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A B S T R A C T 

Rainfall dynamics play a vital role in tropical peatland by providing sufficient 

water to keep peat moist throughout the year. Therefore, information of 

rainfall data either historical or forecasting data has risen in recent decades 

especially for an alert system of fire. Here the Weather and Research 

Forecasting (WRF) model may act as a tool to provide forecasting weather 

data. This study aims to do parameterization on WRF parameters for 

peatland in Sumatra, and to perform bias correction on the WRF’s rainfall 

output with observed data. We performed stepwise calibration to choose 

the best five physical schemes of WRF for use in the study area. The output 

WRF’s rainfall was bias corrected by spatially observed rainfall data for 2019 
at day resolution. Our results showed the following schemes namely (i) Eta 

scheme for cloud microphysical parameters; (ii) GD scheme for cumulus 

cloud parameters, (iii) MYJ scheme for planetary boundary layer parameters; 

(iv) RRTM for longwave radiation; and (v) New Goddard schemes for 

shortwave radiation are best combination for being used to predict rainfall 

in maritime continent. The spatially interpolated observed rainfall with the 

Inverse Distance Weighting (IDW) was outperformed for calibration process 

of WRF’s rainfall as shown by statistical indicators used in this study. Further, 
the findings have contributed to advance knowledge of rainfall forecasting 

in maritime continent, particularly in providing data to support the 

development of fire danger rating system for Indonesian peatland. 
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INTRODUCTION 

Information on weather forecast has an 

important role in daily life and human activities, 

planning for infrastructure development, aviation, 

shipping, or other daily work activities. The weather 

variable that most concerned is rainfall because it 

typically has a high variability and it affects many 

sectors of human activities. Prolonged rainfall may lead 

to flood events (Ciric et al., 2017; Suciantini and Hidayat, 

2006; Surmaini et al., 2018), while the absent of rainfall 

for a long period will trigger drought associated wildfire 

in humid tropics (Taufik, 2010; Taufik et al., 2019). 

Understanding tropical rainfall characteristics remains 

research challenge (Tan et al., 2019) especially when 

deal with rainfall forecasting at daily resolution.  

There have been many approaches and methods 

that have been developed in recent decades to 

generate rainfall data. The most widely used methods 

are statistical based model and dynamic model. For 

statistical models, Markov chains and Fourier 

regression (Liu et al., 2020; D. Wang et al., 2020) were 

widely applied to generate rainfall data. On the other 

hand, Weather Research and Forecasting (WRF) model 

represents the dynamic one, which takes into account 
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various meteorological factors that can affect weather 

conditions (Powers et al., 2017; Yáñez-Morroni et al., 

2018). Regardless of the methods used, results of the 

rainfall generation and prediction, which represent 

actual measurement are more important as its high 

variability both on spatial and temporal scales. 

Therefore, improvement on the model prediction is 

necessary to obtain more accurate prediction results. 

In this research, we used the Weather and 

Research Forecasting (WRF) model for its application in 

tropical peatland. Fires are common phenomena 

during dry season in Indonesian peatlands (Taufik et al., 

2019, 2017), which has severe ecological and economic 

impacts (World Bank, 2016). This has raised society 

awareness on how to deal with recurrent fire events. For 

instance through development of forest fire danger 

rating systems (e.g. Sankey, 2018). The systems will 

provide an alert of fire danger level on daily basis; 

therefore, fire impacts will be reduced. However, 

information on future level of fire danger remains 

research concerns as it needs more data of weather 

forecasting onward. Here, WRF will play an important 

role to provide forecasting weather data until 16 days 

ahead. 

The use of WRF needs model parameterization 

to adapt local factors such as topography, land-use and 

climate. The parameterization emphasizes on the five 

model schemes of WRF namely Microphysical of cloud, 

Cumulus cloud, Planetary boundary layer, Long(Taufik, 

2010)wave and Shortwave radiation. Also, calibration 

process of the WRF products with observed data is still 

needed to obtain good results. In this research, we used 

WRF model to provide daily rainfall data for peatland 

region in Sumatra. The research area of interest 

includes peatlands in Riau, Jambi, and South Sumatera. 

The objective of this research are as follows: to do 

model parameterization for obtaining the most suitable 

WRF physical scheme for tropical regions, especially the 

Sumatra, and to perform a bias correction of WRF 

output with observation data. 

