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1. INTRODUCTION

Because of their applications in biology, the study of Fisher’s differential
equations have received a great deal of attention during the latter two decades; see
[11], [12], [13], [15], [16] and [14], and references therein. It was derived in 1937 and
takes the form

ou 0%u

— =u(l— —.

A =
The generalized Fisher’s equation .

ou 0 du
o _ oy .8y 9 [, mi
ot " (1-u )+8x (u dx)

describes one-dimensional diffusion models for insect and animal dispersal and in-
vasion, where t is time,  is a spatial coordinate, u is a population density, 2%

ot
represents the growth of a population and the factor u™ characterizes the diffusion
process.
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Existence and uniqueness results for singular boundary ... 171

In this paper, we consider the following singular boundary value problem of
the weighted and generalized Fisher’s type differential equation

2 (1 32) + 0 (0) 32 + b (1) + f(oat) =0, 2> 0.
u(O) =0 = limg 400 u(2),

(1)

where a, 8> 1, m >0, h € C(RT,RT), f € C(R" x (0,+0) x R,R), a and b
are the measurable and positive functions such that for all x > 0, h(z) # 0

/0+°° max{hl a(x)z;y;:rl (x),b(x)}dx<oo, @
P(x)min{h(x)/:olj‘;vh(x)/owij‘;}

T ds o0 ds
~v(x) = min{ goh(dss) , héz) }

0 h(s) Jo h(s)

and

By using the Krein Rutman Theorem [17] and the homotopy method in the fixed
point index theory [1, 6, 7, 10], existence and uniqueness results for the problem
(1) are given.

In all this paper, we assume that

there exists a continuous function ¢: Rt — R* such that
0 > q(t)dt < oo and for all (t,z,y) € RT\ {0} x R*\ {0} x R (3)
alt).y + b(t). (2% — 2H7) + [ (t,2,y) +q (8) > 0

for all r, R > 0 with r < R, there exists a continuous function g, g : Rt — R™ such that
fo gr.r(t)dt < oo and
for all (¢t,z,y) € RT\{0} x [¥(¢) (r —w*),R] x [— wa , R+ w¥]

f up( ) p/(x)p(t)><grR(t)

(4)
where
. w@) | oL
“ ili%{&(x)}’ i) =l
with
+o0 )
w(z) = i G(x, t)q(t)dt, p(z) = zme
and
400 ds
Glat) = D f fo hé
eroo r<t
")
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2. PRELIMINARIES

For sake of completeness let us recall some basic facts needed in this paper.
Let E be a real Banach space equipped with its norm noted ||.||. A nonempty closed
convex subset P of E is said to be a cone if PN (—P) = 0 and (¢P) C P for all
t > 0. It is well known that a cone P induces a partial order in the Banach space
E. We write for all z;y:€ F; z <yify—x € P.

The mapping L : E — E is said to be positive in P if L(P) C P, and
compact if it is continuous and L (B) is relatively compact in F for all bounded
subset B of E. The real value

r(L)=sup{|A|: A€ Sp(L)}

denotes the spectral radius of a linear and bounded operator L, where Sp(L) is the
spectrum of L, and we have

1
r(L) = lim [L7]%.

The main tool of this work is the following Guo-Krasnoselskii’s version of
fixed point theorems in a Banach space [10] .

Theorem 2.1.£et Q1,9 be open bounded subsets of E such that 0 € Q1 C Q; C
Qo. If T : PN (2\Q1) — P is a compact operator such that either:

(1) Tu ? u for u€ PN and Tu % u for u € PN, or
(2) Tu % u forue PN and Tu ? u for u € P NN,

Then T has a fized point in PN (Q2\Q2).
The following Krein Rutman Theorem has been established in [17]:

Theorem 2.2. Let K be a cone in E and L : E — FE be a linear, positive, and
compact operator. Suppose that for some non-zero element u € K*, the following
relation is satisfied:

MLu > wu, for some M > 0.

Then L has a non-zero eigenvector v € K* :
Lv = A\gv,

where the positive eigenvalue \g satisfies the inequality Ao > M1,

In what follows, we let E' be a Banach space defined as

E = {u € C'(RT,R): mhﬁngou(:r) = lim p(z) ./ (z) = O}

r—00

equipped with the norm
[ull = flully + Ipully, we E

where ||ul|, = sup,>g |u (z)| and

p () = min {h(m) /;O %Jz(x) /033 hczi) }
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Lemma 2.3. [7] A non empty subset M of E is relatively compact if the following
conditions hold :

(1) M is bounded in FE,
(2) M is locally equicontinuous on [0, +00), and
(3) M is equiconvergent at co

3. RELATED LEMMAS

Let
Ef={ueFE:u>0},
P={ueE":u(0) =0}
and
K={ucPiuz7ul)
and

C={ueK:pl|<u}
be the cones in F.
For r > 0, we consider the operator T,. : K\B (0,7) — FE defined by

+oo
Tou(z) = / G (z,t) D (s,u,u’) dt,
0

where for (t,z,y) € RT x RT\ {0} x R
D(t,d?,y) :H(t,p(x—w),(y—w’)p’(x—w))

with
H(t,z,y)=a(t)y+b(t).a*(1—2°)+ f(t,2,y) +q(t)
and
p(z) = 27T, for all z > 0
and for (t,z) € R* x Rt
+oo
(m+1) f fO his T2t
Glot) = ——7— 3
2 T <t.
fo h(s) fO h -

We remark that 7, can be written as

Tru(x):/:oomzrl(— /Dsuuds)d

f0+oo (% fot D (s,u,u’) ds) dt
™ (U) = +oo gt ° (5)
fo h(t)

where
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Lemma 3.1. Let w: RT — Rt be the function defined by

