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Abstract. In this paper, we consider a singular boundary value problem with

the non-autonomous kind of Duffing equation. With the help of the Krein Rutman

Theorem and by using fixed point arguments, we derive existence and uniqueness re-

sults of homoclinic solution. Finally, examples are given to illustrate our theoretical

results.
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1. INTRODUCTION

This paper deals with the existence and uniqueness results of homoclinic
solutions for the following singular boundary value problem with Duffing equation

{
−u′′ (t) + cu′ (t) + u (t) (λ− q (t) .um (t)) = φ (t) f(t, u(t)), t ∈ R,

u(−∞) = u(+∞) = 0,
(1)

where λ, c,> 0,m ≥ −1 and for t > 0, the function x 7→ f (t, x) is not defined at 0.

The existence of homoclinic solutions for Duffing equations attracted the
attention of researchers from all over the world and as such have been exten-
sively investigated in the literature, see ([2], [3], [5], [6], [7], [8], [9], [11], [13],
[14], [15] and [17], and references therein. It can be considered as solutions hav-
ing a finite limit to ±∞. The Duffing equation (or Duffing oscillator), named
after Georg Duffing (1861–1944), is a non-linear second-order differential equation
used to model certain damped and driven oscillators. The equation is given by
..
x+ δ

.
x+ αx+ βx3 = γ cos (ωt) where the (unknown) function x(t) is the displace-

ment at time t, the first derivative
.
x is the velocity, and the second time

..
x derivative

is acceleration.
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The Duffing system presents in the frequency response the jump resonance phenom-
enon that is a sort of frequency hysteresis behaviour, where δ controls the amount
of damping, α controls the linear stiffness, β controls the amount of non-linearity
in the restoring force, γ is the amplitude of the periodic driving force and ω is the
angular frequency of the periodic driving force.

In [11], Duffing’s equations with variable coefficients was studied in continuous
and discrete cases and in the presence of both harmonic and nonharmonic external
perturbations. In [17], the existence results for Duffing equations was established
with a p-Laplacian operator.

Motivated by the above works, in this paper we study existence and unique-
ness results of positive homoclinic solution for Duffing type problem with variable
coefficient (1) posed in the real line.

Throughout the article, we assume that f : R×(0,+∞) → R
+ is a continuous

function, φ, q : R → R
+ are the measurable functions, where φ does not vanish

identically on any subinterval of R such that
∫

R

q (s) er2|s|ds <∞,

∫

R

max
(
e−r1t, e−r2t

)
φ (t) dt <∞, (2)

and for all r,R > 0 with r ≤ R, there exists a positive function gr,R : R → R with
∫

R

φ (t) gr,R (t) dt <∞,

such that

f
(
t, er2|t|x

)
≤ gr,R (t) for (t, x) ∈ R× [γ (t) r,R] (3)

where

γ(t) = min(e2r2t, e(r1−r2)t),

and r1 and r2 are solutions of caracteristic function −X2 + cX + λ = 0 with

r1 < 0 < r2.

The rest of the paper is organized as follows. in Section 2, some preliminary
materials to be used later are stated. In Section 3, we present and prove our
main results consisting of existence and uniqueness results, where the singularity
0 is apparent in the first existence theorem and non-apparent in others. Finally,
examples are given to illustrate our theoretical results.

2. Preliminaries

For sake of completeness let us recall some basic facts needed in this paper.
Let E be a real Banach space equipped with its norme noted ‖.‖. A nonempty
closed convex subset P of E is said to be a cone if P ∩ (−P ) = 0 and (tP ) ⊂ P

for all t ≥ 0. It is well known that a cone P induces a partial order in the Banach
space E. We write for all x; y:∈ E; x ≤ y if y − x ∈ P.
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The mapping L : E → E is said to be positive in P if L(P ) ⊂ P , and
compact if it is continuous and L (B) is relatively compact in E for all bounded
subset B of E. The real value

r (L) = sup {|λ| : λ ∈ Sp(L)}

denotes the spectral radius of a linear and bounded operator L, where Sp(L) is the
spectrum of L, and we have

r (L) = lim
n→∞

‖Ln‖
1
n .

The main tool of this work is the following Guo-Krasnoselskii’s version of
expansion and compression of a cone principal in a Banach space [7] .

Theorem 2.1. Let Ω1,Ω2 be open bounded subsets of E such that 0 ∈ Ω1 ⊂ Ω1 ⊂
Ω2. If T : P ∩ (Ω2\Ω1) → P is a compact operator such that either:

(1) ||Tu|| ≤ ||u|| for u ∈ P ∩ ∂Ω1 and ||Tu|| ≥ ||u|| for u ∈ P ∩ ∂Ω2, or
(2) ||Tu|| ≥ ||u|| for u ∈ P ∩ ∂Ω1 and ||Tu|| ≤ ||u|| for u ∈ P ∩ ∂Ω2,

Then T has a fixed point in P ∩ (Ω2\Ω2).

