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Abstract. IVIFSs have a notable advantage in coping the uncertain information

and were adequately used in decision-making. In IVIFSs there exists a definite

relationship between the degree of membership, non-membership, and hesitancy

which is well captured by Jaccard similarity. Moreover, Jaccard similarity measure

gives a very intuitive similarity between the samples and hence been implemented

in decision making. Hence, in this paper a decision-making model is constructed

using the Normalized Jaccard distance measure on IVIFSs. The proposed model is

illustrated by taking a numerical example. Further, the problem of choosing best

e-learning tool in higher education is considered as a case study. The results are

compared with the existing methods and analyzed. It is observed that the proposed

method is well accommodating in interpreting the results to a better extent as it

provides the amount of dissimilarity along with the distance. Thus, the proposed

ranking can be significantly applied to solve MCDM problems.

Key words and Phrases: IVIFS; MCDM; Interval hesitancy degree; Jaccard simi-

larity; Normalized Jaccard Distance.

1. INTRODUCTION

IVIFSs introduced by Atanassov and Gargov [1] have substantial benefit of
handling with vague and imperfect data and hence are ingeniously useful in various
fields, particularly in decision-making. Ranking of fuzzy numbers is an elementary
problem in fuzzy decision theory. Several ranking methodologies are proposed by
many researchers in decision making in the form of accuracy functions, score func-
tions and distance measures.

In recent past, the distance based similarity measures and entropy measures
are extensively applied in fuzzy decision problems as they specify the degree of even-
ness while ranking. Therefore, selecting alternatives by distance-based ranking is
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an interesting and important topic of research for handling MCDM problems. Fur-
ther, Jaccard similarity measure gives a very intuitive similarity amount between
the samples and hence been frequently implemented in decision support systems
with various domains.

Inspired by the applicability of Jaccard index in decision making, we pro-
posed a distance measure entitled Normalized Jaccard distance for IVIFSs and
presented a model using this distance measure to solve decision making problems.
The distance measure developed considers the interval hesitancy degree along with
membership functions and non-membership functions and it gives a very intuitive
similarity amount between the samples.

During the Covid-19 pandemic, rise of e-learning in education system is in-
creased. As a result, education scenario has changed dramatically, with the dis-
tinctive rise of e-learning platforms, whereby teaching is undertaken remotely and
on digital platforms. Research suggests that online learning has been shown to
increase retention of information, and take less time. Therefore, selecting a best
platform for online-learning has become a significant problem in education sector.
Hence, the problem of choosing best e-learning tool in higher education is studied
using the proposed model.

The study is summarized as: brief Literature Review is presented in section
2. Basics of IVIFSs are presented in section 3. In section 4, the Normalized
Jaccard distance measure between IVIFSs is defined and a model for solving MCDM
problem is presented. In section 5 the proposed model is illustrated through a
numerical example from literature and a case study of choosing best e-learning
tool in higher education is solved. In section 6, a detailed comparative analysis of
proposed method and existing methods is given. The conclusion is drawn in section
7.

2. Literature Review

Decision making is a cognitive process and fuzzy sets are extensively used in
decision-making. Over decades, various decision making methods [16, 21] were de-
veloped under various fuzzy sets. Belbag et al. [3] combined fuzzy sets theory with
two different MCDM methods to eliminate the vagueness of linguistic factors that
stem from the uncertain and imprecise assessment of decision-makers to overcome
the problem of facility location selection. Nihan et al. [10] used the methods of
fuzzy set theory, linguistic value, Fuzzy TOPSIS and Fuzzy VIKOR to consolidate
decision-makers assessments about criteria weightings and described the applica-
tion of Fuzzy TOPSIS and Fuzzy VIKOR for solving location selection problem of
textile factory. Bolturk Eda et al. [4] developed COmbinative Distance-based As-
sessment (CODAS) method for solving MCDM problems, by taking the hesitancy of
decision makers into consideration based on both Euclidean and Taxicab distances
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according to the negative-ideal point. Deveci et al. [5] investigated the degree of im-
portance of criteria affecting the optimal site selection of offshore wind farms using
Fuzzy Delphi method. Dogan et al. [7] proposed a fuzzy decision model combining
analytic hierarchy process (AHP) and technique for order of preference by similar-
ity to ideal solution (TOPSIS) techniques with intuitionistic fuzzy sets is used to
solve the problem of corridor selection for locating autonomous vehicles. Deveci et
al. [6] highlighted the advantages of 6 real-time traffic management methods and
proposed novel extensions of MCDM methodology COmbining COmpromise SOlu-
tion (CoCoSo) with the logarithmic method and the fuzzy Power Heronian function.

