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Abstract. An edge subset F of a connected graph G is a super edge cut if G−F is
disconnected and every component of G−F has atleast two vertices. The minimum
cardinality of super edge cut is called super edge connectivity number and it is

denoted by λ
′

(G). Every arithmetic graph G = Vn, n 6= p1×p2 has super edge cut.

In this paper, the authors study super edge connectivity number of an arithmetic
graphs G = Vn, n = p

a1

1
× p

a2

2
, a1 > 1, a2 ≥ 1 and G = Vn, n = p

a1

1
× p

a2

2
× · · · ×

p
ar
r , r > 2, ai ≥ 1, 1 ≤ i ≤ r.
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1. INTRODUCTION

Theorem 1.1. [5]For an arithmetic graph G=Vn, n =pa1

1 × pa2

2 where p1 and p2
are distinct primes, a1, a2 ≥ 1 then ǫ = 4a1a2 − a1 − a2, where ǫ is the size of the
graph G.

Theorem 1.2. [5]For an arithmetic graph G=Vn, n =pa1

1 × pa2

2 where p1 and p2
are distinct primes, a1, a2 ≥ 1 then G is a bipartite graph.

Theorem 1.3. [5] Let G = Vn an arithmetic graph n = pa1

1 × pa2

2 × · · · × par

r , for
any vertex u =

∏

limi∈B pαi

i where B ⊆ 1, 2, 3, . . . r, 1 ≤ αi ≤ ai∀i ∈ B.

(1) If u = pj where j ∈ {1, 2, 3, . . . , r}, then

deg(u) =

[

aj
∏ r

lim
i=1,i 6=j

(ai + 1)− 1

]

− |aj − 1| .
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(2) If u = pαi

i 1 < αi ≤ ai∀i ∈ B, then deg(u) = [
∏

limr
i=1,i/∈B(ai + 1)]− 1

(3) If u =
∏

limi∈B pαi

i , |B| ≥ 2, 1 < αi ≤ ai, ∀i ∈ B then

deg(u) = |B|
∏ r

lim
i=1,i/∈B

(ai + 1) .

(4) If u =
∏

limi∈B pαi

i , αi = 1 for some i ∈ B′ ⊆ B, then deg(u) = |B −B′|+
∑

limi∈B′ai
∏

limr
i=1,i 6∈B(ai + 1) where B is the number of distinct prime

factors in a chosen vertex u, B′ is the number of prime factors having
power 1 in chosen vertex u.

2. Super edge Connectivity number of an Arithmetic Graph G = Vn

In this section, the super edge connectivity number λ
′

(G) of an arithmetic
graph G = Vn, where n = pa1

1 × pa2

2 × · · · × par

r is determined.

Theorem 2.1. For an arithmetic graph G = Vn, n = pa1

1 × pa2

2 where a1 = a2 = 1
has no super edge cut.

Proof. Consider an arithmetic graph G = Vn, where n is the product of two distinct
primes. The vertex set of Vn contains three vertices namely p1, p2, p1 × p2. By the
definition of an arithmetic graph G is a path with 3 vertices. The removal of any
one of the edge results the graph disconnected containing an isolated vertex and
an edge. Hence proved. �

Theorem 2.2. For an arithmetic graph G = Vn, n = pa1

1 ×pa2

2 where a1 > 1, a2 = 1

then λ
′

(G) = 2.

Proof. Given arithmetic graph G = Vn has the vertex setV (G) = {p1, p
2
1, . . . ,

pa1

1 , p2, p1×p2, p
2
1×p2, p

3
1×p2, . . . , p

a1

1 ×p2}. By Theorem 1.2, G is a bipartite graph
with partitions A = {p1, p

2
1, . . . , p

a1

1 , p2} and B = {p1×p2, p
2
1×p2, p

3
1×p2, . . . , p

a1

1 ×
p2}. Also, the graph G has a1 − 1 pendant vertices say p21, p

3
1, . . . , p

a1

1 and all these
pendant vertices have a common neighbour p1 × p2. The removal of two edge say
p1×p2 p1 and p1×p2 p2, the graph G gets disconnected. Since d(p1×p2) = a1+1,
the resultant graph has exactly two components G1 and G2 where G1 = k1,a1−1

and G2 is a connected graph. Hence F = {p1 × p2 p1, p1 × p2 p2} is a super edge
cut. Since G is not a tree and it does not have bridges, F is a minimum cardinality
set. Thus λ

′

(G) = 2. �

Theorem 2.3. For an arithmetic graph G = Vn, n = pa1

1 × pa2

2 where a1 ≥ a2 > 1

then λ
′

(G) = a1 + a2 − 1.