RESEARCH METHODS 

The process of obtaining forecasting weather 

data is started with the installation of the WRF 

Preprocessing System (WPS) and WRF program 

application. Several supported libraries that enable in 

the process of reading and processing several data 

formats, such as NetCDF, MPICH, zlib, libpng, and 

Jasper were required. These five libraries were used to 

read Global Forecasting System (GFS) input data and to 

process it based on specific location and time. WPS is a 

program application for determining the model 

domains and interpolating the terrestrial data (Figure 

1a).  

WPS are equipped with the ability to read 

geographic location areas, so that an area of interest in 

this research can be created using the domain concept. 

Determination of the area (domain) can be made in 

various resolutions and extents. GFS data that has 

spatial resolution of 0.5o x 0.5o was downscaled with 

WPS as needed, which can be set in the “namelist.wps”. 
In preparation for obtaining the rainfall forecast data, 

the GFS data was downscaled by two domains through 

the “geogrid.exe” program. Domain 1 (d01) with a 
spatial resolution of 15 km x 15 km, and domain 2 (d02) 

with a spatial resolution of 5 km x 5 km (Figure 1b). 

GFS data was read with “ungrib.exe” program 
and followed by the “metgrid.exe” program to 
horizontally interpolate from the extracted data. The 

output of the WPS model in the form of a met_em* file 

will be executed with the “real.exe” dan “wrf.exe” 
programs on the WRF model. In other words, WPS is 

run to prepare data based on the desire time and 

location for further prediction of weather parameters 

based on various scheme in WRF. 

After obtaining the met_em* file from the WPS 

program output, the process then continued to the 

WRF model. WRF is a model that runs two programs  

from the WPS model’s output, namely “real.exe”, which

 
Figure 1. WRF working system: (a) flowchart of the system, which combine two domains (nested); (b) the domains 

area used in this research.
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shows that the model is running the system from real 

case data in the atmosphere and the earth’s surface 
with physical weather parameters, and “wrf.exe”, which 

runs the parameter scheme “namelist.input” which is 
arranged according to the needs of the weather 

prediction. Figure 1a shows the WRF workflow with two 

domains (nested) according to the rainfall prediction 

model concept that is compiled. The output of the WRF 

model in the form of wrfout_d02 is converted into 

NetCDF format, which is then processed using R 

language to obtain rainfall data. The selection of the 

WRF model parameterization scheme is presented in 

Table 1. The configuration selection is based on trial 

and error to obtain the most accurate output for the 

area of interest in estimating rainfall variables. 

Parameterization of the WRF model 

The WRF is a model that performs the function 

of data processing by integrating various 

meteorological variables in the earth’s surface and 
atmosphere to run a physically weather model. For 

each physical parameter of the weather model, there 

are some of schema options that can be selected by the 

user to run the WRF. The choice of scheme for each 

weather parameter will determine the output of the 

forescating data of WRF. There are five physical 

parameters of the core weather parameters are used in 

the WRF model, namely cloud microphysical 

parameters, cumulus cloud (Cu), planetary boundary 

layer (PBL), longwave radiation and shortwave radiation. 

Cloud microphysical parameters, cumulus cloud (Cu), 

and planetary boundary layer are of primary 

importance for simulating precipitation and are likely 

to affect both spatial and temporal variability of the 

rainfall field (Nuijens and Siebesma, 2019; Zheng et al., 

2017). Order than that, longwave and shortwave 

radiation have a role to explain the albedo and cloud 

cover. These five physical parameters strongly influence 

to prediction of WRF model, especially rainfall data (Dai, 

2006). The process of parameterization of the WRF 

physical scheme was carried out by stepwise calibration 

method for each scheme for each parameter (Table 1). 

The parameterization process was carried out by 

fitting each scheme, which resulted in predicted rainfall 

data. The predicted data, then, was compared to that of 

the Climate Hazard Group InfraRed Precipitation with 

Station (CHIRPS), which acted as spatial observation 

data. CHIPRS rainfall data was used because it’s 
performance is proven worldwide to represent 

observed rainfall (e.g. Babaousmail et al., 2019; Chen et 

al., 2020; Jadmiko et al., 2019; Rivera et al., 2018). 

The performance of the physical parameter 

schemes WRF model was assessed statistically based 

on the value of the Mean Absolute Error (MAE) 

statistical indicator. The process was carried out in 

gradual process (a stepwise calibration) based on 

sequence of physical parameters in Table 1. If the 

smallest MAE is obtained from a schematic on cloud 

microphysical parameters, then the scheme was used in 

the WRF model to further estimate the cumulus cloud 

(Cu) parameter. This gradual process was carried out up 

to the parameterization of shortwave radiation.