The distance measures and the similarity measures indicate the degree of
likeness of two sets, thus significantly used for ranking of fuzzy sets in decision
making. A variety of distance measures and similarity measures of IVIFSs/ IV-
IFNs were defined in literature [16], these measures are the various combinations
and generalizations of the weighted Hamming distance, the weighted Euclidean dis-
tance, and the weighted Hausdorff distance. Zhang et al. [18] presented a method
for evaluating similarity measures of IVIFSs on the basis of Hausdorff metric and
applied to solve pattern recognition problem. Ye [17] proposed a cosine similarity
measure and a weighted cosine similarity measure for IVIFSs based on the ex-
tension of the cosine similarity measure to solve MCDM problems. Nayagam et
al. [9] proposed a distance based similarity measure and showed the application
through TOPSIS method in decision making. Therefore, to rank and select alterna-
tives through measuring the amount of similarity/ dissimilarity in decision making
problems is a significant topic of research.

3. Mathematical Preliminaries

In this section, we recall the notion and operations of IVIFSs.

Definition 3.1. Interval-Valued Intuitionistic fuzzy Set[1]

Let E be a fixed subset of a universal set X, then

Ã = {< xi, µÃ(xi), νÃ(xi) >, xi ∈ E}

where µÃ : X → S[0, 1] and νÃ : X → S[0, 10] are the membership and nonmem-

bership intervals of the element xi to the set Ã. with 0 ≤ supµÃ(xi) + supνÃ ≤ 1 ;
and S[0,1] be closed subintervals of [0,1].
And µL

Ã
(xi) ; µU

Ã
(xi) ; νL

Ã
(xi) and νU

Ã
(xi) are lower and upper boundaries of the

intervals µÃ and νÃ.
We can denote by

Ã = {< xi, [µ
L
Ã
(xi), µ

U
Ã
(xi)], [ν

L
Ã
(xi), ν

U
Ã
(xi)] >, xi ∈ E}
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The interval hesitancy degree of any IVIFS Ã is defined as [1]

πÃ(xi) = [1− µU
Ã
(xi)− νU

Ã
(xi), 1− µL

Ã
(xi)− νL

Ã
(xi)]

Atanassov and Gargov (1989) further gave some basic relations and opera-
tional laws of IVIFSs.

Definition 3.2. Operations of IVIFSs [2] Let Ã and B̃ , be any two IVIFSs
on E then

(i) Ã ⊆ B̃ iff µL
Ã
(xi) ≤ µL

B̃
(xi)), µ

U
Ã
(xi) ≤ µU

B̃
(xi)), ν

L
Ã
(xi) ≥ νL

B̃
(xi))andν

U
Ã
(xi) ≥

νU
B̃
(xi))])}

(ii) Ã = B̃ iff Ã ⊆ B̃ and B̃ ⊆ Ã

(iii) Ã
⋂

B̃ = {< xi, [min(µL
Ã
(xi), µ

L
B̃
(xi)),min(µU

Ã
(xi), µ

U
B̃
(xi))],

[max(νL
Ã
(xi), ν

L
B̃
(xi)),max(νU

Ã
(xi), ν

U
B̃
(xi))] >, xi ∈ E}

(iv) Ã
⋃

B̃ = {< xi, [max(µL
Ã
(xi), µ

L
B̃
(xi)),max(µU

Ã
(xi), µ

U
B̃
(xi))],

[min(νL
Ã
(xi), ν

L
B̃
(xi)),min(νU

Ã
(xi), ν

U
B̃
(xi))] >, xi ∈ E}

The Interval Valued Intuitionistic Fuzzy Number (IVIFN) is denoted by γ̃ =
([s, t], [u, v]) where [s, t] ⊆ [0, 1], [u, v] ⊆ [0, 1]andt+ v ≤ 1[16].

Definition 3.3. Arithmetic Operations of IVIFNs [16]

Let γ̃1 = ([s1, t1], [u1, v1]) and γ̃2 = ([s2, t2], [u2, v2]) be two IVIFNs, then
some arithmetic operations of γ̃1 and γ̃2 are defined as follows:

(i) γ̃1 + γ̃2 = ([s1 + s2 − s1.s2, t1 + t2 − t1.t2], [u1.u2, v1.v2]);
(ii) γ̃1 × γ̃2 = ([s1.s2, t1.t2], [u1 + u2 − u1.u2, v1 + v2 − v1.v2]);
(iii) r.γ̃1 = ([1− (1− s1)

r, 1− (1− t1)
r], [u1

r, v1
r]), r > 0 ;

(iv) γ̃r
1 = ([sr, tr], [1− (1− u1)

r, 1− (1− v1)
r]), r > 0.

