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Abstract. Supercharacter theory is developed by P. Diaconis and I. M. Isaacs as

a natural generalization of the classical ordinary character theory. Some classical

sums of number theory appear as supercharacters which are obtained by the action

of certain subgroups of GLd(Zn) on Zd
n. In this paper we take Zd

p, p prime, and by

the action of certain subgroups of GLd(Zp) we find supercharacter table of Zd
p.
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1. Introduction

Let Irr(G) denote the set of all the irreducible complex characters of a finite
group G, and let Con(G) denote the set of all the conjugacy classes of G. The
identity element of G is denoted by 1 and the trivial character is denoted by 1G.
By definition a supercharacter theory for G is a pair (X ,K) where X and K are
partitions of Irr(G) and G respectively, |X | = |K|, {1} ∈ K, and for each X ∈ X
there is a character σX such that σX(x) = σX(y) for all x, y ∈ K, K ∈ K. We call
σX as supercharacter and each member of K superclass. We write Sup(G) for the
set of all the supercharacter theories of G.

Supercharacter theory of a finite group were defined by Diaconis and Isaacs
[3] as a general case of the ordinary character theory. In fact, in a supercharacter
theory, characters play the role of irreducible ordinary characters and union of
conjugacy classes play the role of conjugacy classes. In [3] it is shown that {1G} ∈ X
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and if X ∈ X then σX is a constant multiple of
∑

χ∈X

χ(1)χ, and that we may assume

that

σX =
∑

χ∈X

χ(1)χ.

For any finite group, there are two trivial supercharacter theories as follows.
In the first case, X =

⋃{χ}
χ∈Irr(G)

and K is the set of all conjugacy classes of G. In the

second case,

X = {1G} ∪ {Irr(G)− {1G}}
and K = {1} ∪ {G − {1}}. In the first case, supercharacters are just irreducible
characters and superclasses are conjugacy classes. In the second case, the non-trivial
supercharacter is ρG−1G, where ρG denotes the regular character of G. These two
supercharacter theories of G are denoted by m(G) and M(G) respectively.

It is mentioned in [6] that the set of supercharacter theories of a group form
a lattice in the following natural way. Sup(G) can be made to a poset by defining
(X ,K) ≤ (Y,L) if X ≤ Y in the sense that every part of X is a subset of some
part of Y. In [6] it is shown that this definition is equivalent to (X ,K) ≤ (Y,L) if
K ≤ L. By this definition, m(G) is the least and M(G) is the largest element of
Sup(G).

Among construction of supercharacter theories of a finite group G, the fol-
lowing is of great importance which is a lemma by Brauer on character tables of
groups. Let A be a subgroup of Aut(G) and

Irr(G) = {χ1 = 1G, . . . , χh}
Con(G) = {C1 = {1}, . . . , Ch}.

Suppose that for each α ∈ A, Ciα = Cj , 1 ≤ i ≤ h, and χi
α(g) = χi(g

α) for all
g ∈ G, α ∈ A. Then the number of conjugacy classes fixed by α equals the number
of irreducible characters fixed by α, and more over the number of orbits of A on
Con(G) equals the number of orbits of A on Irr(G), [4]. It is easy to see that
the orbits of A on Irr(G) and Con(G) yield a supercharacter theory for G. This
supercharacter theory of G is called automorphic. In [7] it is shown that all the
supercharacter theories of the cyclic group of order p, p prime, are automorphic.

Another aspect of the supercharacter theory of finite groups is to employ
the theory to the group Un(F ), the group of n × n unimodular upper triangular
matrices over the Galois field GF (pm), p prime. Computation of the conjugacy
classes and irreducible characters of Un(F ) is still open, but in [1] the author has
developed an applicable supercharacter theory for Un(F ). This result is reviewed
in [3].