+oo
w(x) = G (x,t) q(t)dt.
0
Then
s (t <
up ——=~ = w 00
tzg Y (t)

Proof. Let xg > 0 such that

[t

For all t > 0,
I 5t G (a,t) q(t)dt i 2 < g
ww) _ ) e <
7 () fﬂmﬁ G () ()t if 3>
z  h(s)
+o00 d +o0 +0o 4 ;
N e T

Iy (ff s ) adt + J3 5t [ aar e >

“+oo dS +oo
< 2(m—|—1)/ 7/ g()dt < oo,
0 h(s) Jo
This completes the proof. O (I

Remark 3.2. The positive function G : Rt x Rt — RT is continuous and for all
(,t) e RT x RT

e S
0<G(zt) <G (z,2) < g (x):%(x)_(mﬂ)/o hd(s)'

Lemma 3.3. The function G has the following properties:
1: For all z,7,t € Rt
G(r,t) > v (7).G(x,1),

. 0 s T s
7(7’):mln{ g T d }

0 h(s) Jo h(s)

where

2: For all ¢, z, y € RT,
G (z,t) = G (y, 1) < co |z —y|

where ¢y = (m + 1) sup{h(t) t> 0}
3: Forall z, t € RT,
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Proof. 1. For z,7,t € Rt

[ ds e ds
T h(s) T hi(s) if 7>t
s o 200 T>t
5 s) J h(s)
s
Jre b s :
T h(s)"° h(s) T hi(s) if 7>t
o ds i ds = e ds > 7(7) <t
G | ae VR TR
G(x,t) [ ds I ds i ds
TR P hE L T it 7 <t,
[ s P ds Z e ds 27(7) T >t
“ h(s)" h(s ° his
. ds( ) ! (d?s (s)
° h(s) ° h(s) if 7 <t,
. ds = . ds = 7(7) r <t
e )

Consequently, gg;g > (7).
2. For z,y,t € R", assume that > y. We have

t d: T ds .
0 A(s) (fy h(s)) ifz>y=>t

(m + 1) 00 5 t ds s [SI .

G t) = Glunt)| = = | 7 ,{f) Vs [t ifa >ty
0 h(s) o ds T ds :
In the case & >t >y, if foo ds ft ds Oy hdz) j;oo ds then

cn-cwal = [ 5 / hﬁ) [ /too 5
* ds T ds > ds T ds
/t ns) (/ h<s>)§A ns) (/ h<s>>
and if foo hﬁ) ft h%:) —fy hd(li) ftoo h”fi> then
Ga,t) — Gly,1)] = /,%/m,j)—/m,j)/,%
[ (i) <L am U )
* ds

y hls)

CO|I*Z/|~

then for x,y,t € RT

Gz, t) = Gy, )| < (m+1)

IN
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3. Forall z, t € RT,
p(x)

p@|ZG@| _ | e Tezt
o __p@
G (z,t) ) IT if v <t,
< 1
thus
0
—G < G(z,t
b[5G 0] <G
completing the proof. O O

Let r, R > 0, where r < R. We denote by ©,. g and ¥, g the functions defined
in RT as
O,.a(t) = Ry + (R + RO b () + gr.(t) + q(h),
W (t) = S8 B (3 w) T 4 (1) (RFT - (G- w) ) (6)
+0r.r (t) +q(t)

where g, g is the function given in (4). We have from (2) that

+o0 +oo
O, r(t)dt < co and / U, r(t)dt < co.
0 0

Lemma 3.4. Assume that Hypothesis (2), (3) and (4) hold true and let R > r >
w*. Then for allu € KNOB(0,r)

H (t,u,u') < 0,,(t), for allt >0
and for alluw € K N B (0, R)\B (0,7)
D (t,u,u’) < W, g(t), for allt > 0.

Proof. Let u € K\ {0} and r = |ju||. For ¢ > 0, we have u (t) > yr > 0, and from
(4) it follows that for all ¢ > 0, H (t,u,u’) > 0 and
H(tuw) < a(t)u’ () +b() (u® +u™) + f(t,u,0') +q(t)

a(t) a+p

— 4
Jul gy + (Il + ™) b )
+9r.r(t) + q(t)
= O,,(t).

IN

Now, for v € KN B (0,R)\B (0,7), let u = v — w.
We have from Assertion (3) of Lemma (3.3) that p|w’| < w < w* and then

0<A.(r—w*)<u<R

and
—(R+w*) <pu <R+w".
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Thus, for all £ > 0

D(t,v,0)) = H(t,( _w)mil,(”/_“/)(v_w)mml)

m+1
a(t) R+w* _ wyy =2 o . NCE
< 27 _ m+1 mFl — _ m+1
S et O e )T b (R - G- wt) )
+gr,R t)+Q(t)
= U, r(%).
This completes the proof. O (I

Let A, : ET — E be an operator defined as

A (z) = /;OO % <—7r (u) + /Otg(s,u,u’) ds> it

where
oo t
fo+ (ﬁ Jo 9 (s, u,u)) ds) dt
Ty (u) = T )
fo h(t)
and

g (s,u,u') = H (t,u,u’) — q(t).
Remark 3.5. We have from Lemma (3.4) that g (.,u,u') € L' (RT) for all u €
E+\ {0}
Lemma 3.6. Assume that Hypothesis (2), (3) and (4) hold true and let r > w*
1

and v € K\B(0,r). If v is a fived point of T, then u = (v —w)M+1 is a positive
solution to the bup (1).

