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Abstract. For a Golden-structure ¢ on a smooth manifold M and any covariant
functor which assigns to M its bundle M4 of infinitely near points of A-king, we
define the Golden-structure ¢ on M# and prove that ¢ is integrable if and only
if so is ¢4. We also investigate the integrability, parallelism, half parallelism and
anti-half parallelism of the Golden-structure ¢4 and their associated distributions
on MA.
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1. INTRODUCTION

The differential geometry of Golden-structure on manifolds has been first
initiated by M. Crasmareau and C. Hretcanu in [1]. The concepts of a Golden-
Riemannian structure and a Golden-Riemannian manifold has been introduced
in [1]-[11] by using a corresponding almost product structure, and some proper-
ties of Golden-Riemannian manifold have been studied. And a few years later,
some properties of the induced structure on an invariant submanifold in a Golden
Reimannian manifolds were investigated by many authors such as C. Hretcanu
and M. Cragmareau in [12], M. Gk, S. Keleg and E. Kilig in [5]-[6]-[7]-[8]. In [3],
A. Gezer, N. Cengiz and A. Salimov studied the problem of the integrability for
Golden-Riemannian structures. In [16]-[17], M. Ozkan defined the prolongations of
Golden-structures to tangent bundles of order » > 1.

The present paper is mainly focused on a study of prolongations of Golden-
structures on manifolds to bundles of infinitely near points. Basicly, this study
is inspried from the paper [16]-[17] and [14]. The main goal of this paper is to
generalize the results of [16]-[17] to the bundles of infinitely near points of kind A
in the sense of A.Weil [19].

The paper has three sections and is organized as follows. In Section 2, we
review the notion of bundles of infinitely near points and recall some definitions
and properties of the Golden-structure. The Section 3 is devoted to prolongations
of the Golden-structure to bundles of near points of kind A and we will investigate
some properties of these prolongations. We also discuss of integrability, parallelism,
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half parallelism and anti-half parallelism of a Golden-structure and the associated
distributions to bundle of near points. We end this last section by studying the
prolongation to bundles of near points of Golden pseudo-Riemannian structure on
a smooth manifold M.

2. PRELIMINARIES
2.1. Bundles of Infinitely Near Points

A weil algebra or local algebra (in sense of A. Weil)[19] is a real associative,
commutative and unital algebra of finite dimension over R, admitting a unique
maximal ideal M such that A/M is one-dimensional over R and that M"*! = {0}
for a nonnegative integer h. The smallest h such that M" # {0} and M+ = {0}
is called the height of A. We shall identify the field R with the subspace of A
consisting of all scalar multiples of the unit. Thus A = R & M. For example,the
algebra of dual numbers D = R[T]/(T?) is Weil algebra with height 1.

Let us recall this construction of bundles of A-points of M base on [14]. Let’s
denote by M a smooth manifold, C* (M) the algebra of smooth functions on M
and A the weil algebra with the maximal ideal M.

An infinitely near points to  on M of kind A (or A-points of M near z) is a
homomorphism of algebras
p:C®(M)— A
such that
¢(f) = f(x) mod(M),
for all f € C*°(M).
We denote by M2 and M4 = |J M respectively the set of all infinitely points

xeM
on M of kind A and the set of all near points on M of kind A. If M and N are

two smooth manifolds and F' € C*°(M, N) a differential map, then one defines the
differential map
FA M2 - N4 o= FA(p)
such that, for all g € C*°(N),
FA(¢)(9) = w(g o F).
If F is a diffeomorphism, then F4 will be too.

We can identify (M x N)4 with M4 x N4 by the following identification
Ty X s (M x N)A = MA X N2 o (i (), 7y ()
where 74 : (M x N)A — M4 (vesp. 75 : (M x N)* — N4) is a projection. If
Fy: My — Ny, Fo : My — No, F{ : My — N{ and Fj : Ny — N are differentiable
maps between manifolds, then we have the following equalities
(P, ) = (P FY (F o )" = Fy o FY!
(Fy x F))* = FA < F} (1ar)™ = 1pa.
If (U,u) is a local chart on M with a local coordinate system (u
ut U4 5 A", o (p(uh), - p(u™))

is a bijection from U to an open subset of A™ and defines a local chart (U4, u?)
on M4, Hence the set M becomes a differentiable manifold of dimension dim(A4)-
dim(M).