2. Supercharacter table

Let G be a finite group and (X ,K) be a supercharacter theory for G. Suppose
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X = {X1, X2, . . . , Xh}
be a partition for Irr(G) with the corresponding supercharacter σi =

∑

χ∈Xi

χ(1)χ.

Let K = {K1,K2, . . . ,Kh} be the partition ofG into superclasses. In fact,K1 = {1}
and X1 = {1G} are union of conjugacy classes of G. The supercharacter table of
G corresponding to (X ,K) is the following h× h array:

Table I: Supercharacter table

K1 K2 · · · Kj · · · Kh

σ1 σ1(K1) σ1(K2) · · · σ1(Kj) · · · σ1(Kh)
σ2 σ2(K1) σ2(K2) · · · σ2(Kj) · · · σ2(Kh)
...

...
...

...
σi σi(K1) σi(K2) · · · σi(Kj) · · · σi(Kh)
...

...
...

...
σh σh(K1) σh(K2) · · · σh(Kj) · · · σh(Kh)

Let us set S = (σi(Kj))
h
i,j=1, and call it the supercharacter table of G.

Recall that a class function on G is a function f : G −→ C which is constant
on conjugacy classes of G. The set of all the class functions on G, Cf(G) has the
structure of a vector space over C with an orthonormal basis Irr(G) with respect
the inner product

〈f, g〉 = 1

|G|
∑

x∈G

f(x)g(x).

Since supercharacters are constant on superclasses, it is natural to call them super-
class functions. We have:

〈σi, σj〉 =
1

|G|

h
∑

k=1

|Kk|σi(Kk)σj(Kk)

But using the orthogonality of Irr(G) we also can write:

〈σi, σj〉 = 〈
∑

χ∈Xi

χ(1)χ,
∑

ϕ∈Xj

ϕ(1)ϕ〉 = δij
∑

χ∈Xi

χ(1)2

Therefore,

1

|G|

h
∑

k=1

|Kk|σi(Kk)σj(Kk) = δij
∑

χ∈Xi

χ(1)2.

If we set the matrix

U =
1

√

|G|





σi(Kj)
√

|Kj |
√

∑

χ∈Xi

χ(1)2





h

i,j=1

then wee see that U is a unitary matrix with the following properties, which are
proved in [2]. U = U t, U2 = P where P is a permutation matrix and U4 = I.
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In the course of studying the supercharacter theory of a group G, finding the
supercharacter table of G and the matrix U is of great importance. In this paper,
we will do this task for certain groups acting on certain sets.

3. Automorphic supercharacter table

In this section we follow the method used in [2] considering the group G = Z
d
n

which is abelian of order nd. The automorphism group of G is GLd(Zn), the group
of d × d invertible matrices with entries in Zn. We write elements of G as row
vectors y = (y1, . . . , yd) and let the action of GLd(Zn) on G be as follows:

yA = yA for A ∈ GLd(Zn).

Irreducible characters of G are of degree 1 and the number of them is equal

to |G|. For x ∈ G, let us define ψx : G −→ C
× , by ψx(ζ) = e

(x · ζ
n

)

, where e(t)

stands for e(t) = e2πit and x · ζ is the inner product of two elements x and ζ of
G as row vectors in G = Z

d
n. Therefore, Irr(G) = {ψx|x ∈ G} and the action of

GLd(Zn) on Irr(G) is as follows:

ψAx = ψxA−t where A ∈ GLd(Zn), x ∈ G.

Now let Γ be a symmetric subgroup of GLd(Zn), i. e. Γt = Γ. Then Γ acts
on G and on Irr(G) as above. Let X be the set of orbits of Γ on Irr(G) and
K be the set of orbits of GLd(Zn) on Irr(G). It is shown in [2] that (X ,K) is a
supercharacter theory of G. Following the notations used in [2] we identify ψx with
x and ψAx = ψxA−t = xA−t. Therefore, X is identified with the set of orbits of
GLd(Zn) on G, by x 7−→ xA−t, and K is identified with the orbits of the action of
GLd(Zn) on G by y 7−→ yA.