Table 1. WRF model parameters and schema variations that used in the model parameterization. 

No Parameter Scheme 

1 Microphysical of cloud (mp_physics) Kessler Scheme 

WRF Single Moment 5-class Scheme 

Eta Scheme 

Thompson Scheme 

2 Cumulus cloud (Cu) Kain-Fritsch Scheme 

Grell-Freitas Ensemble Scheme 

Grell-Devenyi (GD) Ensemble Scheme 

3 Planetary Boundary Layer (bl_pbl_physics) Yonsei University Scheme (YSU) 

Mellor-Yamada-Janjic Scheme (MYJ) 

NCEP GFS Scheme 

4 Longwave radiation (ra_lw_physics) RRTM Scheme 

New Goddard Scheme 

Fu-Liou-Gu Scheme (FLG) 

5 Shortwave radiation (ra_sw_physics) Dudhia Scheme 

Goddard Scheme 

New Goddard Scheme 
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The assumption that used is the cloud 

microphysical parameter is the major parameter in 

influencing the rainfall variable, and the minor effect 

(from these five parameters) is given from shortwave 

radiation (Gunwani et al., 2021). This assumption is 

based on the results of a few studies showing that the 

cloud microphysical parameter, cumulus clouds, and 

planetary boundary layer (PBL) are the main (major) 

physical parameter factors in the WRF model that affect 

the output of the WRF model, especially for rainfall data 

(Mu et al., 2019). 

 

Bias Correction of WRF Rainfall Data 

Rainfall data from WRF model that has been 

parameterized, still needs to be corrected with field 

measurement data to complete the process of 

adjusting the WRF output data to local weather 

conditions. The rainfall data that used to do the bias 

correction to the WRF output data are rainfall data from 

airport stations are located around the area of interest 

provinces, namely Riau, Jambi, and South Sumatera. 

The bias correction process uses daily timeseries data 

for the period January – December 2019. The method 

for the process of bias correction is gamma quantile 

mapping that was introduced by Piani et al., (2010). The 

bias correction towards WRF rainfall data was carried 

out in spatial method. Field station observation data 

were interpolated into spatial using the Polygon 

Thiessen and Inverse Distance Weighting (IDW) 

methods, then analyzed to get the best method to use 

as a reference in bias correction. 

Polygon Thiessen Method 

Rainfall data from WRF output in the form of 

matrix data with a spatial resolution of 5km x 5km 

needs bias correction using field or observation 

measurement data. Field measurements are carried out 

at weather observation stations at certain coordinate 

locations, so that in order to be used as a basis for bias 

correction to the WRF output, it is necessary to carry 

out spatial interpolation of rainfall data. One of the 

methods of spatial interpolation of rainfall data is the 

Polygon Thiessen method. This method is also known 

as weighted average, because each rainfall observation 

station is mapped to determine the coverage area that 

is considered capable of being represented through 

data from each rainfall observation station whose area 

is in the form of a polygon (Figure 2). 

Inverse Distance Weighting (IDW) Method 

Another spatial interpolation method that used 

is IDW, which is a conventional interpolation method 

that calculates distance as a weight. The meaning of 

distance in this method is the length of the path from 

each data point to area that the value will be estimated. 

Through this simple concept, the closer distance 

between the points, the greater the weight, and vice 

versa. The area that is closer to the observation station 

will be more influenced by the rainfall value that 

recorded at that station. 

 
Figure 2. The result of Polygon Thiessen based on the airport weather station around Sumatera Island. Red circle 

shows the location of each weather station labelled by the WMO ID number.
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The IDW simple concept calculation is shown in 

Equation 1 (Sun et al., 2019). 𝑍0 = ∑𝑛𝑖=1  𝑍𝑖 1𝑑1𝑘∑𝑛𝑖=1  1𝑑1𝑘      (1) 

where 𝑍0  is the estimated value at point 0, 𝑍1 is the 

rainfall at the observation station, 𝑑1  is the distance 

between the station and the point where the rainfall 

data is to be known, k is the distance weight factor (the 

greater the value of k, the greater effect of the rainfall 

value from the nearest station), and n is the number of 

station points that used. 