Now, let 74 : M4 — M, M2 5> ¢ + . Therefore, the manifold M4 with the
projection 74 : M4 — M is called the bundles of A-points of M (or bundles of
infinitely near points of M of kind A).

L ... u™), the map
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The notion of bundles of kind D = R[T]/(T?) is the same as the tangent
bundles. More generally, when A = R[T, -, T,]/(T1,- -+ ,T,)" !, M4 is the space
J5(RP, M) of jet of order r at 0 of differentiable map from R? to M and the
associated bundle of A-points is the bundles of p"-velocities.

2.2. Golden-Riemannian Manifolds

Let M be a smooth manifold and 7P (M) the C>° (M )-module of tensor fields
of (p,q)-type on M. An element of 7;'(M) is usually called vector 1-form (or
affinor) on M. Let X(M) = I'(T'M) be the C°°(M)-module of all vector fields on
M.

Definition 2.1. ([9]-[10]) An affinor { on M is called polynomial structure if it
satisfies the following algebraic equation
QX)=X"4+ap, 1 X" "4+ + a1 X +apd =0 (2.1)

where (" Y(x), (""2(z), -+, ¢(x) and § are linearly independent for every x € M
and ¢ 1is the identity transformation affinor. The monic polynomial Q(X) is named
the structure polynomial.

We recall that, a polynomial structure ( is integrable if the Nijenhuis tensor
N¢ vanishes identically, where

Ne(X,Y) = X, Y] +[CX, CY] ~C[CX, Y]~ ([X, (Y], for all X,Y € X(M). (2.2)

Remark 2.2. In particular, if Q(X) = X2 —4§ (resp. Q(X) = X2+5), then we will
have an almost product structure p (resp. an almost complex structure v). When
Q(X) = X2, we have the notion of almost tangent structure 7.

Definition 2.3. Let (M,g) be a Riemannian-manifold. A Golden-structure on
(M, g) is a given non-null affinor of class C*° ¢ on M which verifies the following
equation

2= C =6y =0 (2.3)
where Oy is the identity transformation affinor. In this case, the pair (M,() is
called Golden-manifold.

We say that the metric g is (-compatible if we have the following equality
9((X,Y) = g(X,(Y) (2.4)

for all vector fields X, Y € X(M). If we substitute Y into Y in (2.4), then Equation
(2.4) may also be written as

g(¢(X, (YY) =g((X,Y) +g(X,Y). (2.5)

Definition 2.4. ([1]) A Golden-Riemannian manifold is a triple (M, g, (), where
(M, g) is a Riemannian-manifold, ¢ is a Golden-structure on (M,q) and g is ¢-
compatible.

Definition 2.5. ([18]) Let F' be a smooth map from a Golden Riemannian manifold
(M, g,¢) to a Golden Riemannian manifold (N,h,). Then F is called a Golden
map if the following condition is satisfied

dF o( =¢odF. (2.6)

In [1], we have this following proposition which show the connection between
the almost product structure and the Golden-structure on M.
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Proposition 2.6. ([1])Let M be a smooth manifold.