Definition 3.4. Jaccard distance[13]

Jaccard distance measures the dissimilarity between the sets. The distance
between Ã, B̃ is given by dJ(Ã, B̃) = 1− SJ(Ã, B̃).

where SJ(Ã, B̃) =
|Ã

⋂
B̃|

|Ã
⋃

B̃|
is Jaccard similarity co-efficient.

Definition 3.5. Jaccard distance on IVIFSs[15]

Let Ã, B̃ be any two IVIFSs on E, then the Jaccard distance between Ã, B̃ is

dJ(Ã1, Ã2) = 1−
{

| [min(µL
Ã1

(xi), µ
L
Ã2

(xi)),min(µU
Ã1

(xi), µ
U
Ã2

(xi))], [max(νL
Ã1

(xi), ν
L
Ã2

(xi)),
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max(νU
Ã1

(xi), ν
U
Ã2

(xi))], [max(πL
Ã1

(xi), π
L
Ã2

(xi)),min(πU
Ã1

(xi), π
U
Ã2

(xi))] |
}

/

{

| [max(µL
Ã1

(xi), µ
L
Ã2

(xi)),max(µU
Ã1

(xi), µ
U
Ã2

(xi))], [min(νL
Ã1

(xi), ν
L
Ã2

(xi)),

min(νU
Ã1

(xi), ν
U
Ã2

(xi))], [min(πL
Ã1

(xi), π
L
Ã2

(xi)),max(πU
Ã1

(xi), π
U
Ã2

(xi))] |
}

4. Proposed methodology for sovling IVIF MCDM problems

The procedure for solving IVIF MCDM problems using a distance measure
is discussed in this section.

4.1. Proposed distance on IVIFSs: Here, a distance measure is proposed on
IVIFSs and named as Normalized Jaccard Distance (NJD) measure. The NJD
gives the distance between IVIFSs, which has been scaled to have unit norm.

Definition 4.1. Normalized Jaccard distance

For IVIFSs Ã, B̃ on E, the Normalized Jaccard distance is defined as

dJ(Ã1, Ã2) = 1− 1
n

∑n

i=1
{

| [min(µL
Ã1

(xi), µ
L
Ã2

(xi)),min(µU
Ã1

(xi), µ
U
Ã2

(xi))], [max(νL
Ã1

(xi), ν
L
Ã2

(xi)),

max(νU
Ã1

(xi), ν
U
Ã2

(xi))], [max(πL
Ã1

(xi), π
L
Ã2

(xi)),min(πU
Ã1

(xi), π
U
Ã2

(xi))] |
}

/

{

| [max(µL
Ã1

(xi), µ
L
Ã2

(xi)),max(µU
Ã1

(xi), µ
U
Ã2

(xi))], [min(νL
Ã1

(xi), ν
L
Ã2

(xi)),

min(νU
Ã1

(xi), ν
U
Ã2

(xi))], [min(πL
Ã1

(xi), π
L
Ã2

(xi)),max(πU
Ã1

(xi), π
U
Ã2

(xi))] |
}

Proposition 4.2. dNJ
(Ã, B̃) satisfies the axioms:

(A1) 0 ≤ dNJ
(Ã, B̃) ≤ 1

(A2) dNJ
(Ã, B̃) = 0 iff Ã1 = B̃

(A3) dNJ
(Ã, B̃) = dNJ

(B̃, Ã)

(A4) dNJ
(Ã, B̃) = 0, dNJ

(Ã, C̃) = 0 then dNJ
(B̃, C̃) = 0 for any IVIFSs Ã, B̃, C̃

on X.

