
4, 5, 6 and 8, and it installs an ES device with a capacity
of 50 MWh at bus 8. The parameter of the ES device
is shown in Table 1. The retail price ηi,t is set to 18
$/MWh.

TABLE 1: Parameters of ES device

E
(max)

(MWh)
E

(min)

(MWh)
E0

(MWh)
ςc ςd

P c(max)

(MW)
P d(max)

(MW)

45 5 10 0.9 0.9 15 15

Firstly, to assess the effectiveness of the proposed
model, the PDC’s revenue is compared among three
cases: the revenue without the ES device (base case);
the actual revenue (after considering the impact of ES’s
charging/discharging power) received by employing
the traditional model and; the revenue by employing
the bi-level model. The results are shown in Table 2.

TABLE 2: PDC’s revenue under different cases

Base case Traditional Bi-level

Revenue ($) 15050.9 16173.5 18983.6

The bi-level model yields a much higher revenue
than the traditional model. Specifically, the revenue of
the bi-level model exceeds that of the traditional model
by 17.4%. This is due to the fact that the traditional
model does not reassess the impact of the ES’s power
on the LMP, which eventually makes the model unable
to achieve the maximum revenue. On the other hand,
the bi-level model successfully takes into account the
correlation between ES’s power and the LMP, thereby
yielding a higher revenue. This is further confirmed by
examining the LMP at bus 8 and the ES’s power in each
model, as shown in Fig. 4 and Fig. 5.

It is evident that the ES device in the bi-level model
makes better choices in terms of determining when and
how much power to charge or discharge. At 1AM and
2AM when the LMPs are relatively low, the ES device in
the bi-level model charges more power than that in the
traditional model to later discharge at 4AM and 5AM,
reducing the LMPs at these hours. Meanwhile, the ES

device in the traditional model decides to charge about
13 MW at 4AM and 5AM, which increase the LMP
at these hours. Similarly, from 8PM to 12AM, the ES
device in the bi-level model makes smarter decisions to
charge and discharge, thus reducing the LMPs during
this period.

Fig. 4: LMPs at bus 8 in two cases

Fig. 5: ES’s power in two cases

Secondly, the impact of load uncertainty on the
PDC’s revenue must be considered. This is done by
changing the standard deviation σ and observing the
change in revenue. For this purpose, the standard de-
viation σ will take the following values: 0%, 2.5%, 5%,
7.5% and 10%. The results are summarized in Table 3.
It can be seen that the expected revenue is proportional
to the standard deviation, with the exception of 7.5%
standard deviation.

TABLE 3: Revenue with different standard deviation

σ 0% 2.5% 5% 7.5% 10%

Expected
revenue ($)

14610.3 15550.8 18983.6 18739.0 19514.4

In order to gain insight into this pattern, the LMPs
and energy of the ES device will be analyzed as well as
the five-scenario revenues for each standard deviation
value. The results are visualized in Fig. 6, Fig. 7 and
Fig. 8.
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Fig. 6: LMPs with different standard deviation values

Fig. 7: ES’s energy levels with different standard deviation values

Fig. 8: Revenues with different standard deviation values in five
scenarios

In Fig. 6, it can be seen that almost all the LMPs
of each hour tend to be inversely proportional to the
standard deviation σ. Furthermore, in Fig. 7, the ES’s
energy levels with different σ somewhat follow the
same pattern with little difference in values. This sug-
gests that the ES’s behaviour has less to do with the
relationship between σ and the expected value. Rather,
the change in load profile is the main factor influencing
the expected revenue. Indeed, when σ is greater than
0%, scenarios s1 and s2 become the high-load scenarios
while scenarios s4 and s5 become the low-load scenar-
ios. As σ increases, the revenues in s1 and s2 decrease,
whereas the revenues in s4 and s5 rise significantly. In
high-load scenarios, most generators with higher costs
must generate maximum power to meet the load, which
raises the LMP and ultimately reduces the PDC’s rev-

enue. Therefore, the ES device cannot reduce the LMP
considerably. Consequently, when σ = 10%, the revenue
in s1 falls to roughly -9500$, which indicates that the
LMP is higher than the retail price. On the contrary, in
low-load scenarios, the LMP is lower, making room for
the ES device to function more effectively. As a result,
the revenues in low-load scenarios skyrocket, with the
revenue in s5 reaching more than 19500$ when σ =
10%. Because the revenues in low-load scenarios are
remarkably higher than those in high-load scenarios,
the expected revenue goes up as the standard deviation
increases. However, if the load value equals the sum
of the minimum power of all generators, the LMP will
be at the lowest, and thus the ES device can no longer
reduce the LMP. This translates into the revenues in
low-load scenarios slowly increasing as the load profile
decreases.

Furthermore, by looking at Fig. 8, it is evident that
the objective function’s values (which are the revenues)
across all scenarios are not linear functions. Therefore,
if more load scenarios are added, the objective function
can be plotted more accurately. This along with a more
appropriate probability for each load scenario will yield
a better result for the problem.

6. Conclusion

A bi-level optimization model is proposed in this
paper. This model simultaneously optimizes an upper-
level problem and multiple weighted lower-level prob-
lems to obtain the optimal solution. By considering the
correlation between the LMP and the ES’s power out-
put, the proposed model is able to accurately maximize
the revenue of the power distribution company. More-
over, since the model integrates a set of load scenarios,
it can help the power distribution company carefully
assess its expected revenue and effectively schedule the
operation of energy storage systems. The validation of
the proposed model is executed using an IEEE 24-bus
meshed transmission grid.
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