(i) Any Golden-structure ¢ on M induces two almost product structures on M
defined as follows
1

po =~ =bw) and p = %(24 —bur). (2.7)

(ii) Conversely, any almost product structure p on M induces two Golden-
structures on M defined as follows

¢ = 6 —VBp) and Gy = 56 +5p). (2.8)

Let (M,¢) be a Golden-manifold. According to [1], we define these two

operators
r:%((a—l)éM—i—g) and 8:%(051\4—() (2.9)
1++5
2

where the Golden ratio o = ~ 1.618 is the root of the algebraic equation
t2 —t —1 = 0. We can easily have these following equalities

7“227‘, 52:37 sor=ros=0 and s+r=9,,. (2.10)

This means that, » and s are projection operators splitting the tangent bundle
TM = MP into two complementary parts, and define two globally complementary
distributions R and S of MP ( see [1]) as follows

R= |J{eeMP: ¢(¢)=0p} and S= (J{peMP: ((p)=(1-0)p}

zeM TeEM
(2.11)
The projection operators r and s verify these following equalities:
C=or+(1—o0)s (2.12)
Cor=ro(=or and (os=so(=(1—o0)s. (2.13)

3. MAIN RESULTS
3.1. A-Lift of Golden-structures to Bundles of Near Points

Let M be a smooth manifold and M# a manifold of infinitely near points on
M of kind A. For a given affinor ¢ on a M, Morimoto in [14] gives its A-lift (4 and
shows that ¢4 is a unique affinor on M# which verifies

¢ = (x4, (3.1)
for all ¢ € T1(M) and X € X(M). Hence, we can show
¢Pogh=(Co8)" (3.2)
for all ¢, £ € TH(M). When ¢ = &, equation (3.2) becomes
(¢4 = (M (3.3)

Hence, we have these following results.

Proposition 3.1. Let  be an affinor on M. The following assertions are equiva-
lent.

(i) ¢ is a Golden-structure on M.
(ii) ¢4 is a Golden-structure on M.
(i4) Sppa — A is a Golden-structure on M4,
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Proof. It is the use of linearity of the A-lift, equation (3.3) and the fact that
((SM)A = 6MA . |:|

Proposition 3.2. Let (M,() a Golden-manifold.

(i) The Golden-structure (A on M* is an isomorphism on (MA)g, for every
o e MA.

(ii) The Golden-structure (A on M? is invertible and its inverse ((A)™1 =
A — 6y satisfies the equation

(<<A>-1)2 (Y = byga =0,

Remark 3.3. Let ¢ € T1(M) be an almost complex (resp. almost product) struc-
ture on M. Then ¢4 and —(* are an almost complex (resp. almost product)
structure on MA. Morever, (* is integrable if an only if so is . (See [14]). If T is
an almost tangent structure on M, then 72 (resp. -r4) is also an almost tangent
structure on M4,

The following proposition shows the connection between Golden and almost
product structures on M A

Proposition 3.4. Let M be a smooth manifold.

(i) If ¢ is the Golden-structure on M, then the Golden-structure ¢4

(resp. ¢4 = Sppa — C4) on M4 induces two almost product structures p?
and pﬂ on M4 defined as follows

1 1

A A A

A=—— (20" —6pra) and = —

p \/5( ¢% = dara) =7

(i) Conversely, if p is an almost product structure on M, then the almost
product p  (resp. p* = —p?) on M? induces two Golden-structures ¢4
and Cﬁ on M4 defined as follows

(2<A - (SMA)

1 1
Cf = 5(6]\/[A — \/gpA) and Cf = 5(51MA + \/5,0A)

According to Cragmareanu and Hretcanu in [1], we have the following remark.

Remark 3.5. (a) If T is an almost tangent structure on M, then its A-lift T4
induces two affinor structures on M* defined as follows

1 1
A = 5((5MA —V57r4) and T = 5((5MA +574)

and which are called tangent Golden-structures on MA. These tangent
Golden-structures satisfy the equation

~ - 1
(TA)2 — TA + Z(SNIA =0.