The following Krein Rutman Theorem has been established in [16]:

Theorem 2.2. Let K be a cone in E and L : E → E be an linear, positive, and
compact operator. Suppose that for some non-zero element u ∈ K∗, the following
relation is satisfied:

MLu ≥ u, for some M > 0.

Then L has a non-zero eigenvector v ∈ K∗ :

Lv = λv,

where the positive eigenvalue λ satisfies the inequality λ ≥M−1.

In what follows, we let E be a Banach space defined as

E =

{
u ∈ C(R,R) : lim

|t|→∞
e−r2|t|u(t) = 0

}

equipped with the norm ‖·‖, where for u ∈ E ‖u‖ = supt∈R

(
e−r2|t| |u(t)|

)
,

K = {u ∈ E : u(t) ≥ 0 for all t ∈ R}

and
P = {u ∈ K : u(t) ≥ γ̃ (t) ‖u‖ for all t ∈ R}

be the cone of E, with
γ̃ (t) = min

(
er1t, er2t

)
.

Lemma 2.3. [4] A non empty subset M of E is relatively compact if the following
conditions hold :

(1) M is bounded in E,
(2) The set

{
u : e−r2|t|x(t), x ∈M

}
is locally equicontinuous on [0,+∞), and

(3) The set
{
u : e−r2|t|x(t), x ∈M

}
is equiconvergent at ∞
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3. MAIN RESULTS

For r > 0, we consider the operator Tr : P\B (0, r) → E defined by

Tru (t) =

∫ +∞

−∞

G(t, s)F (s, u(s)) ds

where G,R× R → R
+ defined by

G(t, s) =
1

r2 − r1

{
exp(r1(t− s)) if s ≤ t,

exp(r2(t− s)) if t ≤ s

is the Green’s function associated with the bvp (1) and

F (s, u) = q(s).um+1 + φ (s) f (s, u(s)) , s ∈ R.

Lemma 3.1. Assume that Hypothesis (2) and (3) hold true and let r > 0. Then
fixed points of Tr are positive solutions of bvp (1).

Proof. Let u ∈ P r {0} be a fixed point of Tr , with r = ‖u‖. For all t ∈ R we have

u(t) =
1

r2 − r1

(
er1t

∫ t

−∞
e−r1sF (s, u(s))ds+ er2t

∫ +∞

t
e−r2sF (s, u(s))ds

)
,

u′(t) =
r1e

r1t

r2 − r1

∫ t

−∞
e−r1sF (s, u(s))ds+

r2e
r2t

r2 − r1

∫ +∞

t
e−r2sF (s, u(s))ds and

u′′(t) =
(r1)

2
er1t

r2 − r1

∫ t

−∞
e−r1sF (s, u(s))ds

+
(r2)

2
er2t

r2 − r1

∫ +∞

t
e−r2sF (s, u(s))ds− F (t, u(t)).

Thus, we obtain

−u′′(t) + cu′(t) + λu(t) =
−r21 + cr1 + λ

r2 − r1

∫ t

−∞
G(t, s)F (s, u(s))ds

+
−r22 + cr2 + λ

r2 − r1

∫ +∞

t
G(t, s)F (s, u(s))ds+ F (t, u(t))

= F (t, u(t)).

Moreover, as u (t) ∈ [γ (t) r, r], we have from (3) that F (t, u(t)) ≤ q(t)rn+φ (t) gr,r(t) ∈
L1 (R) and so

lim
t→+∞

er2t
∫ +∞

t

e−r2sF (s, u(s))ds ≤ lim
t→+∞

∫ +∞

t

F (s, u(s))ds = 0,

and

lim
t→−∞

er1t
∫ t

−∞

e−r2sF (s, u(s))ds ≤ lim
t→−∞

∫ t

−∞

F (s, u(s))ds = 0,

leading to
lim

|t|→+∞
u(t) = 0,

completing the proof of the Lemma. �

Lemma 3.2. The function G has the following properties:

1: 0 < G(t, s) ≤ 1
r2−r1

for all t, s ∈ R.
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2: For all t, τ, s ∈ R

p(t)G(t, s) ≥ γ (t) p(τ)G(τ, s).

where

p(t) = e−r2|t|,

γ(t) = min(e2r2t, e(r1−r2)t),

γ̃ (t) =
γ(t)

p(t)
= min (er1t, er2t)

Proof. Assertions (1) is easy to prove, so we show assertion (2). For t, τ, s ∈ R,set

Q (t, τ, s) = p(t)G(t,s)
p(τ)G(τ,s) . We distingish four cases.