Proof. Let r > w* and assume that v € K\B (0,r) is a fixed point of T,.. We have

+oo
v(z) = G (x,t) D (t,v,v")dt
0

where for ¢ > 0
D (t,v,v")=H (t, (v — w) 7T | W —w) (v—w)’"rl> .
m+1
1
Letu:(vfw)mi“.WehavefoerO
W™ (z) = w(z)—w() = /+ G (x,t) (H (t,u,u') — q(t)) dt

0
= Au(z),

Avu(z) = / = ”;(;1 ( /0 g (s ds — 7, (u)) dt

where
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fOJrOO (ﬁ fotg (s,u,u) ds) dt

Jo ™

g (u) =
and
g(t,u,u') = a(t) . +bt)u(1 —u’) + f(t,u,u).
We have from Lemma (3.4) that
g(,u,u') € L' (RY) .
Then

g (u) < 00

/0+<><> % (/(th(s,u,u’)dS—ﬂg (m)‘ < co.

Furthermore, the relation

and so

u™t = A (8)
is equivalent to
h(x m h(x
# (35 () = £ (FaE @) = —g @) o >0

lim, s 4o u(x)™H! = hmggﬁ+OO Ayu(x) =0. and
+00 m
u™t(0) = [, Tt)l (fo s,u,u')ds — g (u))

O+OO”}Z(JQ)1 (fo s,u,u')ds — gy (u )):0.

This completes the proof. O O

Lemma 3.7. Assume that Hypothesis (2) and (4) hold true. Let r > w*. Then for
all and v € K\B (0,7), T,u > 0 and for all x > 0

p (@) |[(Tou) (2)] < Tou(z),
and
p (@) [(Tw) (2) —w'(2)| < | Tru| + ¥,

(@) :min{h(a:) /:Oi;éz),h(x)/: ht)}

Proof. Let w € K\B (0,7) and let v be a function defined as
0o o o
varu:/ G(x,t)H(t,(u—w)"’#l,M(u—w)m“)dt.

m+1

where

we have from (4) that D (¢,u,u’) > 0 for all ¢ > 0. For « > 0,

—G x,t) (t,u,u’)dt' g/ ‘aG(x,t)‘D(t,u,u’)dt
0 ax
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with
p(z)
p(x) ’%G({E7t)’ _ h(z) Too h‘ff}) if x >t’
G (z,1) p(z) ife<t

IN
—_

Hence, for all x > 0,

Ol @ < 9@ [ |56 0| D)
< / G (2,1) D (£, u, ') = v(x),
and
@ @) @) < p@) @) + ) ' (e)
< ol +wi)
< vl + w*.
(] (]

Lemma 3.8. Let r > w* and assume that Hypothesis (2) and (4) hold true.
Then the operator T, : K\B (0,7) — C is compact.

Proof. For R > r,let M, r =T, (Qr), with Q. g = KN B(0,R)\B(0,r).
1. In fact we show that the set M, r is a subset of. E.
We have f € C(RT x RT\ {0} x RT) and we see from continuity of the functions

% and G and so for

%Tru(az) = —n;l(:)l (—W (u) + /Ox D (s, u, U/)d3>

that M, r C C! (R, R). Moreover, we have from from Hypothesis (3) that D(., u,u’) >
0, and from Assertion (3) of Lemma (3.3) that p|w’| < w, and from Lemma (3.4)
follows that for all v € Q, g

D(.,u,u') < ¥, e L' (RY)

where ¥, g is the integrable function given in (6).

For z € R
+oo
Tr(u) (z) = G(z,t)D(t,u,u')dt
0
+oo
< G(z,7) D(t,u,u)dt
0
m+1 /°° ds /‘r ds [T ,
= —= D(t,u,u")dt
fo % = Ms)Jo h(s) Jo
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and from Lemma (3.7) we have

p(x) %Tr(u) ()| < T (u) (z), for all z > 0
then 5
zlirrgop(x) %Tr(u) ()| = mlLH;OTT(u) (z) = 0.

2. We show that M, g is relatively compact.
In first, we show that the set M, g is bounded. Let u € €, r and let ¥, g be the
integrable function given in (6). We have from Assertion (3) of Lemma (3.3) that
p|w'| < w then

(u—w,p(u’ —w')) € [¥ () (r —w") ,r] x [= (R+w"), R+ w].

By using Lemma (3.4) we have that for all z > 0

+oo
T.(u) (z) < G(z,x) ; D(t,u,u’)dt

( ) +oo ds +o0 ( )

< m+1/ 7/ v, r(t)dt = N, R
0 h(s) Jo

and from Lemma (3.7) we deduce that

1T (u)| < 2T (u)llp < 2Nr.r

proving the boundeness of M, g.
Let I = [n,¢] be a compact interval in RT and let #1,t5 € [, (] C RT, such that
t1 < to. For all u € Q we have

+oo
|Tru (t2) — Tru (t1)| < /0 |G(t2,s) — G(t1,s)| ¥r.r(s)ds

and by Assertion 2 of Lemma (3.3)

+oo
T (t2) — Tou (11)] < <co/ \IIT,R(s)ds> T
0

where
1
coz(m—l-l)sup{h(t), tzO}.
Moreover
0 0 oo 0 0

p(tQ)%Tru (t2) _p(tl)%Tru (tl) S /0 ’p(tZ)axG(tZa 8) - p(tl)%G(tlu 8) \IIT,R(S)dS

+oo o

< lote) sl [ | 56009 WGl
0 X
) [ |26 - L9 vty
P(l2 o o 2,8 O 1,8 rR(S)ds.
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As
1 1 S dr
0 9 m+1 ‘W_h(h) 0}_7‘;_(7') to >t > s
5 Clr9) = g O] = e ) f e [P <<y
0 BT 1| oo dr
" h(tz) ~ h(ty) iR (1) 1 <t2 <s
\L_ L | t>ti>sor
< (m+1) R(tz)  R(t1) o<ty <s
1 1
W TRy 1Ss<t
and
1 fs dr >
‘G(tl s)| = m+1 { h(t1) JPooh(Z) 1
’ N + T 1 T
ox fO o0 % ) fg h(r) t1 <s
1
< (m+1Dsup|——=
then

< e |p(t2) — p(t1)|+e2

02 g o) o) g o) )~

where
1 +oo +oo
&1 = (m+1)sup () | vens)ds, o =2m 1) sup (o)) [ (s
2>0 \ h(x) 0 z€[n,(] 0
and

cs=2(m+1) sup (p(x))sup <1> .
€] >0 \ h(z)

Because that p,% and t — fot VU, r(s)ds are uniformly continuous on com-
pact intervals, the above estimates prove that M, r is equicontinuous on compact
intervals.