(b) If v is the complex structure on M, then its A-lift v* induces two affinor
structures on M defined as follows

74 = %(5MA — \/5VA) and ﬁf = %(51\/[!\ +v5r4)

and which are called complex Golden-structures on M*?. These complex
Golden-structures satisfy the equation

N a3
(4?2 -4 + 50ua =0.
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Example 3.6. (prolongation to M4 of triple structures on M) Let £, p and v be
three affinors structures on the smooth manifold M such that v = Cop. According to
[1] and [2], the triple ((, p,v) is called almost hyperproduct structure (ahps), almost
biproduct complex structure (abpcs), almost product bicomplex structure (apbcs)
and almost hypercomplex structure (ahcs) on M if {, 7 and v verify respectively
the following equalities:

= p =12 =fopov =0y, 2 =pP =~ =Eopov =du,

S ==y =fopov=—dy and €2 = p* =12 = Eopov =~y

Let

E = J0un —VBEY), A= S(6pn —VBp™) and DA = L(arn — Vi)

~ 1 - 1 - 1
(resp. fﬁ = 5(6MA +/5¢4), pf: = 5((5MA +5p%) and Vf = 5((5MA +V501))

be the induces structures associated to €4, p® and v respectively (see proposition
3.4). We easily see that, those induces structures verify this following equality

VErA =264 0 g4 — €A — A 4 o0y
and the triple (¢4, 5%, 74) and (Eﬁ, pi, i) are

(1) (ahps) (resp. (apbes)) on M4 if and only if (&, p,v) is an (ahps) (resp.
(apbes)) on M. In this case, v* is a Golden-structure on M4,

(2) (abpes) (resp. (ahcs)) on M4 if and only if (€, p,v) is an (abpcs) (resp.
(ahes)) on M. In this case, v is a complex Golden-structure on M4,

3.2. Integrability of Golden-structure to Bundles of Near Point

The purpose of this section is to give some properties of integrability of
the Golden-structure ¢ on M# and its associated distributions. Let (M) be
a Golden-manifold and A a given Weil algebra.

Definition 3.7. The Golden-structure (4 on M* is integrable if
Nea(X4,v4) =0,
for all vector fields X, Y in M.

Proposition 3.8. ( is an integrable Golden-structure on M if and only if the
Golden-structure (4 on (M4, g?) is integrable on M.

Proof. It comes from the fact that Nea (X4, Y4) = (N¢(X,Y))* by using relations
(2.2) and (3.3), for all vector fields X, Y in M. O

A. Morimoto in [14] has proved the following proposition.

Proposition 3.9. ([14]) Let M be a smooth manifold.

(i) The map X(M) — X(M?), X + X4 is a homomorphism of Lie algebras.
(ii) For all { € TH(M) and X € X(M), one has

(CXNt = ¢Hx). (3-4)

Hence, from the above proposition, we can construct the A-lift of these two
projection operators r and s on M as follows

a_ Lt o— 4+ ¢ an sA:LU a—CA
r —\/5(( 1)dpra +¢*) and \/5( dara —C7). (3.5)

These new operators satisfy the following equalities
(TA)Q =74, (SA)2 =54 sAord=rt0st =0 and r*+ s =8y (3.6)

7~A OCA = CA orA = or? and 4 OCA = CA o5t = (1 —O‘)SA. (37)
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Therefore, 74 and s are projection operators splitting the tangent bundle TM#4 =
(MA)P into two complementary parts, and define two globally complementary
distributions R4 and S4 of the set of D-point of M4 according to [1].

Let’s recall this result from M. Cragméareanu and C.E. Hretcanu.

Proposition 3.10. ([1])Let (M,() be the Golden-manifold. The distribution R
(resp. S) is integrable if and only if [rX,rY]| € T'(R) (resp. [sX,sY]| € I'(S)) for
all vector fields X, Y in M.

We have this following definition.

Definition 3.11. The distribution R* (resp. S?) is integrable if the vector field
[FAXA rAY Al (resp.  [sAXA,s4Y4]) belongs to T(R?A) (resp. T'(S4)) for all
vector fields X andY in M.

Hence, we have these following results.

Proposition 3.12. Let (M,() be the Golden-manifold.
The distribution R* (resp. S4) is integrable if and only if R on (resp. S) is
integrable.
Proof. Tt comes from the fact that
sArAXA rAYA] = (s[r X, rY DA (resprd s XA, sAY 4] = (r[s X, sY])?),
for all vector fields X and Y in M. (]

Proposition 3.13. Let (M,() be the Golden-manifold.
The distribution R (resp. S*) is integrable if and only if

Nea(r* XA, 7Y ) e T(RA) (resp. Nea(s* XA, s2Y4) e T(S4)) (3.8)
for all vector fields X, Y in M.