In [2] using different subgroups of GLd(Zn) the authors provide superchar-
acter tables for G. For example, the discrete Fourier transform in the case of
Γ = {1}, or Γ = {±1} a group of order 2 are obtain. The Gauss sum is obtained in
the case of G = Zp, p an odd prime, Γ = 〈g2〉 where g is a primitive root modulo
p. Kloosterman sum in the case G = Z

2
p, p an odd prime and

Γ =

{[

a 0
0 a−1

]

| 0 6= a ∈ Zp

}

.

Heilbronn sum, in the case of G = Z
2
p and Γ = {xp | 0 6= x ∈ Zp}. The Ramanujan

sum in the case of G = Zn and Γ = Z
×

n . It is worth mentioning that all the above
sum appear as supercharacters.

As a generalization of the group Γ in Kloosterman sum we let

Γ =

{[

a 0
0 b

]

| a, b ∈ Z
×

p

}

a group of order (p− 1)2.

Theorem 3.1. Under the action of Γ on Zp × Zp there are four supercharacter

and four superclasses.
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Proof. Here G = Zp × Zp and orbits of Γ on G are:

Y1 = {(0, 0)} of size 1

Y2 = (1, 0)Γ = {(a, 0) | a ∈ Z
×

p } of size p− 1

Y3 = (0, 1)Γ = {(0, b) | b ∈ Z
×

p } of size p− 1

Y4 = (1, 1)Γ = {(a, b) | a, b ∈ Z
×

p } of size (p− 1)2

Orbits of Γ on Irr(G) are as follows:

X1 = {(0, 0)} of size 1

X2 = (1, 0)Γ = {(a, 0) | a ∈ Z
×

p } of size p− 1

X3 = (0, 1)Γ = {(0, b) | b ∈ Z
×

p } of size p− 1

X4 = (1, 1)Γ = {(a, b) | a, b ∈ Z
×

p } of size (p− 1)2

Now we form the supercharacter table of G ∼= Zp × Zp. Let σi be the super-
character associated with Xi, with σ1 = 1.

We know σi =
∑

ψxi
∈Xi

ψxi
, and for y ∈ Yj , σi(y) =

∑

ψxi
∈Xi

ψxi
(y) =

∑

xi∈Xi

e
(xi · y

p

)

,

1 ≤ i ≤ 4. Therefore, the following table is calculated:

Table II: Supercharacter table of Zp × Zp

Zp × Zp Y1 Y2 Y3 Y4
superclass size 1 p− 1 p− 1 (p− 1)2

σ1 1 1 1 1
σ2 p− 1 −1 p− 1 −1
σ3 p− 1 p− 1 −1 −1
σ4 (p− 1)2 −(p− 1) −(p− 1) −(p− 1)

To find the unitary matrix U we use the formula written down in section 2
to obtain the 4× 4 matrix U as follows:

U =
1

p









1
√
p− 1

√
p− 1 p− 1√

p− 1 −1 p− 1 −√
p− 1√

p− 1 p− 1 −1 −√
p− 1

p− 1 −√
p− 1 −√

p− 1 1









�

At this point it is convenient to consider the general case of G = Z
d
p,

Γ =















































a1
a2 0

. . .

0
. . .

ad

















| ai ∈ Z
×

p































the diagonal subgroup of order (p− 1)d of GLd(Zp).
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Theorem 3.2. Under the action of Γ on Z
d
p there are 2d supercharacters and

superclasses.

Proof. Orbits of Γ on G are as follows:
Y1 = {(0, 0, . . . , 0)} is one orbit. Let y(k) = (1k, 0d−k) be a vector of G with k

one’s in different positions. Then y(k)Γ consists of vectors with non-zero entries in
exactly k different positions. Therefore the orbit y(k) has size (p− 1)k. Since this

k positions is taken out of d positions, we have

(

d

k

)

orbits of this shapes each of

size (p − 1)k. Hence we have
d
∑

k=0

(

d

k

)

= 2d orbits of Γ on G. Each orbit has size

(p− 1)k. Since

d
∑

k=0

(

d

k

)

(p− 1)k = pd = |G|,

then all the orbits are counted.