Finally, let u € Q, . By using Lemma (3.7) we have for > 0

0 oo
(@) 5T 0) ()] < 17,0) (@) < Ga) [ ()i
0
With the fact that
lim G(z,xz) =0
T —+00

the equiconvergence of M, g holds. By Lemma (2.3), we deduce that M, g is rela-
tively compact.
3. We show that T, is continuous in €2, g.

Let (uy), be a sequence in ), g such that

lim u, =u € Q, g.
n— oo

For all t > 0, we have
u(t) —w(t)>5#).(r—w*) >0
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and
“+o0
|T-(un) (t) — T (u) ()] < G (t,8) |D(s,un,ul) — D(s,u,u)| ds
0
—+oo
< c/ |D (s, up,ul) — D(s,u,u’)|ds
0
where
too ds
c=(m+1 / —

Ky e

and by using Assertion (3) of Lemma (3.3) we obtain
(t) QT (un) (t) — gT (w)(®) < p(t) /+0<> gG(t $)||D(s,un,ul,) — D(s,u,u’)|ds
p at T n 8t T — p o at ) b ns n K 9
+oo
< G (t,8) |D(s,up,ul,) — D(s,u,u’)| ds
0
—+oo
< c/ |D(s,up,ul,) — D(s,u,u’)|ds
0

leading to

“+o0
1T () — ()] < 20/ D (s, 1,1t ) — D(s,u, )| ds.
0

n

Let t > 0. Because of f € C'(RT x RT\ {0} x R),p € C* (RT\ {0}) and
F(t)r > F()w* = w(t) >0,
we have that the function (z,y) — D(¢, z,y) defined by
D(t.z,y) = alt)(y —w'(t) p'(x —w(t) +b(t) (p" (@ —w(t) — p*(z — w(t)))
+f(t pla —w(t), (y — w' (1) (@ — w(t)))
is continuous in [yr, +00) x R, and then

’ N

lim |D(t,un(t),u),(t)) — D(t,u(t), ' (t))| = 0 a.e. in RT.
n—oo
Moreover, we have

|D(t, un(t),u,, (t)) — D(t,u(t), v (t))] <29, g(t)

N

where U, g € L' (RT) is the function given in (6). Then the Lebesgue dominated
convergence theorem guarantees that

lim ([T, (un) = Tp(u)]| = 0

n— oo

which shows the continuity of 7.
4. Finally, we prove that T,. (K\B (0,r)) C C.
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Set v =T,u, u € K\B(0,r), and let 7 € R*. Assertion 1 of Lemma (3.3) gives

+oo

v(T) G(t,s)H(s,u,u’)ds

0+oo
/0 v (1) .G(z, s)H(s,u(s))ds

= y(n)v(z)
this is for all z € R*, then

Y

o(r) =7 (7) [[vll
and with Lemma (3.7) holds
(7)) =y (1) Ipv'll
leading to
v(r) =5 (1) vl
then T,. (K\B (0,7)) C K, and with Lemma (3.7) it follows that
T, (K\B(0,7)) c C
completing the proof. O O

Lemma 3.9. For ¢ € L' (RT,R"), let L, : E — E be a linear operator defined as

“+o0
Lou(t) = ; G(t, s)p(s)u(s)ds. (9)

Then Ly, is compact and L, (E*\ {0}) C C\ {0} . Moreover
r(Ly) > 0.
Proof. First, it’s clear that L, is compact and L, (E) C E, and from Assertion (1)
of Lemma (3.3), we have that for all u € E*\ {0},
Lou > 7| Lyully
and from Assertion (3) of Lemma (3.3) that
Lou 2 7| Loul|

then L, (ET\ {0}) C K\ {0}, and Lemma (3.7) leads L, (E*\ {0}) C C\ {0}.
Now we show that r(L,) > 0. Let u = 4. Since L, (E™) C K, we have
Lou > .|| Lyul >0
then from Lemma (2.2) we deduce that L, has a positive eigenvalue A > M~ =
|L,]l. Thus
r(Lg) 2 A= ||Ly ()] > 0.
(| O



184 N. BENKACI-ALI

Let n: RT x R* x R — R™ be a function defined as
n(t,z,y) = a(t)y +b(t)z* (1 —2”).
In what follows, we consider the following Hypothesis ;

there exist Ry > w*, 0 < 0; < 65 and 01,09 € L' (RT) such that
2 ~
s { fy? Glt,9) (01 (5) (3 () = 72 () = b(s) ) ds } > 1

10
and for all (¢,z,y) € [01,02] X [Rg,00) x R (10)
Ftp(@), 50l (@) +h(t) > o1 (D)2 — a2 (1) lyl™
where
N = max {1, M} .
m+1
Lemma 3.10. Assume that Hypothesis (10) holds true and let r > w*.
Then there exists R > max {r, Ro} such that for allu € C\B (0, R),
ITrullg > lullo -
Proof. In the contrary, we suppose that for all n > {max (m + w*, 7’)} +
t€[01,02
1, there exists u, € C\B (0,n), t, > 0 such that
un (tn) = |lunlly = [[Trunlly (11)
+oo
> Tu, (1) :/ G(t,s)D(s,un,u’))ds (12)
0
02
> G(t,8)D(s,un,ul)ds, Vt > 0. (13)
01