Proof. For all vector fields X and Y in M, one has
SANCA (rAXA Y4y = SA(QA)Q[TAXA, ’I“AYA] + SA[CA ordX4 240 ’/‘AYA]
SACAICA 0 pAXA pAYA] — gACAAXA ¢ oAy A
= (1—0)% XA, rAY A + 02[s1 XA, sAY )
— o1 =a)s XA, rAY A — o(1 — 0)sA[rA XA, rAY 4
= 5sArAXA, rAY ).
With the same manner, rANea(sA X4, s4Y4) = 5rA[rAX 4, rAY 4], Hence, the
proof is finished. (I
Proposition 3.14. Let ¢ be a Golden-structure on M and ¢4 its A-lift on M.
The following assertions are equivalent:
(i) ¢4 is integrable.
(ii) Both the distribution R4 and S are integrable.
Proof. Let X and Y be two vector fields on M. We have
rANCA(sAXA, sAY4) + SANCA (rAXA 1Ay ) = e (0pa — ) XA, (Gya — 1Y A
+ 5(8pa —rHFAXA YA
5(r)? XA, YA 4 5[ XA, YA
— XA YA — 5[ XA, rAY A
5N, (XA, Y4
Hence, the proof has been finished. O
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Corollary 3.15. Let ¢ be a Golden-structure on M and (* its A-lift on M*. The
following assertions are equivalent:

(a) ¢4 is integrable.

(b) Both R* and S# are integrable.
(¢) Both R and S are integrable.
(d) C is integrable.

Theorem 3.16. Let p be the almost product on a smooth manifold M.
The almost product p® on M* is integrable if an only if the associated Golden-
structure Cf (resp. (_) is integrable.

Proof. Let X, Y € X(M), p® an almost product structure on M# and ¢4 =
L(8pra — VBp™) (resp. (= L(0pr4 + v/5p?)) The induced Golden-structure on
M#. One has:

Nea(XA,Y4) = ((PXA YA+ [¢AXA, ¢y A = A XA, vA] — A x4, 2y A

= 2Gaa —2VBpt + 5 XA, v

+ E[XA Y4 - é E
4 ’ 4 4
1 5 5 5

- JXAYA4 %pA[XA,YA] + %pA[pAXA,YA] = 2P pAX A YA

1 5 5
- Iy YRy Y

5
(XA, p Y A] = S XA YA+ A, iy ]

5
(XA, pAy A = 2ot XA, pty ]

4 4
5

= JEPIXAYA 4 (XA p YA pAp XA YA - pA XA, Ay )
5

= ZNPA(XA,YA)

With the same manner, we have NG: (X4, Y4) = EN,a(X4,Y*). Hence, the
proof follows. U

Conversely, we have this following theorem.

Theorem 3.17. Let (M, () be the Golden-manifold.
The Golden-structure ¢4 on (M4, g4) is integrable if and only if the associated
almost product pﬁ (resp. p?) is integrable.

3.3. Parallelism, Half Parallelism and Anti-half Parallelism of Golden-
structure on M4

In this section, we discuss parallelism, half parallelism and anti half paral-
lelism of the distributions associated with the golden structure on M4. We recall
that, a distribution D on M is called parallel with respect to the linear connec-
tion V if the vector field VxY belongs to D for any vector fields Y € I'(D) and
X € X(M) =T(TM). Let ¢ be a Golden-structure on M. For all vector fields X
and Y in M, let’s put

AC(X,)Y)=((VxY)—((VyX) — VexY +Vy (X,
We recall this following definition from [4].

Definition 3.18. ([4])Let (M, g,¢) be a Golden Riemannian manifold.