a/ τ, t ≥ 0, in this case we have

Q (t, s, τ) =





exp (− (r2 − r1) t+ (r2 − r1) τ) ≥ e−(r2−r1)t if s ≤ τ ≤ t

exp (− (r2 − r1) t+ (r2 − r1) s) ≥ e−(r2−r1)t if τ ≤ s ≤ t

1 ≥ e−(r2−r1)t if τ ≤ t ≤ s

exp (− (r2 − r1) t+ (r2 − r1) τ) ≥ e−(r2−r1)t if s ≤ t ≤ τ

exp (− (r2 − r1) s+ (r2 − r1) τ) ≥ e−(r2−r1)t if t ≤ s ≤ τ

1 ≥ e−(r2−r1)t if t ≤ τ ≤ s

≥ γ (t)

b/ τ, t ≤ 0, in this case we have

Q (t, s, τ) =





exp ((r2 + r1) t− (r2 + r1) τ) ≥ e(r2+r1)t if s ≤ τ ≤ t

exp ((r2 + r1) t− 2r2τ + (r2 − r1) s) ≥ e(r2+r1)t if τ ≤ s ≤ t

exp (2r2 (t− τ)) ≥ e2r2t if τ ≤ t ≤ s

exp ((r2 + r1) t− (r2 + r1) τ) ≥ e(r2+r1)t if s ≤ t ≤ τ

exp (− (r2 − r1) s+ 2r2t− (r2 + r1) τ) ≥ e2r2t if t ≤ s ≤ τ

exp (2r2 (t− τ)) ≥ e2r2t if t ≤ τ ≤ s

≥ γ (t)

c/ τ ≤ 0, t ≥ 0, in this case we have

Q (t, s, τ) =





exp (− (r2 − r1) t− (r2 + r1) τ) ≥ e−(r2−r1)t if s ≤ τ ≤ t

exp (− (r2 − r1) t− 2r2τ + (r2 − r1) s) ≥ e−(r2−r1)t if τ ≤ s ≤ t

exp (−2r2τ) ≥ e−(r2−r1)t if τ ≤ t ≤ s

≥ γ (t)

d/ τ ≥ 0, t ≤ 0, in this case we have

Q (t, s, τ) =





exp ((r2 + r1) t+ (r2 − r1) τ) ≥ e(r2+r1)t if s ≤ t ≤ τ

exp (− (r2 − r1) s+ 2r2t+ (r2 − r1) τ) ≥ e2r2t if t ≤ s ≤ τ

exp (2r2t) if t ≤ τ ≤ s

≥ γ (t) .

Consequently, p(t)G(t,s)
p(τ)G(τ,s) ≥ γ (t) . �

Lemma 3.3. Let r > 0 and assume that Hypothesis (2) and (3) hold true.
Then the operator Tr : P\B (0, r) → P is compact.
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Proof. ForR > 0, let Ωr,R = P∩B̄ (0, R) \B (0, r) be a bounded subset of P\B (0, r) .
1. We show that the set Mr,R = Tr (Ωr,R) is a subset of.E. Let ψr,R be a function
deined by

ψr,R (t) = q(t).er2|t|Rm+1 + φ (t) gr,R(t) ∈ L1 (R) .

We see from continuity of the Green function G that Mr,R ⊂ C (R,R) . Moreover
for u ∈ Ωr,R and t ∈ R

we have

rγ (t) ≤ p(t)u(t) ≤ R.

Then

Tr(u) (t) =

∫

R

G(t, s)F (s, u(s))ds

≤
1

r1 − r2

∫

R

ψr,R (s) ds <∞

leading to

lim
|t|→∞

e−r2|t| |Tr(u) (t)| = 0.

2. We show that Mr,R is relatively compact.
In first, we show that the set Mr,R is bounded. Let u ∈ Ωr,R and gr,R the function
given in (3).
We have

e−r2|t| |Tr(u) (t)| ≤ |Tr(u) (t)| ≤

∫

R

G(t, s)ψr,R(s)ds

≤
1

r2 − r1

∫

R

ψr,R(s)ds <∞

proving the boundeness of Mr,R.

Let t1, t2 ∈ [η, ζ] ⊂ R, for all u ∈ Ω we have

|p(t2)Tru (t2)− p(t1)Tru (t1)| ≤ |p1(t2)− p1(t1)|
∫ ζ

−∞
e−r1sψr,R(s)ds

+ |p2(t2)− p2(t1)|
∫ +∞

η
e−r2sψr,R(s)ds

+Cη,ζ

∫ t2

t1
ψr,R(s)ds

where for i = 1, 2, pi(t) = e−r2|t|+rit and Cη,ζ = 2 supt,s∈[η,ζ] .p(t)G(t, s).