 

Statistical Indicator that Used (Goodness-of-Fit) 

1. Mean Absolute Error (MAE) 

The process of parameterization of the WRF 

model scheme is determined based on the magnitude 

of the error value generated between the rainfall data 

from the WRF output and the observed rainfall data. 

The statistical indicator that used is Mean Absolute 

Error (MAE) which will show a better accuracy when the 

value of MAE is closer to 0. MAE is the average 

deviation between the model value and the observed 

value (Equation 2). MAE values that are less than or 

equal to half the standard deviation of the observed 

data can indicate that a model is acceptable (Phogat et 

al., 2016). 𝑀𝐴𝐸 = ∑𝑛𝑖=1 |𝑦𝑖−𝑥𝑖|𝑛     (2) 

where yi is the output data of the WRF model on day-i, 

xi is the observation measurement data on day-i, and n 

is the total length of the data. If in the process of 

parameterization of the WRF model scheme uses MAE 

statistical indicators, to evaluate the accuracy and 

performance of bias correction of the WRF model with 

observation data is using four statistical indicators, 

namely Nash-Sutclife Efficiency (NSE), Root Mean 

Square Error (RMSE), Percent bias (PBIAS), and Pearson 

correlation (r). 

 

2. Nash-Sutcliffe Efficiency (NSE) 

The NSE statistical indicator is a statistical 

method that calculates the relative value and residual 

variance compared to the variance of observational 

data (Tegegne et al., 2017). The NSE value ranges from 

-∞  to 1. The closer to 1, the smaller residual value, 

which means that the model output data is better and 

more acceptable. The NSE value can be calculated 

using Equation 3. 𝑁𝑆𝐸 = 1 − [ ∑𝑛𝑖=1 (𝑥𝑖−𝑦𝑖)2∑ (𝑥𝑖−𝑥𝑚𝑒𝑎𝑛)2]   (3) 

where xi is the observation data on day-i, yi is the WRF 

model data on day-i, and xmean is the average of the 

observed data. 

3. Root Mean Square Error (RMSE) 

RMSE is a statistical indicator that used to 

estimate the error value of the data model (Harwell, 

2019). The quality and accuracy of the model will be 

better if the error value is getting smaller which is 

indicated by the lower RMSE value. RMSE calculation is 

shown in Equation 4. 𝑅𝑀𝑆𝐸 =  √∑𝑛𝑖=1 (𝑥𝑖 − 𝑦𝑖)2   (4) 

4. Percent Bias (PBIAS) 

The PBIAS statistical indicator can be used to 

calculate the average trend of greater or lesser trends 

in the model data against the observational data. The 

less bias between the model and the observational data, 

which is indicated by a PBIAS value that is closer to zero. 

A positive value on PBIAS indicates an underestimate 

model, while a negative value in PBIAS indicates an 

overestimate model towards the observational data 

(Berhanu et al., 2016). The formula for calculating the 

PBIAS statistical indicator is shown in Equation 5. 𝑃𝐵𝐼𝐴𝑆 =  [∑𝑛𝑖=1 (𝑥𝑖−𝑦𝑖)×100∑𝑛𝑖=1 𝑥𝑖 ]   (5) 

5. Pearson Correlation (r) 

Correlation is a statistical indicator that obtained 

from the linier relationship between the model and the 

observational data. The positive value of the correlation 

indicates a unidirectional relationship between the 

model and the observation data. Vice versa, if the 

correlation is negative, it indicates a relationship that is 

not unidirectional or inverse between the model and 

observational data. The value of the Pearson 

Correlation is in the range of -1 to 1. The closer of 

correlation into 1 or -1, the correlation or relationship 

between the model and observations is getting 

stronger, while the closer to 0 the relationship is getting 

weaker. The calculation of the Pearson Correlation is 

shown in Equation 6. 

𝑟 =  √1 − (∑𝑛𝑖=1 (𝑥𝑖−𝑦𝑖)2∑𝑛𝑖=1 (𝑥𝑖−𝑦𝑖)2)    (6) 

 

RESULTS AND DISCUSSIONS 

The WRF model is a weather prediction model 

that can able to provide forecast information for the 

weather parameters for up to 16 days continuously on 

a global scale. The process in the WRF model uses 

various schemes in defining each parameter that can 

affect the weather forecast information. Of course, 

these various schemes need to be parameterized in 

order to obtain weather information that is in 

accordance with the actual conditions in the field. In 

addition, even though the WRF model has been 
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parameterized, each model must have errors and biases. 