(d1) The distribution R (resp. S) on M is called half-parallel with respect to the
linear connection V if

AC(X,Y) e T(R) (resp. T'(9)), (3.9
for all vector fields X € T(R) (resp. T'(S)) and Y € X(M).
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(d2) The distribution R (resp. S) on M is called anti-half parallel with respect to
the linear connection V if

AC(X,Y) eT(S) (resp. T(R)), (3.10)
for all vector fields X € T(R) (resp. T'(S)) and Y € X(M).

Let V be a linear connection on M. Its A-lift V4 is a unique linear connection
on M# which satisfies this equality
VY4 = (VxY)4, (3.11)
where X4 and Y4 mean prolongation to M# of vector fields X and Y in M (see
Theorem 5 of [15]).

From the above consideration, we have these following definitions.

Definition 3.19. Let V be a linear connection on a Golden-manifold (M, () .
The distribution R (resp. S4) is parallel with respect to linear connection VA if

VYA € T(RA) (resp. T(S?))
for all vector fields X € T'(R) (resp. I'(S)) and Y € X(M).

Definition 3.20. Let V be a linear connection on a Golden-manifold (M, () .
(d1) The distribution R* (resp. S4) on M is called half-parallel with respect to
the linear connection V4 if

ACHXA YA e (R (resp. T(S?)), (3.12)
for all vector fields X € T'(R) (resp. T'(S)) and Y € X(M).

(d2) The distribution R4 (resp. SA) on M4 is called anti-half parallel with respect
to the linear connection V if

ACHXA YN eT(SY) (resp. T(RY)), (3.13)
for all vector fields X € T'(R) (resp. T'(S)) and Y € X(M).

Let V be a linear connection on a Golden-manifold (M, (). According to
A
Sc
[1]-[13], we can associate to the pair (¢4, V4) two other linear connections V  and
A

V on M4 called respectively Schouten and Vranceanu connections, and define as

follows:

ScAi

V<Y =74 (V%TA?) + 54 (V%SA?)
A
v _ _ — o
VyaY4 = rA(VfAYrAY) + sA(V?AYsAY) +rA[sAX, rAY] + s [r1 X, s1Y,
for all vector fields X and Y in M4.

Hence, we have the following results.

Theorem 3.21. The Golden-structure ¢ on M* is parallel with respect to Schouten
and Vranceanu connections.

Proof. From the linearity of V4 and the relations (3.7)-(3.8), one has
AT e
= ¢4 (V%’/’A oY) + SA(V%SA 0CAY) - (4o ’/’A(V%T’A?)
—(4o SA(V%SA?)
= ot (V%TA?) +(1—0)st (V%SA?) - O”/‘A(V%T’A?) —
(1- O')SA(V%SA?)
= 0.
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vA
With the same manner, (V¢4)Y = 0. O

Theorem 3.22. The projection operator r* (resp. s?) is parallel with respect to
Schouten and Vrdnceanu connections.

Proof. Tt comes from relations (3.7)-(3.8) and the fact that V4 and the bracket of
vector fields on M# are linear. d

Proposition 3.23. Let V be a linear connection on a Golden-manifold (M, ().
The distribution R (resp. S) is parallel with respect to a fized linear connection V

on M if and only if R (resp. S?) is parallel with respect to linear connection V4
on M4,

Proof. Let X € T'(R) (resp. I'(S)) and Y be a vector field in M. From the relations
(3.11) and (3.5) in this order, on has
sAVEAYA = (sVxY)? (resp. sV Y4 = (sVxY)?).
Hence,
sHVEAYA) =06 s(VxY) =0 (resp. 1 (V.Y =0er(VxY)=0).
O

Theorem 3.24. The distribution R* (resp. S?) is parallel with respect to the
Schouten and Vrdnceanu connections for every linear connection V4 on M4,

Proof. Let V4 be a linear connection on M4, X4 € T'(R4) and Y4 € (M%) be
the A-lift of vector fields Y € I'(R) and X € X(M). From relations (2.10) and
(2.11), we easily have rY =Y and sY = 0. Hence

SCA
VaaVA = r A (Veartyh) + 4 (VEas'Y?)
= (VEa(rY)h) + 52 (Via(sY)?)
= rHVEYY) eT(RY)
and
v A
Va4 = ¢4 (vgx)AYA + [sX, Y]A> € I'(RY).