Proof. (A1): Since, min(µL

Ã
(xi), µ

L

B̃
(xi)) ≤ max(µL

Ã
(xi), µ

L

B̃
(xi)),

min(µU

Ã
(xi), µ

U

B̃
(xi)) ≤ max(µU

Ã
(xi), µ

U

B̃
(xi)),

max(νL
Ã
(xi), ν

L

B̃
(xi)) ≥ min(νL

Ã
(xi), ν

L

B̃
(xi)),

max(νU
Ã
(xi), ν

U

B̃
(xi)) ≥ min(νU

Ã
(xi), ν

U

B̃
(xi)),

By Definition 2.2 (i), Ã
⋂

B̃ ⊆ Ã
⋃

B̃, which implies | Ã
⋂

B̃ |≤| Ã
⋃

B̃ | . Therefore,
|Ã

⋂
B̃|

|Ã
⋃

B̃|
≤ 1 Also it is always true that |Ã

⋂
B̃|

|Ã
⋃

B̃|
≥ 0. Thus, 0 ≤ dNJ

(Ã, B̃) ≤ 1
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(A2): Let Ã = B̃ then Ã
⋂

B̃ = Ã = B̃ and Ã
⋃

B̃ = Ã = B̃

⇒ | Ã
⋂

B̃ | = | Ã
⋃

B̃ | ⇒ dNJ
(Ã, B̃) = 0.

(A3): Since min(µL

Ã
(xi), µ

L

B̃
(xi)) = min(µL

B̃
(xi), µ

L

Ã
(xi))

min(µU

Ã
(xi), µ

U

B̃
(xi)) = min(µU

B̃
(xi), µ

U

Ã
(xi))

max(νL
Ã
(xi), ν

L

B̃
(xi)) = max(νL

B̃
(xi), ν

L

Ã
(xi))

max(νU
Ã
(xi), ν

U

B̃
(xi)) = max(νU

B̃
(xi), ν

U

Ã
(xi)).

Therefore, Ã
⋂

B̃ = B̃
⋂

Ã

⇒| Ã
⋂

B̃ |=| B̃
⋂

Ã | ... (1)

⇒ Similarly, | Ã
⋃

B̃ |=| B̃
⋃

Ã | ... (2)

Hence, from equations (1) and (2) |Ã
⋂

B̃|

|Ã
⋃

B̃|
= |B̃

⋂
Ã|

|B̃
⋃

Ã|

⇒ dNJ
(Ã, B̃) = dNJ

(B̃, Ã).

(A4):

Now consider dNJ
(Ã, B̃) = 0 , dNJ

(Ã, C̃) = 0

⇒ µL

Ã
(xi) = µL

B̃
(xi), µ

U

Ã
(xi) = µU

B̃
(xi), ν

L

Ã
(xi) = νL

B̃
(xi) and νU

Ã
(xi) = νU

B̃
(xi) ...

(3)

also µL

Ã
(xi) = µL

C̃
(xi), µ

U

Ã
(xi) = µU

C̃
(xi), ν

L

Ã
(xi) = νL

C̃
(xi) and νU

Ã
(xi) = νU

C̃
(xi)

... (4)

From equations (3) and (4)
µL

B̃
(xi) = µL

C̃
(xi), µ

U

B̃
(xi) = µU

C̃
(xi), ν

L

B̃
(xi) = νL

C̃
(xi) and νU

B̃
(xi) = νU

C̃
(xi)

⇒ dNJ
(B̃, C̃) = 0

Thus, Normalized Jaccard distance on IVIFS satisfies the properties of distance
measure.

�

Definition 4.3. Ranking

The ranking for ÃandB̃ is given as

(i) Ã > B̃ if dNJ
(Ã, Ĩ) < dNJ

(B̃, Ĩ)

(ii) Ã < B̃ if dNJ
(Ã, Ĩ) > dNJ

(B̃, Ĩ)

(iii) Ã = B̃ if dNJ
(Ã, Ĩ) = dNJ

(B̃, Ĩ)

where Ĩ = < xi, [1, 1], [0, 0] > is the ideal IVIFS.



Application of Jaccard distance to IVIF MCDM problem 255

4.2. A procedure to MCDM:. In this section, steps for solving a decision-
making problem are given.

Consider a finite set of m criteria C = {C1, C2, ..., Cm} for ’n’ alternatives A =
{A1, A2, ..., An}.The expert delivers the performance values with respect to each
alternative in the form of IVIFSs. Let p̃ij represents the performance of the alter-

native Ãi, i = 1, 2, ..., n and criteria C̃j , j = 1, 2, ...,m.

The below steps are followed for selecting best alternative.

Step 1: Let Ã0 be the ideal choice of best alternative i.e., Ã0 has the perfor-
mance
{< xi, [1, 1], [0, 0] >} in each criteria C̃j .

Step 2: Find dNJ
of each alternative Ãi to Ã0 by definition 4.1.

Step 3: Rank the alternatives using definition 4.3.

Step 4: Choose the best alternative by means of the ranking order.