Therefore, the output of the WRF model that has been 

parameterized needs bias correction. 

 

WRF Model Schematic Parameterization 

The process of a parameterization of the WRF 

model scheme is carried out using the stepwise 

calibration method with the assumption that cloud 

microphysical parameters area the parameters that 

have the greatest influence on the output of the WRF 

model, so the process starts from cloud microphysical 

parameters. Based on the parameterization results of 

the WRF model scheme carried out with CHIRPS data 

(Table 2), it can be seen that the rainfall MAE value for 

each input in the physical parameters varies greatly. In 

the microphysical cloud parameterization process, the 

MAE value ranges from 20.75 – 28.35 with the lowest 

MAE value in the Eta scheme, so the Eta scheme is 

selected I the WRF model configuration as a cloud 

microphysical parameter to further test the other 

parameters. Eta microphysical scheme is an efficient 

scheme with the diagnosis of cloud physical factor 

mixing process. The Eta scheme is also used in 

operational models at the National Centre for 

Environmental Prediction (NCEP). The second 

parameter is the cumulus cloud which have MAE values 

ranging from 18.91 - 30.19 after pairing it with the Eta 

scheme on cloud microphysical parameters. This range 

of values indicates as increase in the MAE value when 

the Eta scheme in the cloud microphysical parameters 

is paired with the Kain – Fritsch sheme in the cumulus 

cloud parameter. The lowest MAE value is obtained in 

the Grell - Devenyi (GD) scheme as a cumulus cloud 

parameter. The GD scheme is known as the ensemble 

GD scheme, because the scheme uses an ensemble 

member from 114 sub-grids to obtain a more accurate 

cumulus cloud parameterization scheme. 

The third parameter to be analyzed is Planetary 

Boundary Layer (PBL). From a total of 13 schemes that 

available in the WRF model, only three was selected to 

be used in this parameterization process. The selection 

of three schemes is based on a few of existing studies 

which state that three schemes is commonly used and 

have the best weather prediction concept for PBL 

parameter. The results of testing the combination of 

the two parameters that have been selected with each 

PBL scheme, obtained the lowest MAE in Mellor-

Yamada-Janjic (MYJ) scheme. This scheme is uses the 

concept of Turbulence Kinetic Energy (TKE) as input in 

PBL parameters. 

The combination of three parameters that have 

been selected for each scheme is used to determine the 

schematic of longwave and shortwave radiation 

parameters. For each wavelength, three schemes were 

selected which were considered to have strong linkages 

with the needs of weather prediction, especially in 

tropical regions. The RRTM scheme for longwave 

radiation parameters and the New Goddard scheme for 

shortwave radiation parameters reduces the MAE value 

by almost 50% (from 15.42 to 7.91). This combination is 

the final result in the process of determining the 

scheme for the five physical parameters in WRF model.

Table 2. WRF Model Configuration. 

No Parameter Schema MAE 

1 Cloud Microphysical 

(mp_physics) 

Kessler Scheme 25.66 

WRF Single Moment 5-class Scheme 28.35 

Eta Scheme 20.75 

Thompson Scheme 24.86 

2 Cumulus Cloud (Cu) Kain-Fritsch Scheme 30.19 

Grell-Freitas Ensemble Scheme 20.86 

Grell-Devenyi (GD) Ensemble Scheme 18.91 

3 Planetary Boundary Layer 

(bl_pbl_physics) 

Yonsei University Scheme (YSU) 22.17 

Mellor-Yamada-Janjic Scheme (MYJ) 15.42 

NCEP GFS Scheme 25.23 

4 Longwave Radiation 

(ra_lw_physics) 

RRTM Scheme 11.24 

New Goddard Scheme 15.98 

Fu-Liou-Gu Scheme (FLG) 19.22 

5 Shortwave Radiation 

(ra_sw_physics) 

Dudhia Scheme 8.64 

Goddard Scheme 8.48 

New Goddard Scheme 7.91 
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The Rapid Radiative Transfer Model (RRTM) scheme is 

an efficient scheme using look-up tables and multiple 

bands in describing longwave radiation. In addition, the 

New Goddard scheme is uses multiple bands and 

ozone for climatological data to represent shortwave 

radiation. 