Proof. By Theorem 1.2, G is a bipartite graph. Since a1 ≥ a2 > 1 we have
d(pm1 ) ≤ d(pn2 ) for 1 < m ≤ a1 , 1 ≤ n ≤ a2. Choose a vertex of the form pm1 ; 1 <
m ≤ a1,from the first partition. Let it be pa1

1 the vertices which are adjacent to
pa1

1 are {p1 × p2, p1 × pn2 ; 1 < n ≤ a2}. Since the vertices {p1 × pn2 ; 1 < n ≤ a2}
have less degree compared to p1 × p2, choose any one of the vertex of the form
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p1 × pn2 ; 1 < n ≤ a2, let it be p1 × pa2

2 . Now, remove all the edges incident on pa1

1

and p1 × pa2

2 other than the edge pa1

1 p1 × pa2

2 . The resultant graph is disconnected
having two components, in which one of the component is an edge pa1

1 p1×pa2

2 and
the other is a connected graph. Since the degree of these two vertices say pa1

1 and
p1 × pa2

2 is minimum we have |F | = d(pa1

1 ) + d(p1 × pa2

2 )− 2. Hence by the proof of

Theorem1.1, λ
′

(G) = a1 + a2 − 1. �

Theorem 2.4. For an arithmetic graph G = Vn, n = pa1

1 × pa2

2 × · · · × par

r , r > 2

and ai ≥ 1, i ∈ {1, 2, . . . , r} . Then λ
′

(G) = 2r−1 + r − 3.

Proof. Consider an arithmetic graph G = Vn, n = pa1

1 × pa2

2 × · · · × par

r , r > 2
and ai ≥ 1, i ∈ {1, 2, . . . , r} . Following steps are used to find the super edge
connectivity number of an arithmetic graph.
(i) Arrange all a′is in such a way that a1 ≥ a2 ≥ · · · ≥ ar.
(ii)Choose an edge e = uv such that d(u) + d(v) = min{d(vi) + d(vj)/vivj ∈
E(G); i 6= j and for all i, j ∈ {1, 2, . . . r}}.
(iii) Remove all the edges incident on u and v other than the edge e = uv.(i.e) we
remove d(u) + d(v)− 2 edges. Now, the resultant graph is disconnected and it has
exactly two components one of the component is an edge e = uv and the other one
is a connected graph. Since d(e = uv) is minimum, |d(u) + d(v)− 2| is the super
edge connectivity number.
case(i) If ai = 1 for all i then choose the edge e = uv where u can be any one of
pi; i ∈ {1, 2, . . . , r}, let it be p1 and v = p1 × p2 × · · · × pr. Since the removal of the
edges incident on u and v other than the edge uv results the graph disconnected.
Also, d(u) + d(v) is minimum, λ

′

(G) = |F | = d(p1) + d(p1 × p2 × · · · × pr)− 2.

By Theorem1.3, we have λ
′

(G) = 2r−1 + r − 3.
case(ii) If ai > 1 for exactly one i, then choose the edge e = uv where u = pa1

1

and v = p1 × p2 × · · · × pr. Now similar as previous case we have λ
′

(G) = d(pa1

1 ) +
d(p1 × p2 × · · · × pr)− 2.

By Theorem1.3, we have λ
′

(G) = [
∏

limr
i=1,i/∈B(ai+1)]−1+r−2 = 2r−1+r−3. �

Example 2.5. Consider an arithmetic graph G = V210, 210 = 2 × 3 × 5 × 7 here
the super edge cut F = {2 2× 3, 2 2× 5, 2 2× 7, 2 2× 3× 5, 2 2× 3× 7, 2 2× 5×

7, 2×3×5×7 3, 2×3×5×7 5, 2×3×5×7 7}. Hence λ
′

(G) = 9.By Theoreom2.4,

λ
′

(G) = 23 + 4− 3 = 9

Theorem 2.6. For an arithmetic graph G = Vn, n = pa1

1 × pa2

2 × · · · × par

r , r > 2

and ai > 1, for at least two ai, i ∈ {1, 2, . . . , r} . Then λ
′

(G) =
∏

limm
i=2(ai +

1)2r−m + a1 + r − 4.