As u, —w > mingepg, 9,17 () (n —w*) > Ry for all t € [01, 0], then we have from
Hypothesis (10) that for s € [01, 62]

D(s,tnyup) 2 (s, p (g = w) , (uy,=w)p' (wn—=w))+01 (5) (= w) =03 (5) (p(s) |uf, = w'])"
with
n(s,p (un —w), (u, —w)p' (up —w)) = D(s,un,uy) — f(s,p(up —w), (u, —w)p (u, —w)) — h(s)
- ng () (uly — w")p' (= w) + b(5)p™ (un — w) (1 = p° (un — w))

From Assertion (3) of Lemma (3.3) we have p |w'| < w, then
—(w+up) < p(s)(uy —w') < up +w

and so

S
—~

9
(s

05 p (1 — ), (tly—)pl (=) > — S (wrbau ) (=) +b(s)p™ (1 — w) (1 = p? (= w)).

~

3
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By dividing in (11) by |Jun||™ we obtain for ¢ > 0
U (tn) S Un (tn)

U (tn) = >
. ol ™ ™
02 — /N AN | _ . N _ N
> G(t,s)n(s,p(un w) , (u), —w')p' (un w))+§1 (5) (un = w)™ = 02 (3) (wn + )"
" [[n|
02 _a(s) w +Un),0' Uy — W
N PO N( ).
B, [[un]|
75 b o = 1— 8 -
[ st w) ( I (un —w))
o [[un |
02 w \N AN
+ G(t,s)oq (s <vn—> — o9 (s (vn-i-) ds.

As 1 > v, >4, we have

0 w N w N 62 w N
G(t —— ) - nt+—— | ds > G(t, y———] d
69 (=) o) (ot gg) @ 2 [ Gwom o (3- ) o
02 w N
- G(t, s)o2 (s) (1 + ) ds
0, [l
and then
6> N N 723
lim G(t,s)oq (s) (vn - w) —o3 (s) (vn + w) ds > / G(t, s) (01 (s) AN — o2 (5)) ds.
n—co Jg, [[unl [[unl 0,
Since N = max {1, %ﬁ} , then
1 1
o p(uy, —w) ~ lim (Up, — w) ™+ L (Up ) ™1 B
N N = N J
00 |u | me lug| 00 [y |
o wu)p ( —w) () G ™
e [ mee (mo+ 1) [|up || T
P (un — w) (un — w)ﬁ
rieo0 N N
[l [[wn |
and
atfB .
- PP (un —w)  (up —w) T Oaw if 5 <1
oo | eI (on) 755 if 357 21
< 1

Then we have

1> lim v, (t,) > /92 G(t,s) (O’l (s) (,?)N — 0oy (s) — b(s)) ds

n—oo 91
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this is for all £ > 0, and with (10) we obtain the following contradiction
02
1> sup{ G(t, s) (0’1 (s) (3N — o2 (s) — b(s)) ds} > 1.
>0 | Jo,
Then there exists R > Ry such that for all w € 9B (0, R) N C,
[Trullg > flullg -
This completes the proof. O O

4. MAIN RESULTS

4.1. Existence results.

Theorem 4.1. Assume that Hypothesis (2), (3), (4) and (10) hold true.
If there exist r > w*, A1, Ao > 0 and ¢1, ¢2 € L' (RY) such that for all t > 0 and
all (z,y) € [¥(t) (r —w*),r] X [-r — w*,r + w*]
ftp(x), %p’ (@) +q(t) < Mos (8) &+ Ao (1) y — n(t, p(2), %p’ (x)), (14)
and there exists i € {1,2} such that
1
0< X\ < ——
r(Ly)
where
_ Aid1 42000

G Y

then bup (1) admits at least one positive solution.

Proof. Fisrt, we show that for all u € 9B (0,7)NC

Tru # u.
Suppose in the contrary that there exist u € 9B (0,7) N C and ¢t > 0 such that
Tou>u
then for ¢ > 0
uw(t) < Thu(t) = o G(t,s)D(s,u,u’)ds.
0

We have pw’ > —w and
(u—w,p —w)) € F@)(r—w),r] x[-r—w"r+w
and from the condition (14) follows that for all s > 0,
fls,p(u—w), (' —w)p' (u—w))+qt) < Xig1(s)(u—w)+ a2 (s)p(s) (u' — )
=n(s,p(u—w), [ —w)p (u—w))
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leading to
D (s,u,u') < Migr (s) (u—w) + a2 () p(s) (v —w'),
then
+oo
ut) < ; G(t,s) M1 () (u—w) + X2 (s) p(s) (v’ — w')] ds
“+o0
= /] G(t,5) [(M@1 (s) + A2z (5)) u = (M1 (5) — A2z (s)) w] ds

+oo
< / G(t, s) (A1 (8) + 2X202 (s)) u (s) ds.
0

Let i € {1,2} such that 0 < \; < T(le), with

_ Ad1 + 2X209

(4 N

We have for ¢t > 0

+o0
u(t) <N ; G(t,s)Y (s)u(s)ds = Lyu

leading from Lemma (2.2) for M = A, to the following contradiction
A< o < r(Ly) < Ah

Then for all uw € B (0,7)NC
T.u }_4 Uu.