The flowchart of the proposed methodology is given below:

Flowchart of proposed IVIF MCDM method

Collect performance matrices of each alternatives from experts

Find dNJ
of each alternative from ideal set

Rank the alternatives

Select the best alternative

5. Numerical Examples

To validate the proposed method, a real world problem from the literature
[11] is taken and discussed.
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Problem 5.1

The problem is about purchasing a house. There are six houses under consideration,
h1, h2, h3, h4, h5, h6 and the criteria for selection are beautiful (e1), large (e2)”,
cheap (e3)”, modern (e4)”, and green surroundings (e5)”. The assessment for each
house with respect each criterion is given in Table 1.

Table 1. IVIFSs over U

e1 e2 e3 e4 e5

h1 ([0.7,0.8],
[0.1,0.2])

([0.82,0.84],
[0.05, 0.15])

([0.52,0.72],
[0.18, 0.25])

([0.55,0.6],
[0.3,0.35])

([0.7,0.8],
[0.1,0.2])

h2 ([0.85,0.9],
[0.05, 0.1])

([0.7,0.74],
[0.17,0.25])

([0.7,0.75],
[0.1,0.23])

([0.7,0.75],
[0.15, 0.25])

([0.75,0.9],
[0.05, 0.1])

h3 ([0.5,0.7],
[0.2, 0.3])

([0.86,0.9],
[0.04, 0.1])

([0.6,0.7],
[0.2,0.28])

([0.2,0.3],
[0.5,0.6])

([0.65,0.8],
[0.15, 0.2])

h4 ([0.4,0.6],
[0.3,0.4])

([0.52,0.64],
[0.23, 0.35])

([0.72,0.78],
[0.11, 0.21])

([0.3,0.5],
[0.4,0.5])

([0.8,0.9],
[0.05, 0.1])

h5 ([0.6,0.8],
[0.15,0.2])

([0.3,0.35],
[0.5, 0.65])

([0.58,0.68],
[0.18, 0.3])

([0.68,0.77],
[0.1,0.2])

([0.72,0.85],
[0.1, 0.15])

h6 ([0.3,0.5],
[0.3,045])

([0.5,0.84],
[0.25, 0.3])

([0.33,0.43],
[0.5, 0.55])

([0.62,0.65],
[0.15,0.35])

([0.84,0.93],
[0.04, 0.07])

Step 1: Let the ideal IVIFS for best alternative be h0 which is represented in
Table 2.

Table 2. IVIFSs h0

e1 e2 e3 e4 e5

h0 ([1,1], [0,0]) ([1,1], [0,0]) ([1,1], [0,0]) ([1,1], [0,0]) ([1,1], [0,0])

Step 2: The Normalised Jaccard distance dNJ
of each alternative hi to h0 is given

in Table 3.

Table 3. Distance between hi from the ideal house h0

h1 h2 h3 h4 h5 h6

h0 0.238 0.183 0.311 0.318 0.305 0.351
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Step3: The ranking order of the alternatives is h2 > h1 > h5 > h3 > h4 > h6.

Step4: The best alternative by the ranking order is h2.

The result is compared with the existing methods [8, 11, 12]. The comparison
reveals that the best house to purchase is h2.
Further a decision making problem of choosing best e-learning tool in higher edu-
cation is considered as a case study.

Case Study The education sector has a lot of challenges during this Covid pan-
demic. As a result, rise of e-learning in education system is increased. The teaching
is undertaken remotely and on digital platforms. And the panic situation about
the future of the students has overcome to a certain percentage, by a proficient use
of resources available for e-learning.

The alternatives for e-learning tools are T1, T2, T3 and T4. And to analyze the best
one, the following features are considered as criteria: f1- Web Features,f2-Tech
Support, f3- Mobile accessibility, f4- Price, f5- Integration with Learning Manage-
ment System and f6- User accountability.

The linguistic terms and the corresponding IVIF values are given in Table 4. The
performances of alternatives are obtained as linguistic variables from expert (Table
5). Then the IVIF decision matrix is formed by changing the linguistic variables
(see Table 6).