Proof. case(i) If ai > 1 for exactly two i, without loss of generality let a1 ≥ a2 > 1,
then choose the edge e = uv where u = pa1

1 and v = p1 × pa2

2 × p3 · · · × pr . Similar

as above we have λ
′

(G) = d(pa1

1 ) + d(p1 × pa2

2 × p3 × · · · × pr)− 2. By Theorem1.3,

we have λ
′

(G) = [
∏

limr
i=1,i/∈B(ai + 1)]− 1 + [|1|+ (a1 + r − 2)]− 2

= (a2 + 1)2r−2 + a1 + r − 4.
case(ii) If a1 ≥ a2 ≥ . . . am > 1, then choose the edge e = uv where u = pa1

1 and
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Figure 1. Arithmetic Graph G = V210

v = p1 × pa2

2 × pa3

3 × . . . pam

m × pm+1 · · · × pr. Similar as above we have λ
′

(G) =
d(pa1

1 ) + d(p1 × pa2

2 × pa3

3 × . . . pam

m × pm+1 · · · × pr)− 2. By Theorem 1.3, we have

λ
′

(G) = [
∏

limr
i=1,i/∈B(ai + 1)] − 1 + [m − 1 + a1 + r − m] − 2 = [(a2 + 1)(a3 +

1) . . . (am + 1)2r−m] + a1 + r − 4.
case(iii) If ai > 1 for all i, then choose the edge e = uv where u = pa1

1 and

v = p1 × pa2

2 × pa3

3 × · · · × par

r . Similar as above we have λ
′

(G) = d(pa1

1 ) + d(p1 ×
pa2

2 × pa3

3 × · · · × par

r )− 2

we have λ
′

(G) = [
∏

limr
i=1,i/∈B(ai + 1)] − 1 + [r − 1 + a1] − 2 = (a2 + 1)(a3 +

1) . . . (ar + 1) + a1 + r − 4. �

3. Super λ
′

optimality of an Arithmetic Graph G = Vn

Let G = (V,E) be a graph for e = uv ∈ E(G), let ξG(e) = dG(u) + dG(v)− 2
and ξ(G) = min{ξG(e) : e ∈ E(G)}. The parameter ξ(G) is called minimum edge
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degree of G. If λ
′

(G) = ξ(G) then G is called optimal; otherwise G is non-optimal.
For two disjoint non empty subsets X and Y of V , let (X,Y ) = {e = uv ∈ E;u ∈
X, v ∈ Y }. If Y = X = V −X then we write ∂(X) for (X,X) and d(X) for |∂(X)|.
A super edge cut F of G is called λ′-cut if |F | = λ′(G). It is clear that for any
λ′-cut F that G− F has two connected components.

Let X be a proper subset of V. If ∂(X) is a λ
′

-cut of G, then X is called
a fragment of G. It is clear that if X is a fragment of G, then so is X. Let

r(G)=min{|X| ;X is a fragment of G}. Obviously 2 ≤ r(G) ≤ |V |
2 . A fragment X

is called an atom if |X| = r(G).

Theorem 3.1. For an arithmetic graph G = Vn, n = pa1

1 × pa2

2 where a1, a2 ≥ 1

then the minimum edge degree ξ(G) =











1 if a1 = a2 = 1

a1 if a1 > 1, a2 = 1

a1 + a2 − 1 ifa1 ≥ a2 > 1

Proof. The proof is obivious from the proof of Theorem 2.3. �

Theorem 3.2. For an arithmetic graph G = Vn, n = pa1

1 × pa2

2 × · · · × par

r , r > 2
where ai ≥ 1 for i ∈ {1, 2, . . . ,m, . . . , r} then the minimum edge degree
(i)ξ(G) = 2r−1 + r − 3 if a1 ≥ 1 and aj = 1 for j ∈ {2, 3, . . . , r}.
(ii)ξ(G) = [

∏

limm
i=2(ai + 1)2r−m] + (m− 1) + a1 + (r −m)− 3 if ai > 1 for more

than m i′s, m ≥ 2, i ∈ {1, 2, . . . , r}

Proof. The proof follows from Theorem 2.4 and 2.6. �

Theorem 3.3. For every arithmetic graph other than G = Vn, n = pa1

1 ×p2, a1 > 2
are optimal and the atom r(G) = 2.

Proof. Let G = Vn be an arithmetic graph,
Case (i)If n = pa1

1 × p2, a1 > 2 then by Theorem 2.2 we have the super edge

connectivity number λ
′

(G) = 2. By Theorem 3.1, the minimum edge degree ξ(G) =

a1. Clearly λ
′

(G) 6= ξ(G), hence it is non optimal.
Case (ii)Consider G = Vn where n 6= pa1

1 × p2, a1 > 2, then by using the theorems

in section 2 and by Theorem 3.1 it is clear that λ
′

(G) = ξ(G). Hence G = Vn

is optimal. Also since G − F contains exactly two component such as k2 and a
connected component containing more than 2 vertices. Clearly, by the definition of
fragment X = K2 and the atom of G is r(G) = |X| = 2. �

Conclusion

From the above theorems, it is identified that all arithmetic graph other
than G = Vn, n = p1 × p2 has super edge cut. In addition to that, for every
arithmetic graphs G = Vn, n 6= pa1

1 × p2, a1 > 2 are optimal and the atom r(G) is
2.
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