Moreover, as Hypothesis (10) is verified, then Lemma (3.10) guarantees that there
exists R > r such that for all u € 9B (0,R) N C

ITrullg > flullg »

which means that

Tru £ u.
Thus, it follows from Theorem (2.1) that T, admits a fixed point v € C such that
1
r < |jv]| £ R. Hence by Lemma (3.6) , u = (v —w)™ + 1 is a positive solution to
the bvp (1). O O

Let A be the following positive value

—

Ao 1

2sup, > f0+oo G(x,s) | (61 (s) + 2N (s)) + 2% +b(s)| ds
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Theorem 4.2. Assume that Hypothesis (2), (3), (4) and (10) hold true.
If there exist 1o > w* + 1 and 61,62 € L' (R, RT)\ {0} such that

__m

oo a(s)y~ mH1 1
sup G (x,s) | (61 (s)+2N06y (5)) + 2= —— 4+ b(s) | ds < —
sup || ( )((1() 2(s)) oG) (s) 20+ 0
(15)
and for allt > 0, and all (z,y) € [§(t),ro] X [-10 — w*, 70 + w*]
)
Fap(e), gl (@) +a) (02 + 62 (1)1, (10
where
Ny = max{l, a} .
m+1
then bup (1) admits at least one positive solution.
Proof. Let r € [1 +w*,1g] be a real number such that
r <A, (17)
where
1
No—1
1
A =

2sup,> f0+oo G(z,s) | (01 (s) + 2Nody (s)) + 2% +b(s)| ds

We show that for all w € 9B (0,7) N C
Tru # u.

In the contrary, we assume that there exists u € 9B (0,7) N C such that T,u > u
and let t > 0. We have

u(t) < Tou(t) = o G(t,s)D(s,u,u’)ds. (18)
0
We have
(u—w,p (u' —w)) € [¥ (t) (r—w"), r]x[-r—w", r+w*] C [§ (t) ,r0]x[-ro—w", ro+w"]

and from the condition (16) follows that for all s > 0,
1(5) (u = w)™ + 82 (s) (p(s) |’ —w')™
51 ) u —

(5) (u = w)™ + 85 (s) (u +w)™
(61 () +2N0685 (s)) ule.

f(s,p(u—w), (u' —w') p' (u—w)) +q(t)

ININIA
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and

B, p(u—w), (0 —w) p (w—w)) = a(s) (@ — ) p' (w—w) + b(s)® (u—w) (1 — p° (u—w))
< S ) () U (0= w) (1 ()
< a(S?(s)m“ (2u) p' (r —w*) 4+ b(s)p™ (r)

leading to

D (S’ u?ul) < (61 (5) + 2N0(52 (S)) TNU -+ L

and by dividing (18) by Vo we obtain

w(t) _ [T

N, =
rvo 0

and with the fact that Ny = max {1

this is for all ¢ > 0, then

rNo z>0

1
2ANo—1”

G(t.s) [(51 (5) + 2V (5)) + 2200 7T

u +oo als)i—
rJ(\/'tU) < sup </0 G(I,S) [(51 (S) —+ 2N052 (5)) + 2L + b(S)

u +oo a(s)y m+t
u < sup ( A G((E, S) [((51 (8) + 2NO§2 (3)) + 2()77 + b(s)

o
p(s)

} we have

_a
’ m+1

Since [Jull, > [lpu’||, , we have

giving

T 1
2rNo — 2ANo—1

r>A

which contradicts (17). Then for all w € 9B (0,7) N C

Moreover, Lemma (3.10)
uedB(0,R)NC

which means that

Tru # u.

guarantees that there exists R > r such that for all
1 Trullg > Nlully »

Tru ﬁ u,
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and Theorem (2.1) guarantees that T, admits a fixed point v € C such that r <
1

|lv|l < R. Hence by Lemma (3.6) , u = (v —w)™ + 1 is a positive solution to the
bvp (1). O O

4.2. Uniqueness results. For 0 < 0 < ¢, ¢ € L' (RT) and r > 0, let

v (0,0') = (iglg /9 G(t,s) (8))

1

and Y., =< (u—w)m+1 we K\B(0,r)

Theorem 4.3. Assume that Hypothesis (2), (3) and (4) hold true.
If there exist r,0,0' >0, ¢ >0, and ¢ € L* (RT) such that

c < !
7 (Lg)’
for all (z,p(t)y) € [ (¢) r, +00) x [—r,7]
D (t,z,y) > Ay (0,0") 9 (1) z, fort € [6,0] (19)
and for all x1,z2 € [ (t)7,+00)%, y1,y2 € R and all t > 0
|D (t,z1,y1) — D (t,x2,y2)| < cd (1) |x1 — x2]. (20)

Then bup (1) has a unique positive solution in Yy, .

Proof. The case ¢ = 0 is obvious, so we suppose that ¢ > 0:

Existence. Let v € KN 9B (0,r) and consider the sequence (u,),, defined
by

Un+1 = Trun
{ ug = .

We show that (u,),, C C\B(0,7).
Let u € P\B (0,7). We have from Lemma (3.8) that 7,. (C\B (0,r)) C C\ {0}. For
t >0, we have u > 7 (t) r, p(t) |u'| <r and from the condition (19)

T > A(0) /9 G(t, s) (5)u (s) ds
)

Y]

PAO) [ Gl (9)3(5)ds
this is for all ¢ > 0, then
| Tu|| > r.A(0)sup </ G(t,s)¥ (s)7(s) ds) =7
>0 \Jo