Because that p1, p2 and t →
∫ t

0
ψr,R(s)ds are uniformly continuous on com-

pact intervals, the above estimates prove that Mr,R is equicontinuous on compact
intervals.
Finally, let u ∈ Ωr,R. For t ∈ R

e−r2|t| |Tr(u) (t)| ≤

(
1

r2 − r1

∫

R

ψr,R (s) ds

)
e−r2|t|,
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with

lim
|t|→∞

e−r2|t|

(
1

r2 − r1

∫

R

ψr,R (s) ds

)
= 0,

so, the equiconvergence of Mr,R holds. By Lemma (2.3), we deduce that Mr,R is
relatively compact.
3. We show that Tr is continuous in Ωr,R.

Let (un)n be a sequence in Ωr,R such that

lim
n→∞

un = u ∈ Ω.

e−r2|t| |Tr(un) (t)− Tr(u) (t)| ≤
1

r2 − r1

∫

R

|F (s, un(s))− F (s, u(s))| ds,

then

‖Tr(un)− Tr(u)‖ ≤
1

r2 − r1

∫

R

|F (s, un(s))− F (s, u(s))| ds.

By continuity of F in R
+\ {0} we have

lim
n→∞

|F (s, un(s))− F (s, u(s))| = 0 a.e. in R.

Moreover, we have

|F (s, un(s))− F (s, u(s))| ≤ F (s, un(s)) + F (s, u(s))

≤ 2ψr,R (s) ∈ L1 (R)

then the Lebesgue dominated convergence theorem garantees that

lim
n→∞

‖Tr(un)− Tr(u)‖ = 0

which shows the continuity of Tr.
4. Finally, we prove that Tr

(
P ∩ B̄ (0, R) \B (0, r)

)
⊂ P.

Set v = Tru, u ∈ Ωr,R, and let t ∈ R. Assertion 2 of Lemma (3.2) gives

v(t) ≥

∫

R

γ (t)

p (t)
p (τ)G(τ, s)F (s, u(s))ds = γ̃ (t) p (τ) v (τ)

this is for all τ ∈ R, then

v(t) ≥ γ̃ (t) ‖v‖

proving our claim. �

For θ > 0, set

f0 = lim
x→0+

(
sup
t∈R

f(t, er2|t|x)

x

)
, f∞ = lim

x→+∞

(
sup
t∈R

f(t, er2|t|x)

x

)

f0 (θ) = lim
x→0+

(
inf

t∈[−θ,θ]

f(t, er2|t|x)

x

)
, f∞ (θ) = lim

x→+∞

(
inf

t∈[−θ,θ]

f(t, er2|t|x)

x

)
.
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In the main results, we use the following notations

λ (θ) =

(
sup
t∈R

{
e−r2|t|

∫ +θ

−θ
G(t, s)φ (s) γ (s) ds

})−1

µ =

(
sup
t∈R

{
e−r2|t|

∫
R
G(t, s)

[
q(s)er2|s| + φ (s)

]
ds
})−1 (4)

3.1. Existence results.

Theorem 3.4. Assume that Hypothesis (2) and (3) hold true.
If m > 1 and there exist θ > 0 such that

µ−1f0 < 1 < λ−1 (θ) f∞ (θ) (5)

then bvp (1) admits at least one positive solution.

Proof. Let θ, ǫ > 0 such that (f∞ (θ)− ǫ) > λ (θ) . There exists R0 > 0 such that
for all (t, x) ∈ [−θ, θ]× [R0,+∞[

f(t, er2|t|x) ≥ (f∞ (θ)− ǫ)x > λ (θ)x.

Let R = R0

δ
with δ = min {γ (t) , t ∈ [−θ, θ]} . Let u ∈ ∂B (0, R) ∩ P and let v be a

function defined in R by

v (t) =

∫

R

G(t, s)F (s, u(s))ds.

For all t ∈ [−θ, θ]

e−r2|t|u(t) ≥ R0,

and so for t ∈ R

e−r2|t|v(t) ≥ e−r2|t|

∫

R

G(t, s)φ (s) f(s, u(s))ds

≥ e−r2|t|

∫ +θ

−θ

G(t, s)φ (s)λ (θ) e−r2|s|u(s)ds

≥ ‖u‖λ (θ) e−r2|t|

∫ +θ

−θ

G(t, s)φ (s) e−r2|s|γ̃ (s) ds.

then

‖v‖ = sup
t∈R

{
e−r2|t| |Tu(t)|

}
≥ ‖u‖λ (θ)λ−1 (θ) = ‖u‖ .