Orbits of Γ on Irr(G) have the same setting as above. In this case if ψx is a
representative of the orbit X of Γ on Irr(G), then we may assume

x = x(l) = (1l, 0d−l)

is a vector with l ones in different positions, hence:

σX(y) =
∑

x∈X

ψx(y) =
∑

x∈X

e
(x · y

p

)

and it is computable if the inner product x · y is known.

4. J-Symmetric groups

Let G = Z
d
n and Γ be a subgroup of GLd(Zn). By [2] we have to assume that

Γ is symmetric, i.e. Γ = Γt, in order to conclude that the action of Γ on G and on
Irr(G) generate the same orbits. Most of the results on supercharacter theory of G
holds if we assume Γ is J-Symmetric. Suppose there is a fixed symmetric invertible
matrix J ∈ GLd(Zn) such that JΓ = ΓtJ . As before the action of Γ on G is by
y 7−→ yA and by identifying ψx ∈ Irr(G) with x, the action of Γ on Irr(G) is by
x 7−→ xA−t for A ∈ Γ.

If (X ,Y) is the supercharacter theory obtained in this way, then we set

X = {X1, X2, . . . , Xh}
Y = {Y1, Y2, . . . , Yh}

and σi = σXi
, 1 ≤ i ≤ r, the unitary matrix U is replaced by

U =
1√
nd

[

σi(Yj)
√

|Yj |
√

|Xi|

]h

i,j=1

.

In this section we consider G = Z
3
p, p a prime, and
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J =





0 0 1
0 1 0
1 0 0





Γ =











a b c

0 d b

0 0 a



 | a, b ∈ Z
×

p , b, c ∈ Zp







is a subgroup of GL3(Zp) of order p
2(p− 1)2.

Theorem 4.1. Under the action of Γ on Z
3
p there are four supercharacters and

four superclasses.

Proof. It is obvious that Γ is a J-Symmetric group.

Orbits of Γ on G are as follows:

Y1 = {(0, 0, 0)}
Y2 = (0, 0, 1)Γ = {(0, 0, a) | a ∈ Z

×

p }
Y3 = (0, 1, 0)Γ = {(0, d, b) | d ∈ Z

×

p , b ∈ Zp}
Y4 = (1, 0, 0)Γ = {(a, b, c) | a ∈ Z

×

p , b, c ∈ Zp}.
We have

|Y1| = 1

|Y2| = p− 1

|Y3| = p(p− 1)

|Y4| = p2(p− 1).

Since

|Y1|+ |Y2|+ |Y3|+ |Y4| = p3

we deduce that Y1, Y2, Y3 and Y4 are orbits of Γ on G. It is easy to see that the
orbits of Γ on Irr(G) are as follows:

X1 = {(0, 0, 0)}
X2 = (1, 0, 0)Γ = {(a, 0, 0) | a ∈ Z

×

p }
X3 = (0, 1, 0)Γ = {(a, b, 0) | a ∈ Zp, b ∈ Z

×

p }
X4 = (1, 0, 0)Γ = {(a, b, c) | a, b ∈ Zp, c ∈ Z

×

p }.
We have

|X1| = 1

|X2| = p− 1

|X3| = p(p− 1)

|X4| = p2(p− 1).