Then T, (C\B (0,7)) € C\B (0,7), which means that (u,),, C C\B (0,7).
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Now, by (20) we have for all n > 1
—+o0
[unt1 —un| = |Trup — Trtiy—1| < G(t,s) ‘D (8, tn, up) — D (8,up—1,up_q)|ds
0
< cLg|un — up-1].
Then, for alln >0
[Unt1 — un| < "Ly luy — ug]

and from Lemma (3.3) we have

+oo
p ’U;H-l - Uln| = p |(Trun)/ - (Trun—l)/| < p(t)/ %G(t,s) |D (Saumuln) -D (S7un—17u/n—1)|d5
0
+oo
< G(t, ) |D(s,un,u’n) —D(s,un_l,ug_lﬂds
0

< cLg Jun — tp—1].

leads
Py — up| < LY ug — gl

then

|tnt1 — unl < 2" HLZ |luy — u0|||0.
Therefore, for m >n > 1,

um —unll < |lwm = vm—1ll + [[Um—1 — wm—2|| + - + [[nt1 — unl|

< 2¢mt HLZL_1 lug — u0|HO +2¢m 2 HLZL_2 |ur — wo] ’0 + ...+ 2" HLg luy — uo|||0
= 2(Sm—1 *Sn—l)a
where
n=+oo
S, = Z " HngHO, with w = |Ju; — ug] .
n=0

Since ¢ < (T(L¢))_1 , we have that

lim §/c®
n— o0

=cr(Ly) <1,

ngH <c¢ lim ¢ HL;}

0 n—00

then (S5,),, converges and
lm |Jum — upl| <2 lim (Sp—1 — Sp—1) =0.
n—oo n—oo
Therefore, the sequence (u,,),, is also a cauchy sequence and the completeness of £
leads to lim,, oo u, = u € C, with
||u|| > 7> 0.

At the end, passing to the limit in w,41 = T,u,, and by continuity of T, in
C\B (0,r), we obtain u = T,u, and v € C\B(0,r) is a fixed point of T, and
1

so, v = (u—w)M+ 1 is a positive solution to the bvp (1) in ), .
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Uniqueness. If u;, ug € K\B(0,r) are two solutions of (1) with u; # uz, then
u1, ug are fixed points of T;. where

7= min {{lu ||, [Juz|}-

For all t € R,
u; (t) > 7 (t).r, fori € {1,2}
and so
+oo
lug —us| = |Truy — Trug| < / G(t,s)|D (s,u1,uy) — D (s, uz,us)| ds(21)
0
+oo
< ¢ G(t, )¢ (s) |ur — ua| ds.
0

Let Ly be the operator defined in Lemma (3.9) by

+oo

Lyu(t) = G(t,s)¢ (s)u(s)ds
0

and let w = Ly |u1 — ug|. The inequality (21) leads
w < cLgw.

As |u; —uz| € ET\ {0}, then by Lemma (3.9) we have w € K\ {0}. Then by
Theorem (2.2) we deduce that Ly admits a positive eigenvalue Ao such that

No >t
leading to the following contradiction
7 (Ly) >N >c ! >r(Ly).
The proof is complete. O O

In what follows, we assume that

a+B<m+1, aeC(R",RT), a(t) < min (fot h‘%i), ;roo h‘%z))
e(t) = max (b(t)7 5 |a'(t)\) e Ll , (R*,R*) and
there exists a function F' sucth that for all (t,z,y) € Rt x RT\ {0} x R
ft,z,y) = F(t,z) and
c(t)r +b(t)z™ (1 —2P) + F(t,z) + q(t) > 0

(22)
where )
c(t) = —a(t
" h(t) min (fot ;ffiyftm h%i)) "
and
+o00
L. (R"R) = {u : R" — R such that /0 lu(s)| v~ (s)ds < oo}
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and consider the Banach space Ey = {u € C(RT), limi o u(t) = 0} equipped
with its sup-norm || ||, and the cone

Ko ={ue Ep, u(0) =0 and u > ~|ul,}.

Let T, : Ky — Ey be an operator defined by

~ +oo +oo
Tou(t) = /0 Tt s)pu—wyds+ [ G(t.s)Do(s.u)ds

where for ¢,s € RT, 2 > 0,

and
Dos, ) = b(s)p™ (= w) (1 p° (& = w)) + F(s, p (& — w)) + (s):

Lemma 4.4. Assume that the condition (22) holds true.
The function J : RT x RY is continuous and verifies for all x,t € RT,

[ (2, )] < p(t)G (2, 1),

and
J(t,s)
>
Glt,s) = W
where
1

t) = — +|d'(t)].
) = i + 1)
Moreover, for all u € C* (RY) N Ko, Tru = Tyu.

Proof. Beacause that a, o/, + € L' (RT), J is continuous. Moreover, for x,t €

R\ {0} "
0
J m+1 wh‘éi +a'( fth‘fj} if x>t
(@,8) = +0° ds oo ds | if g <t
O h(s ( )f s) I r <
leading to
+oo dq a(t t g .
|J(z,t)] < m+1 h(s) h(t)+| ( \f h(z ife>t
’ — +OO q s a Yoo g '
i |y o [5 +la 1  ay] it <

We have from the condition (22) that a(t) < m (ft h‘zi) f+oo h‘%‘:)) , then

+oo ds ot .
() < m+1 )L rey Jo 7ty (A Tl if x>t
Z, — +oo ds T ds +oo ds 1 /t <t
L 7w L b am 5 |am Hld@l] ifa<
1
= G(x,t) |—= "(t
(@0 |55 + 0]
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and
___a@®) o ;
Jt) Mo W) ezt
G(‘Tst) B at) i
D I dt)] fz<t
a(t
B ; t Eia) oo ds \ a/(t).
h(t) mm( 0 h(s)’ft h(s))
Now, let u € C' (R*) N K. By integrating by parts we obtain
“+o0 +oo a
Glts)a(s) (p(u—w)) ds = [Glt.s)a(s)olu—w)F — [ 5 (Glt,9)a(s)) plu—w)ds
0 0
—+oo
= / J(t,s)p(u—w)ds,
0
then
N —+oo “+oo
Tru(t) = / J(t,s)p(u—w)ds + / G(t,s)Do(s,u)ds
0 0
+oo +oo
= G(t,s)a(s) (p (u —w)) ds + / G(t,s)Do(s,u)ds
0 0
+oo
= G(t,s)D(s,u,u’)ds
0
hence Tru =T, u. O O