Now, suppose that µ−1f0 < 1 and let ǫ > 0 be such that f0 + ǫ < µ, then there
exists r > 0 such that for all (t, x) ∈ R× (0, r]

f(t, er2|t|x) ≤
(
f0 + ǫ

)
x and xm+1 ≤

(
f0 + ǫ

)
x

Let u ∈ ∂B (0, r) ∩ P and let w be a function defined in R by

w (t) =

∫

R

G(t, s)F (s, u(s))ds.
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. For t ∈ R

f(t, u(t)) = f(t, er2|t|x(t))

with
0 < x(t) = e−r2|t|u(t) ≤ r.

Then

e−r2|t|w(t) = e−r2|t|

∫

R

G(t, s)
[
q (s)um+1 (s) + φ (s) f(s, u(s))

]
ds

≤ e−r2|t|

∫

R

G(t, s)
(
f0 + ǫ

) [
q(s)u(s) + φ (s) e−r2|s|u(s)

]
ds

≤ ‖u‖
(
f0 + ǫ

)
.e−r2|t|

∫

R

G(t, s)
[
q(s)er2|s| + φ (s)

]
ds

leading to

‖w‖ = sup
t∈R

{
e−r2|t|Tu(t)

}
≤ ‖u‖

(
f0 + ǫ

)
.µ−1 ≤ ‖u‖ .

Thus, for all u ∈ ∂B (0, R) ∩ P

‖Tru‖ ≥ ‖u‖

and for all u ∈ ∂B (0, r) ∩ P
‖Tru‖ ≤ ‖u‖ .

We deduce from assertion 1 of Theorem (2.1), that Tr admits a fixed point u ∈ P

with r ≤ ‖u‖ ≤ R which is a positive solution of bvp (1). �

Now we consider the following condition
{

there exists θ > 0 such that
µ−1f∞ < 1 < λ−1 (θ) f0 (θ) ≤ ∞

(6)

Theorem 3.5. Assume that Hypothesis (2), (3) and (6) hold true.
If −1 ≤ m < 0, then bvp (1) admits at least one positive solution

Proof. Suppose that λ−1 (θ) f0 (θ) > 1 for some θ > 0. We show that there exist
π > λ (θ) and r′ > 0 such that

f(t, er2|t|x) ≥ π.x for all (t, x) ∈ [−θ, θ]× (0, r′].

We distinguish two cases.
Case 1. If f0 (θ) <∞, then there exists ǫ > 0 such that

f0 (θ)− ǫ > λ (θ)

and so, there exists r′ > 0 such that

f(t, er2|t|x) ≥ π.x for all (t, x) ∈ [−θ, θ]× (0, r′]

where
π = f0 (θ)− ǫ.

Case 2. If f0 (θ) = ∞, then for every ǫ0 > λ (θ) , there exists r′ > 0 such that

f(t, er2|t|x) ≥ ǫ0.x for all (t, x) ∈ [−θ, θ]× (0, r′].
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Now, let u ∈ ∂B (0, r′) ∩ P and let v be a function defined in R by

v (t) =

∫

R

G(t, s)F (s, u(s))ds.

For t ∈ R

e−r2|t|v(t) ≥ e−r2|t|

∫

R

G(t, s)φ (s) f(s, u(s))ds

≥ e−r2|t|

∫ θ

−θ

G(t, s)φ (s)π.e−r2|s|u(s)ds

≥ ‖u‖π.e−r2|t|

∫ θ

−θ

G(t, s)φ (s) e−r2|s|γ̃ (s) ds

≥ ‖u‖π.e−r2|t|

∫ θ

−θ

G(t, s)φ (s) γ (s) ds.

then

‖v‖ = sup
t∈R

{
e−r2|t| |v(t)|

}
≥ ‖u‖ (f0 (θ)− ǫ)λ−1 (θ) ≥ ‖u‖ .

Now, suppose that µ−1f∞ < 1 and let ǫ1 > 0 be such that

f∞ + ǫ1 < µ.

Then there exists R1 > 0 such that for all (t, x) ∈ R× [R1,+∞),

f(t, er2|t|x) ≤ (f∞ + ǫ1)x and xm+1 ≤ (f∞ + ǫ1)x

and by the condition (3), there exists a positive constant c1 > 0 such that

f(t, er2|t|x) ≤ (f∞ + ǫ1)x+ c1 for all (t, x) ∈ R× [γ (t)R1,+∞)

where

c1 = sup {gR1,R1
(t) , t ∈ R} .

We show that there exists R′ > R = max {R1, r
′} such that for all u ∈ ∂B (0, R′)∩P

∥∥∥∥
∫

R

G(t, s)F (s, u(s))ds

∥∥∥∥ ≤ ‖u‖ .

In the contrary, assume that for all n ≥ [R] + 1, there exist un ∈ ∂B (0, n)∩P and
tn ∈ R such that

‖un‖ < e−r2|tn|

∫

R

G(tn, s)F (s, un(s))ds.