Let the supercharacter associated to Xi be σi. The following supercharacter
table for the group G is constructed:
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Table III: Supercharacter table of Z3
p

Z
3
p Y1 Y2 Y3 Y4

superclass size 1 p− 1 p(p− 1) p2(p− 1)
σ1 1 1 1 1
σ2 p− 1 p− 1 p− 1 −1
σ3 p(p− 1) p(p− 1) −p 0
σ4 p2(p− 1) −p2 0 0

The unitary table associated with the above table is:

U =
1

p
√
p









1
√
p− 1

√

p(p− 1) p
√
p− 1√

p− 1 p− 1 (p− 1)
√
p −p

√

p(p− 1 (p− 1)
√
p −p 0

p
√
p− 1 −p 0 0









As general case let us consider G = Z
d
p,

Γ =









































1 a2 a3 · · · ad
0 1 a2 · · · ad−1

...
...

0 0 · · · · · · a2
0 0 · · · · · · 1















| ai ∈ Zp, 2 ≤ i ≤ d



























which is J-symmetric with respect to the d× d matrix

J =

















1
0 1

.

.

. 0

1

















.

We have |Γ| = pp−1 and it is a p-group.

Theorem 4.2. Under the action of the J-symmetric group Γ on Z
d
p there are

1 + (p− 1)d supercharacters and superclasses.

Proof. The orbits of Γ on G = Z
d
p are grouped as follows:

Y1 = {(0, 0, . . . , 0)}
Y2 = (α, 0, . . . , 0)Γ = {(α, αa2, α3, . . . , αad) | ai ∈ Zp}, α ∈ Z

×

p

Hence Y2 is the union of p− 1 orbits each of size pd−1. Next,

Y3 = (0, α, 0, . . . , 0)Γ = {(0, α, αa2, αa3, . . . , αad−1) | ai ∈ Zp}, α ∈ Z
×

p .

Hence Y3 is the union of p− 1 orbits each of size pd−2. If we continue in this way,
we obtain

Yd = (0, 0, . . . , α, 0)Γ = {(0, 0, . . . , α, αa2) | a2 ∈ Zp}
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has size p and is the union of p− 1 orbits, and

Yd+1 = (0, 0, . . . , α)Γ = {(0, 0, . . . , α)}
is the union of p− 1 orbits each of size 1.

Since 1 + (p− 1)(pd−1 + pd−2 + . . .+ 1) = pd = |G|, all the orbits of Γ on G
are counted. Therefore, there are 1 + (p− 1)d orbits.

To find the shapes of the orbits of Γ on Irr(G), we mention that each irre-
ducible character of G has degree 1. We have Irr(G) = {ψx | x ∈ G} which may
be represented by elements x of G under the action x 7−→ xA−t where A ∈ Γ.
Therefore, we obtain the following orbits:

X1 = {(0, 0, . . . , 0)}
X2 = (α, 0, . . . , 0)Γ = {(α, 0, . . . , 0)}
X3 = (0, α, 0, . . . , 0)Γ = {(a2, α, 0, . . . , 0) | a2 ∈ Zp}
...

Xd+1 = (0, 0, . . . , α)Γ = {(a2, a3, . . . , ad, α) | ai ∈ Zp}.
Each set Xi, 2 ≤ i ≤ d+ 1 is the union of p− 1 orbits each of size pi−2.

Now if ψx is a representative of the orbit X of Γ on Irr(G), we may choose

x = (0, 0, . . . , 0, . . . , 0) ∈ Xi.

Hence if σX is the supercharacter associated to X, then for y ∈ Yj we have

σX(y) =
∑

x∈X

ψx(y) =
∑

x∈X

e
(x · y

p

)

.

Now, if x and y are taken from orbits such that x · y = 0, then
∑

x∈X

e
(x · y

p

)

= |X| = pi−2

provided X = Xi. Otherwise if x · y 6= 0 then we obtain
∑

x∈X

e
(x · y

p

)

= 0.

In this way, the supercharacter table of G is computed.

Conclusion

There are many open problems concerning supercharacter theories of finite
groups. For example, determining finite groups with exactly four supercharacter
theories is still open. Know groups such as the dicyclic groups is still an area of
research to find their supercharacters.
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