Bias Correction of WRF’s Rainfall Output 

The evaluation of the WRF model output bias 

correction process was carried out by comparing the 

corrected rainfall model data with the spatial rainfall 

observational data. The statistical indicators that used 

were RMSE, PBIAS, NSE, and Pearson correlation (r). 

Before and after the bias correction process is displayed 

for each statistical indicator, so it can be seen clearly 

how different and change in each results of the bias 

correction process. The bias correction method that 

used is the daily rainfall bias correction of gamma 

quantile mapping which is available in the hyfo package 

in R software (Piani et al., 2010). 

Polygon Thiessen Method 

The process of bias correction of rainfall data 

from WRF output using the Polygon Thiessen method 

in conducting spatial interpolation of rainfall data from 

weather station measurements resulted an increasing 

performance significantly (Figure 3a). The value of the 

RMSE and PBIAS statistical indicators was significantly 

reduced, which indicates that the method eliminates 

errors and bias from the WRF rainfall data very well. The 

NSE indicator also shows that the bias correctios 

process using the Polygon Thiessen method has 

succeeded in deliver rainfall data have a good efficiency. 

For the Pearson correlation indicator (r), it doesn’t show 
a big change from before and after the bias correction 

process. 

IDW Method 

Bias correction of the output rainfall data from 

the WRF model using the IDW method in the spatial 

interpolation process of station observational data has 

statistical indicators that tend to be similar to the 

Polygon Thiessen method (Figure 3b). The bias 

correction process using the IDW method has 

succeeded in reducing the error and bias values 

significantly and the efficiency is getting better. But, 

likewise the Polygon Thiessen method, the Pearson 

correlation statistical indicator didn’t differ much 
between before and after the bias correction process. 

Therefore, in order to see the performance comparison 

between the Polygon Thiessen and IDW methods, the 

analysis was continued by comparing the two methods. 

 
Figure 3. The result of the WRF model bias correction statistical test with observation data interpolated by (a) Polygon 

Thiessen method, (b) Inverse Distance Weighting (IDW) method, and (c) the comparison between those two 

methods.  
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The performance comparison between the 

Polygon Thiessen and IDW methods (Figure 3c) shows 

that the error and bias of the IDW method are smaller 

than the Polygon Thiessen method. Likewise, the 

Pearson correlation indicator which shows that in Riau 

Province has a higher correlation in the IDW method. 

This can be expected to occur due to the IDW spatial 

interpolation process using a weighting system for 

station distance which makes the interpolation process 

better. Unlike the case with the Polygon Thiessen 

method, which divides the area into a few of areas and 

gives the same value to every pixel in one polygon area. 

This will certainly make the error bigger than IDW 

method. 

The process of the WRF rainfall bias correction 

using two interpolation methods from the 

observational data showed a fairly good performance 

based on the statistical indicators that used (Figure 3c). 

PBIAS values for bias correction using the IDW method 

generally range between ±5  which indicates “very 
good” (Table 3). Likewise, the RMSE statistical indicator, 
in general shows an error less than 5 mm. In contrast to 

the results shown by the Polygon Thiessen spatial 

interpolation method. PBIAS statistical indicator value 

is quite varied and high, even in the Sumatera Selatan 

province it reached more than 30. According to Moriasi 

et al. (2015), these results are in the “unsatisfactory” 
category. 

The process of bias correction on the WRF model 

output for rainfall parameters using observational data 

that interpolated using the IDW method, actually has 

been done before. Duethmann et al., (2013) conducted 

an evaluation of a WRF model with a spatial resolution 

of 12x12 km to estimate rainfall in the Karadarya, 

Central Asia which was corrected using the IDW 

method for observational data interpolation. The bias 

that resulted on this process was in the range of 3% to 

-5%. These results indicate that the IDW method is 

“very good” in correcting the bias of the WRF model 
(Moriasi et al., 2015). The IDW method in the research 

of Duethmann et al., (2013) was used because it also 

takes into account topographic factors. 

The rainfall forecast information from the output 

of the WRF model can be used for various purposes. 