It can be proved analogously that the distribution S# is parallels with respect to
the Schouten and Vranceanu connections for a linear connection V4. O

Proposition 3.25. Let ( be a Golden structure, parallels with respect to a linear
connection ¥V on M. Then ¢4 is parallels with respect to linear connection V4 on
M4 if and only if

(VaaCHY4 =0
for all vector fields X andY in M.

Proposition 3.26. Let V be a linear connection on a Golden manifold (M, () and
VA its A-lift on (MA,¢4). The distribution R (resp. S) on M is half parallels
with respect to V if and only if the distribution R* (resp. S4) on M4 is also half
parallel with respect to V4.

Proof. Tt comes from Equation (3.1) and Equality (3.11). O

Proposition 3.27. Let V be a linear connection on a Golden manifold (M, () and
VA its A-lift on (MA,¢4). The distribution R (resp. S4) on M? is anti-half
parallel with respect to V4.
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Proof. Let X4 € T(R4) and Y4 € X(M*) be the A-lift of vector fields X € T'(R)
and Y € X(M). From relations (3.8) and (2.11), we have r4 o (4 = or? and
(X =0X. Hence

r (cA(V?(AYﬂ — (VP XY) = Vi a YA+ Vi <<X>A) =0

since V4 is linear. Therefore,
ACHXA YA eT(SY)

and R4 is anti-half parallel with respect to V4. S4 is anti-half parallel with respect
to V4 by using the same method. (I

Proposition 3.28. Let V be a fized linear connection on Golden-manifold (M, ().
The the distribution R (resp. S) is half parallels with respect to Schouten and
Virdnceanu connections if and only if so is R (resp. S4).

3.4. Prolongation to M* of Golden Pseudo-Riemannian Structure on M

Let g be a pseudo-Riemannian metric on M. Its A-lift is a unique pseudo-
Riemannian metric on M# which satisfies

gA(XA7YA> = (g(X, Y))A7 (3'14)

where X4 and Y# mean prolongation to M# of vector fields X and Y in M (see
proposition 12 of [15]. Hence, the pair (M#, g*) becomes a pseudo-Riemannian
manifold. Then, we easily have the following results.

Proposition 3.29. If the triple (M, g,¢) is a Golden pseudo-Riemannian manifold,
then so is the triple (M4, g4, (?).

Corollary 3.30. Let (M,g,() be a pseudo-Riemannian manifold. For all vector
fields in M, we have
(a) g4 (rAXA,YA) = gA(XA, 1AV A) (resp. gA(sA XA, YA) = gA(X4, sAYA) ).
This means that the projection operators r* and s are g*-symmetric
(b) g (r2 XA, s4YA) = 0: This means that the distribution R* and S are
g -orthogonal.
(¢) Nea(CAXA,YA) = Nea(XA,CAYA). This means that the Golden structure

A is Nea-symmetric.

Remark 3.31. If (g, p) is a pseudo-Riemannian almost product on M (that is, p
is a g-symmetric almost product structure on pseudo-Riemannian manifold (M, g),
then the pair (g%, p?) is also a pseudo-Riemannian almost product on M* and the
triple (MA,gA7 CA) is a Golden pseudo-Riemannian structure on M4 where ¢4 is
the Golden-structure on M induced by p* (see Proposition 3.4).

Proposition 3.32. If F : M — N is a Golden map between Golden pseudo-
Riemannian manifolds (M, g,¢) and (N, h,€), then FA : M4 — N4 is a Golden
map between Golden pseudo-Riemannian manifolds (M4, g4, ¢(?) and (N4, hA, €4).

Proof. Since F' is a Golden map, then we have:
dF o( =& odF.

Taking the A-lift on the both sides of the above equality and from the relation
(3.2), we obtain

dFA o (4 = ¢4 0 dFA.
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