Theorem 4.5. Assume that Hypothesis (4), (10) and (22) hold true.
If there exist ¥ > w* +1, A > 0 and 0 € L#,l (RT,RT)\ {0} such that for all

(t, ) € RF\{0} x [y () 7, 7]

|E(t,p(z)) = F(t,p(y)| < Ao(t) |z —yl, (23)
and
A< ! (24)
r(Ls)
where

s=t o) (M o))

then bup (1) admits a unique positive solution in ), .

Proof. The case ¢ = 0 is obvious, so we suppose that ¢ > 0 :
Existence. From Hypothesis (10) and Lemma (3.10) we have that there
exists R > r such that for all v € C, if ||u|| > R then

[Trullg > flullg -
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Let v € C such that ||v]|, > R and consider the sequence (uy),, defined by

Unt1 = Truy
Uug = .

For all n > 1, u, € C' (R") | then u,,1 = Tru, = T,u, € C and since [lv]] >
lv]l, > R, we have

||un+l||o = ||T7“UnHo > ”Un”o >R>r, Vn2>1

then (u,), C Ko\B (0,r).

Now, by (23) we have for all n > 1

[Untr —un| = |Trun — T,«un,1’ < G(t, s)u(s) [p (un —w) — p (Un—1 — wiPB3
0
+oo
+ G(t,s)|Do (8,un) — Do (8, un—1)| ds. (26)
0
Let v,, = u,, —w, n > 1. We have
1 —m
lp(vn) —p(vn-1)] < mt1 (yr — Jw*) " F |vp — vp 1]
-1 1 Jrl
< r— —w* |V — Vn—1]
m+1 2
é ’Yil |Un - Un71|
o 1, (73-1)
P (vn) = p® (Un—1)] < 1 <7" — §w > |vp — Vp—1
S ’7_1 |vn - ’Un71|
a+8
1 (erl_l)
1p% (vn) = p* (vn—1)| < Tiiﬁl (T - 2w’“> [Un, — Vp 1
S '7_1 |Un - ’Un71|
leading to
+oo
[Unt1 —vn| < G(t,s) (u(s) +2b(s) + Ao (s)) [n — vp—a|ds  (27)

0
AL (|vn - Un—1|)

Then, for all n >0

Upt1 — Up| < A" Lg |ug — ugl .
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Therefore, for m >n > 1,

|um_un‘ S ‘um_um71|+|umfl _um72|+~~~+ ‘unJrl _Un‘
< AmTipgml |lug — wo| + A2 2 lug —wo| 4+ ... + ALY |ug — ug

then
[t — tnllg < AT w4+ AT LY T w4 e A LR w]
= Smfl - Snfl»
where
n=-+oo
Sy = Z c" || Lywly, with w = |u; —uol.
n=0

Since A < (r(Ls))~", we have that

1 n/len n < 3 n n = e.
hrr;O c HLawHO_cnh_)n;o\/HL(;H cr(Ls) <1,

n—

then (S,), converges and
lm ||u — un|, = lim Sp,—1 —S,—1 =0.
n— oo n—oo

Therefore, the sequence (uy,),, is also a cauchy sequence and the completeness of E
leads to limy, o0 Uy, = u € C, with

lullg = > 0.

At the end, passing to the limit in wu,41 = Tpun, and by continuity of 7} in
C\B (0,7), we obtain

u:Tru:Tru

1

and u is a fixed point of T, in C\B (0,r), which means that v = (u —w)m +1 is
a positive solution of bvp (1) in )", .

Uniqueness. If uy, ug € Ko\B (0,r) are two solutions of (1) with u; # us, then
u1, ug are fixed points of ;..

Then up, uz € C* (RT) and by Lemma (4.4) we have that uy, uy are fixed points

of T,.
For all t € R,
u; (£) > v (¢).r, for i € {1,2}

and so

lur —us| = |Tru — Tru2‘ < G(t,s)u(s) |p (ur — w) — p (uz — w)| d§28)

0
—+oo
+ G(t,s) | Do (s,u1) — Do (s, uz2)| ds. (29)

0
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Let v; = u; —w, i € {1,2}. We have

1 —m
— < — AF)mFT —
lp(v) = p ()l < g (= Ju) ™ o — vy
-1 T
< 7 r— 1w’k |vg — vo
m+1 2
< 7oy — v
1p% (1) = p* (v2)] < mi T (= Fu) 7 oy — vy
e
a+p _ a+B < QB (o),
[P (1) = p* P (02)| < 1 (=) o1 — vz
< o — v
leading to
+oo
lor — 2| < G(t,5)77" (5) (1s(s) + 2b(s) + Ao (s)) [vr — va| ds
0
= AL (Jvr —v2|)
where L is the operator defined in Lemma (3.9) by
+oo
Lsu (t) = G(t, $)0 (s) u(s)ds
0
where o
() =27 o) (M2 o))
and let w = L|u; — ug|. The inequality (30) leads
w < ALsw.

197

(30)

As Ju; —uz| € ET\ {0}, then by Lemma (3.9) we have w € K\ {0}. Then by

Theorem (2.2) we deduce that Ls admits a positive eigenvalue Ag such that
Ao > N1
leading to the following contradiction
r(L) > X > A"t > ().
This completes the proof. O
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