The WRF model of rainfall information can be used 

directly as a continuous predictor of rainfall for the next 

16 days, or it can also be integrated for further 

purposes. One of them is to predict the occurrence of 

floods or forest and land fires. Prediction of flood 

events using the WRF model output has been carried 

out with an RMSE streamflow of 0.18 mm/jam (Sun et 

al. 2020). In addition to flood prediction, the output of 

the WRF model has also been applied to predict 

drought in forest and land fires. In Indonesia, the 

Meteorology, Climatology, and Geophysics Agency 

(BMKG) and the National Aeronautics and Space 

Agency (LAPAN) have applied rainfall information from 

the outputs of the WRF model to build models of 

potential forest and land fires. The drought model that 

used is the Fire Weather Index (FWI) by integrating 

rainfall information with air temperature, wind speed, 

and relative humidity. In addition, the Peatland and 

Mangrove Restoration Agency (BRGM) has 

collaborated with IPB University to build a peatland fire 

prediction model from the output of the WRF model 

using the modified Keetch – Byram Drought Index 

(mKBDI) developed by (Taufik and Narendratomo, 

2011; Taufik et al., 2015). 

Limitation of Model 

There are several limitations to this study. Firstly, 

the WRF output is at 5km x 5km resolution, and it was 

corrected and calibrated with limited point-based 

station data. The different resolution will usually result 

in generating large deviation output from the observed 

data. We performed bias correction procedure to 

decrease the error by using interpolated observed data. 

The use of IDW method for calibrating the rainfall of 

WRF was able to minimize the error (Figure 3). Our 

results show the error producing from bias correction 

was small (<5%), and this proves that our approach is 

still robust to tackle with limited observed data.  

Secondly, we performed a stepwise calibration to 

parameterize the WRF schemes. The calibration was 

chosen due to limitation on hardware resources and 

time constrain for computation process. Calibration of 

all WRF schemes and parameters in the same time will 

need robust high performance computing and it needs 

a more time for computation. The stepwise calibration 

was performed on step-by-step following the 

parameters that have the greatest influence (major 

factor) on the WRF output, in this case a rainfall. 

Table 3. Model performance categories based on statistical indicators. 

Categories PBIAS NSE 

Very good 𝑃𝐵𝐼𝐴𝑆 < ±5 𝑁𝑆𝐸 > 0.8 

Good ±5 ≤ 𝑃𝐵𝐼𝐴𝑆 ≤ ±10 0.7 ≤ 𝑁𝑆𝐸 ≤ 0.8 

Satisfactory ±10 ≤ 𝑃𝐵𝐼𝐴𝑆 ≤ ±15 0.5 ≤ 𝑁𝑆𝐸 ≤ 0.7 

Unsatisfactory 𝑃𝐵𝐼𝐴𝑆 ≥ ±15 𝑁𝑆𝐸 < 0.5 
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Previous studies revealed that the cloud 

microphysics, cumulus cloud, and Planetary Boundary 

Layer (PBL) were the most influential schemes (Febri et 

al., 2016; Lamraoui et al., 2019; Y. Wang et al., 2020). 

The results of parameterization confirmed a relative 

small error (MAE=7.91), and it led small bias in the WRF 

product for daily rainfall. Therefore, our approach is still 

acceptable to forecast daily rainfall in tropical region. 

Third, in this research we calibrated the daily 

rainfall for 2019 only. Normally longer observation data, 

which represent normal, dry and wet years, are required 

for better results (Mehan et al., 2017). A short period of 

rainfall data for calibration may disregard the influence 

of climate extremes and variability on the dynamics of 

daily rainfall. In addition, global climate phenomena 

such as ENSO plays a major role on the dynamics of 

daily rainfall in maritime continent of Indonesia (Chang 

et al., 2020; Kurniadi et al., 2021; Mulyaqin, 2020). Long-

term monitoring rainfall data particularly in peatland 

region will minimize the uncertainty in the calibrated 

parameters. Lastly, further work is necessary on long-

term calibration of the WRF parameters especially using 

local observed data. The research has contributed to 

the society by providing a robust scientific foundation 

for further research, especially for development of fire 

danger rating system for peatland. 

 

CONCLUSIONS 

The research has important findings related to 

the use of Weather and Research Forecasting (WRF) in 

maritime continent. We found a set combination of 

WRF schemes that results in low error of the prediction. 

The combination was composed of the Eta scheme for 

cloud microphysical parameters, the GD scheme for 

cumulus cloud parameters, the MYJ scheme for PBL 

parameters, and the RRTM and New Goddard schemes 

for longwave and shortwave radiation parameters. The 

WRF output, i.e. rainfall, still needs bias correction 

process with observed data in the field. We found that 

Inverse Distance Weighting (IDW) interpolation of daily 

rainfall was a better representation for the bias 

correction as shown by statistical indicators used in the 

study. 
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