As e−r2|t|un (t) ≥ e−r2|t|.γ̃ (t) . ‖un‖ ≥ γ (t)R1, for t ∈ R, then

f(t, un (t)) ≤ (f∞ + ǫ1) e
−r2|s|un (t) + c1 for all t ∈ R
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and so

‖un‖ < e−r2|tn|

∫

R

G(tn, s)F (s, un(s))ds

≤ e−r2|tn|

∫

R

G(tn, s) (f
∞ + ǫ1)

[
φ (s) e−r2|s|un (s) + q(s)un (s)

]
ds

+e−r2|tn|

∫

R

G(tn, s)φ (s) c1ds

≤ ‖un‖ (f
∞ + ǫ1) sup

t∈R

{
e−r2|tn|

∫

R

G(t, s) [φ (s)

+er2|s|q(s)
]
ds
}
+ e−r2|tn|

∫

R

G(tn, s)φ (s) c1ds,

leading to the following contradiction

1 ≤ lim
n→∞

µ−1 (f∞ + ǫ1) +
e−r2|tn|

‖un‖

∫

R

G(tn, s)φ (s) c1ds = (f∞ + ǫ1)µ
−1 < 1.

Thus, for all u ∈ ∂B (0, R′) ∩ P

‖Tr′u‖ ≤ ‖u‖

and for all u ∈ ∂B (0, r′) ∩ P

‖Tr′u‖ ≥ ‖u‖ .

We deduce from assertion 2 of Theorem (2.1) that Tr′ admits a fixed point u ∈ P

with r′ ≤ ‖u‖ ≤ R′ which is a positive solution of bvp (1). �

3.2. Uniqueness results. By Lemma (3.3), for each θ, c > 0 the linear mappings
L, Lθ : E → E defined as

Lθu(t) =

∫ θ

−θ

G(t, s)φ (s) e−r2|s|u(s)ds

and

Lcu(t) =

∫ +∞

−∞

G(t, s)
[
φ (s) + c−1er2|s|q(s)

]
e−r2|s|u(s)ds

are compact and

Lc (K\ {0}) ⊂ P\ {0} . (7)

Lemma 3.6. For all c > 0, Lc admits an eigenpair (λ, v) such that λ > 0 and
v ∈ P\ {0} .

Proof. Let c > 0 and u = γ̃ ∈ P\ {0} . For some θ > 0, we have

Lcu(t) ≥ γ̃(t) ‖Lcu‖ ≥ γ̃(t) ‖u‖ sup
tǫR

{
e−r2|t|

∫ θ

−θ

G(t, s)φ (s) γ(s)ds

}
.

As

‖γ̃‖ = 1,
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thenc
λ (θ) .Lcu ≥ u.

Then we deduce from Theorem (2.2) that

λ ≥ λ−1 (θ) > 0,

where

Lcv = λv, v ∈ P\ {0} .

�

Remark 3.7. It follows from the above lemma that r(Lc) > 0, for all c > 0.

Theorem 3.8. Assume that Hypothesis (2) and (3) hold true.
If m = 0 and there exist r, θ > 0 and c ≥ 0 with

c <
1

r (Lc)
,

such that for all (t, x) ∈ [−θ, θ]× [γ (t) r,+∞)

f(t, er2|t|x) ≥ λ (θ) .x, (8)

and for all (t, x, y) ∈ R× [γ (t) r,+∞)2

∣∣∣f
(
t, er2|t|x

)
− f

(
t, er2|t|y

)∣∣∣ ≤ c |x− y| . (9)

Then bvp (1) has a unique positive solution in P\B (0, r) .

Proof. The case c = 0 is obvious, so we suppose that c > 0 :

Uniqueness. If u1, u2 ∈ P\B (0, r) are two solutions of (1) with u1 6= u2,
then u1, u2 are fixed points of Tr .
For all t ∈ R, i ∈ {1, 2}

e−r2|s|ui (t) ≥ γ (t) .r

and so

|u1 − u2| = |Tr,Ru1 − Tr,Ru2| ≤

∫ +∞

−∞

G(t, s) [q(s) |u1 − u2|

+φ (s) |f (s, u1)− f (s, u2)|] ds

≤ c.

∫ +∞

−∞

G(t, s)
[
q(s)c−1er2|s| + φ (s)

]
e−r2|s| |u1 − u2| ds ≤ c.Lc (|u1 − u2|)

where

Lc (u) (t) =

∫ +∞

−∞

G(t, s)
[
q(s)c−1er2|s| + φ (s)

]
e−r2|s|u (s) ds.

By using the condition (9) we obtain

|u1 − u2| ≤ cLc (|u1 − u2|) .