Table 4. Linguistic terms and values for IVIF Decision matrix

Linguistic terms IVIF values

Efficient (E) ([0.8,0.9],[0,0.1])

Good (G) ([0.7,0.8],[0.1,0.2])

Average (A) ([0.5,0.6],[0.3,0.4])

Poor (P) ([0.3,0.4],[0.5,0.6])

Low (L) ([0.1,0.2],[0.7,0.8])

Table 5. Decision matrix in the form of linguistic terms

f1 f2 f3 f4 f5 f6

T1 E G G A G E

T2 E A E A E G

T3 G G E G G E

T4 A A G E G A
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Table 6. IVIF Decision matrix

f1 f2 f3 f4 f5 f6

T1 ([0.8,0.9],
[0,0.1])

([0.7,0.8],
[0.1,0.2])

([0.7,0.8],
[0.1,0.2])

([0.5,0.6],
[0.3,0.4])

([0.7,0.8],
[0.1,0.2])

([0.8,0.9],
[0,0.1])

T2 ([0.8,0.9],
[0,0.1])

([0.5,0.6],
[0.3,0.4])

([0.8,0.9],
[0,0.1])

([0.5,0.6],
[0.3,0.4])

([0.8,0.9],
[0,0.1])

([0.7,0.8],
[0.1,0.2])

T3 ([0.7,0.8],
[0.1,0.2])

([0.7,0.8],
[0.1,0.2])

([0.8,0.9],
[0,0.1])

([0.7,0.8],
[0.1,0.2])

([0.7,0.8],
[0.1,0.2])

([0.8,0.9] ,
[0,0.1])

T4 ([0.5,0.6],
[0.3,0.4])

([0.5,0.6],
[0.3,0.4])

([0.7,0.8],
[0.1,0.2])

([0.8,0.9] ,
[0,0.1])

([0.7,0.8],
[0.1,0.2])

([0.5,0.6],
[0.3,0.4])

Step 1: Let the ideal IVIFS for best alternative be T0 and represented in Table 7.

Table 7. IVIF set T0

f1 f2 f3 f4 f5 f6

T0 ([1,1],[0,0]) ([1,1],[0,0]) ([1,1],[0,0]) ([1,1],[0,0]) ([1,1],[0,0]) ([1,1],[0,0])

Step 2: The Normalised Jaccard distance dNJ
of each alternative Ti to T0 is given

in Table 8.

Table 8. Distance of Ti from the ideal house T0

T1 T2 T3 T4

T0 0.19 0.21 0.16 0.28

Step3: The ranking order of the alternatives is T3 > T1 > T2 > T4.

Step4: The best alternative is T3.

The result of the problem is coinciding with the results of the approaches [8,
12].

6. Comparative analysis

The proposed method is compared with two different categories of MCDM
methods: distance based approaches [8, 12] and fuzzy choice based MCDM ap-
proach. It is observed that the most preferred house is h2 in all the methods. But,
the order preference of other alternatives is altered. From [11], it is noted that the
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ordering is h2 > h1 ∼ h5 > h3 ∼ h4 > h6. Compared with the result of [11], the
proposed method provides more flexible and rational results. As not only the best
alternative but also the second best alternative is also important while taking deci-
sions, it is concluded that the proposed method is more effective in finding the order
of the alternatives when compared to [11]. Further, the result is compared with
the existing methods [8, 12]. The comparison disclosed that the result obtained by
proposed method is coinciding with the results of these methods.

Moreover, an MCDM problem of selecting the best online learning tool for
higher education is considered as a case study and solved using the proposed
method. The best alternative obtained is T3. To validate the authenticity of the re-
sult, the problem is solved using the distance based approaches [8, 12]. The results
of proposed method are promisingly coinciding with [8, 12]. Comparing with the
existing MCDM methods, the presented decision making model with the proposed
distance measure is compact. Also, it gives an innate degree of dissimilarity of each
alternative from the best alternative.

7. Conclusion

The IVIFSs are proven to be effective in expressing the uncertain information ef-
fectively and Jaccard similarity measure gives a very intuitive similarity amount
between the samples. Hence a normalized Jaccard distance measure for IVIFSs
is proposed in this paper. This measure not only takes interval hesitancy degree
into account while ranking but provides the amount of the dissimilarity of given
IVIFS to the ideal set. An IVIF decision making model by means of this distance
is proposed and its efficacy is studied by solving a numerical example taken from
literature. The comparison analysis with existing methods disclosed that the result
obtained by proposed method is coinciding with the results of existing methods.
Further it is observed that the proposed method is helpful in understanding the
results to a better extent as it provides the amount of dissimilarity of alternatives
from the best alternative along with the distance. Thus the proposed method is
applied in choosing the best e-learning tool in higher education. In further studies,
the proposed measure can be integrated in the decision making methods such as
TOPSIS, ELECTRE and PROMETHEE etc. to solve IVIF MCDM problems and
a weighed normalized Jaccard distance measure can be defined to solve the MCDM
problems when weights are assigned to criteria/decision makers.
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