Then

Lc |u1 − u2| ≤ cL2
c |u1 − u2| .
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Set w = Lc |u1 − u2| . As |u1 − u2| ∈ K\ {0} , then by (7) this leads to w ∈ P\ {0} .
Then we have

w ≤ cLcw, w ∈ P\ {0} ,

and by Theorem (2.2) we deduce that Lc admits a positive eigenvalue λ1 such that

λ1 ≥ c−1

this leads the contradiction

r (Lc) ≥ λ1 ≥ c−1 > r(Lc).

The uniqueness is proved.

Existence. Let v ∈ P ∩ ∂B (0, r) and consider the sequence (un)n defined
by {

un+1 = Trun
u0 = v.

First, we show that (un)n ⊂ P\B (0, r) .

Let u ∈ P\B (0, r) . Since e−r2|t|u ≥ γ (t) r for all t ∈ R, the condition (8) leads

f(t, u) ≥ λ (θ) e−r2|t|u.

Therefore

Tru ≥ λ (θ)Lθ
(
e−r2|s|u

)

where

Lθ
(
e−r2|s|u

)
(t) =

∫ +θ

−θ

G(t, s)φ (s) e−r2|s|u (s) ds

≥ ‖u‖

∫ +θ

−θ

G(t, s)φ (s) γ (s) ds.

Then
‖Tru‖ ≥ ‖u‖ = r.

Then Tr (P\B (0, r)) ⊂ P\B (0, r) , which means that (un)n ⊂ P\B (0, r) .
Now, by (9) we have for all n ≥ 1

|un+1 − un| = |Trun − Trun−1| ≤

∫ +∞

−∞

G(t, s) |F (s, un)− F (s, un−1)| ds

≤ cLc |un − un−1| .

Then, for all n ≥ 0
|un+1 − un| ≤ cnLn

c |u1 − u0| .

Therefore, for m > n ≥ 1,

|um − un| ≤ |um − um−1|+ |um−1 − um−2|+ ...+ |un+1 − un|

≤ cm−1Lm−1
c |u1 − u0|+ cm−2Lm−2

c |u1 − u0|+ ...+ cnLn
c |u1 − u0|

then

‖um − un‖ ≤ cm−1
∥∥Lm−1

c w
∥∥+ cm−2

∥∥Lm−2
c w

∥∥+ ...+ cn ‖Ln
cw‖

= Sm−1 − Sn−1,
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where

Sn =

n=+∞∑

n=0

cn ‖Ln
cw‖ , with w = |u1 − u0| .

Since c < (r(L))
−1
, we have that

lim
n→∞

n

√
cn ‖Ln

cw‖ ≤ c lim
n→∞

n

√
‖Ln

c ‖ = c.r(Lc) < 1,

then (Sn)n converges and

lim
n→∞

‖um − un‖ = lim
n→∞

Sm−1 − Sn−1 = 0.

Therefore, the sequence (un)n is also a cauchy sequence and the completeness of E
leads to limn→∞ un = u ∈ P , with

‖u‖ ≥ r > 0.

At the end, passing to the limit in un+1 = Trun, and by continuity of Tr in
P\B (0, r), we obtain u = Tru, and u is the unique fixed point of Tr, which is
the unique positive homoclinic solution of bvp (1) in P\B (0, r).

�

Theorem 3.9. Assume that Hypothesis (2), (3) and (6) hold true.
If −1 < m ≤ 0 and there exist r > 0 and a positive function h : R → R

+ such that

sup
t≥0

(
e−r2|t|

∫ +∞

−∞

G(t, s)
[
(m+ 1) q(s).er2|s| (γ (s) .r)

m
+ h (s) .φ (s)

]
ds

)
< 1

(10)
and such that for all (t, x, y) ∈ R× [γ (t) r,+∞)2

∣∣∣f
(
t, er2|t|.x

)
− f

(
t, er2|t|.y

)∣∣∣ ≤ h (t) . |x− y| .

Then bvp (1) has a unique positive solution in P\B (0, r) .

Proof. The case c = 0 is obvious, so we suppose that c > 0 :

Existence. By using theorem (3.5), we deduce from Hypothesis (2), (3) and
(6) the existence of solution.

Uniqueness. If u1, u2 ∈ P\B (0, r) are two solutions of (1) with u1 6= u2,
then u1, u2 are fixed points of Tr .
For all t ∈ R, i ∈ {1, 2}

e−r2|s|ui (t) ≥ γ (t) .r

and so

|u1 − u2| = |Tr,Ru1 − Tr,Ru2| ≤

∫ +∞

−∞

G(t, s)
[
q(s)

∣∣um+1
1 − um+1

2

∣∣

+φ (s) |f (s, u1)− f (s, u2)|] ds

≤ ‖u1 − u2‖

∫ +∞

−∞

G(t, s)
[
(m+ 1) q(s).er2|s| (γ (s) .r)

m
+ h (s) .φ (s)

]
ds
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this leads the following contradiction

‖u1 − u2‖ ≤ sup
t≥0

(
e−r2|t|

∫ +∞

−∞

G(t, s)
[
(m+ 1) q(s).er2|s| (γ (s) .r)

m

+h (s) .φ (s)] ds) ‖u1 − u2‖

< ‖u1 − u2‖ ,

ending the proof of our claim. �

Example 3.10. We consider the following bvp
{

−u′′ (t) + u′ (t) + u (t) (2− q (t) .um (t)) = φ (t) f(t, u(t)), t ∈ R,

u(−∞) = u(+∞) = 0,
(11)

where
q (t) = e−3|t| = φ (t) .

We have r1 = −1 < 0 < r2 = 2, γ (t) = min
{
e4t, e−3t

}
and γ̃ (t) = min

{
e−t, e2t

}
.

Moreover, we have

max
{
et, e−2t

}
φ (t) =

{
et.e−3t = e−2t t > 0
e−2t.e3t = et t < 0

∈ L1 (R) , e2|t|.e−3|t| = e−|t| ∈ L1 (R) .

Let f : R+ × (0,+∞) → R
+ be a function defined by

f (t, x) =
e−2α|t|.γ (t) .xα

arctan
(

x
γ̃(t)

) , α ≥ 0.

For (t, x) ∈ R× [γ (t) .r, R] , r < R, we have

f
(
t, e2|t|x

)
=

(
e2|t|

)−α

.γ (t)

(
e2|t|x

)α

arctan
(

e2|t|x
γ̃(t)

) ≤ gr,R (t) =
(R)

α

arctan (r)
γ (t)

and

φ (t) .gr,R (t) =
(R)

α

arctan (r)
φ (t) γ (t) ∈ L1 (R)

since

e−3|t|.γ (t) =

{
e−6t t > 0
e7t t < 0.

∈ L1 (R) .

So, the hypothesis (2) and (3) are satisfied.

f
(
t, e2|t|x

)
= γ (t)

xα

arctan
(

x
γ(t)

) .

Moreover, for all x > 0, θ > 0

sup
t≥0

{
f
(
t, e2|t|x

)}
= f (0, x) =

xα

arctan (x)
and inf

|t|≤θ

{
f
(
t, e2|t|x

)}
= e−4θ xα

arctan (x.e4θ)
.

We deduce from theorems (3.4) and (3.5), that if one of the following conditions
holds
1. m > 1 and α > 2 (f is super-linear), or
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2. −1 ≤ m < 0 and α < 2 (f is sub-linear),
then bvp (11) admits at least one positive solution.

Example 3.11. We consider the following bvp
{

−u′′ (t) + u′ (t) + u (t) (2− q (t) .um (t)) = φ (t) f(t, u(t)), t ∈ R,

u(−∞) = u(+∞) = 0,
(12)

where − 1
4 < m < 0 and

q (t) = e−3|t| = φ (t)

are the functions given in example (3.10). Let f : R+×(0,+∞) → R
+ be a function

defined by

f (t, x) = e−2α|t|.γ (t) .xα,−
3

4
< α < 0.

Then conditions (2), (3) and (6) are verified.
For (t, x, y) ∈ R× [γ (t) .r,+∞)2, r > 1, we have

∣∣∣f
(
t, e2|t|x

)
− f

(
t, e2|t|y

)∣∣∣ = γ (t) . |xα − yα| ≤ h (t) |x− y|

where

h (t) = |α| γ (t) . (γ (t) .r)
α−1

= |α| . (γ (t))
α
. (r)

α−1
.

We have

h (t) .φ (t) ∈ L1 (R) and q(t).er2|t| (γ (t))
m

∈ L1 (R)

because α > − 3
4 and m > − 1

4 . Set

Λ (t) = e−2|t|

∫ +∞

−∞

G(t, s)
[
(m+ 1) q(s).er2|s| (γ (s) .r)

m
+ h (s) .φ (s)

]
ds, t > 0.

We have

Λ (t) ≤
1

3

∫ +∞

−∞

[
(m+ 1) q(s).er2|s| (γ (s) .r)

m
+ h (s) .φ (s)

]
ds

≤
rm

3

∫ +∞

−∞

[
(m+ 1) q(s).er2|s| (γ (s))

m
+ (|α| . (γ (t))

α
) .φ (s)

]
ds.

Then for

r > max

{
1,

1

3
|m|

√∫ +∞

−∞

[
(m+ 1) q(s).er2|s| (γ (s))

m
+ (|α| . (γ (t))

α
) .φ (s)

]
ds

}
,

the condition (10) of theorem (3.9) holds, so, bvp (12) has a unique positive solution
in P\B (0, r) . �
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