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Abstract. In the present paper we established some interesting results on purely

Hermitian R-complex Finsler space with (α, β)-metrics, Firstly we characterize the

conditions for the (α, β)-metric F =
√

α2 + εβ2 to be a purely Hermitian. Then

determined the fundamental metric tensor, its inverse and determinent of the above

metric. Further obtained Chern-Finsler connection coefficients and analysed nec-

essary conditions under which an purely Hermitian R-complex Finsler space with

(α, β)-metric to be Berwald, Kähler and strongly Kähler also given some examples.

Key words and Phrases: R-complex Finsler space, Purely Hermitian metric, Con-
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1. INTRODUCTION

In [1, 2, 9, 10, 12, 13, 14, 18, 20], many geometers contributed the field of com-
plex Finsler geometry with reference to the notions of real Finsler geometry. In the
very begining Rizza [17] extended the homogeneous property of real Finsler metric

to the complex case by defining the function F : T
′

M → R+ with the condition
F (z, λη) = |λ|F (z, η), for any λ ∈ C, where (z, η) are complex coordinates. Im-
mediately afterwords S. Kobayashi contributed Kobayashi metric satisfying above
said homogeneity property on complex manifold.

Further, in [11, 15] authors reduced the definition of complex Finsler space
[16, 19] was extended, reducing homogeneity property to the scalars λ ∈ R, then
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introduced new class of Finsler space which is named as R-complex Finsler space
which is the recent research done in the field of Finsler geometry.

The purpose of this paper is to continue the study of the purely Hermitian R-
complex Finsler spaces and also some preliminary properties of the n-dimensional
R-complex Finsler spaces. Subsequently, we will focus only on the study of the
purely Hermitian complex Finsler spaces, (meaning gij̄ is invertible). Next, we
show that any purely Hermitian R-complex Finsler spaces with (α, β)-metric is
Berwald. Moreover we prove that any strongly Berwald space is strongly Kähler,
by some explicit examples.

2. PRELIMINARIES

Let us define complex coordinates in the form z = (zk)k=1,n and η = (ηk)k=1, n

over the n-dimensional complex manifold M . Then the tangent bundle over M is
defined by TcM = T

′

M ⊕ T
′′

M , where T
′

M is the holomorphic tangent bundle
and T

′′

M is the conjugate. Since the subbundle T
′

M is itself a complex manifold
its local coordinates defined by u = (zk, ηk)k=1,n and are reduced to (z

′k, η
′k)k=1,n

in the form z
′k = z

′k(z) and η
′k = ∂z

′k

∂zl η
l.

A complex space (M, F ) is said to be R-complex Finsler space if F is a

continuous function defined as a mapping F : T
′

M → R+ and satisfies the following
conditions.
i) L := F 2 is smooth on T̃

′

M = T
′

M \ {0};
ii) F (z, η) ≥ 0, The equality holds if and only if η = 0;
iii) F (z, λη, z̄, λη̄)=|λ|F (z, η, z̄, η̄), ∀λ ∈ R.
For the R-complex Finsler space, the metric tensor generates the below tensor fields:

grs :=
∂2L

∂ηr∂ηs
; grs̄ :=

∂2L

∂ηr∂η̄s
; gr̄ s̄ :=

∂2L

∂η̄r∂η̄s
, (1)

and they satisfy the properties of homogeneity as follows:

∂L

∂ηr
ηr +

∂L

∂η̄r
η̄s = 2L; grsη

r + gsr̄η̄
r =

∂L

∂ηs
; (2)

2L = grsη
rηs + 2grs̄η

rη̄s + gr̄ s̄η̄
rη̄s; (3)

∂grk

∂ηs
ηs +

∂grk

∂η̄s
η̄s = 0;

∂grk̄
∂ηs

ηs +
∂grk̄
∂η̄s

η̄s = 0. (4)

In [3, 15] authors extended the concept of purely Hermitian space to R-complex
Finsler space with tensor field grs̄(z). Suppose metric function F on R-complex

Finsler space satiesfies the regularity condition det(grs̄) 6= 0 for any u ∈ T
′

M

and generates positive definite Levi-form, then such spaces are called R-complex
Hermitian Finsler space.



242 K.S. VENKATESHA, S.K. NARASIMHAMURTHY and K. CHANDRU

Consider the sections of the complexified tangent bundle of T
′

M . Let V T
′

M ⊂
T

′

(T
′

M) be the vertical bundle, locally spanned by { ∂
∂ηk } and V T

′′

M its conju-

gate. The idea of complex nonlinear connection, briefly (c.n.c) is an instrument in

‘linearization’ of the geometry of the manifold T
′

M . A (c.n.c) is a supplementary

complex subbundle to V T
′

M in T
′

(T
′

M) i.e. T
′

(T
′

M) = HT
′

M ⊕ V T
′

M . The

horizontal distribution HuT
′

M is locally spanned by { δ
δzk = ∂

∂zk −N
j
k

∂
∂ηj }, where

N
j
k(z, η) are the coefficients of (c.n.c).

The pair {δk = δ
δzk , ∂̇k = ∂

∂ηk } will be called the adapted frame of (c.n.c)

which obeys the change rules δk = ∂z
′j

∂zk δ
′

j and ∂̇k = ∂z
′j

∂zk ∂
′

j . By conjugation every-

where we have obtained an adapted frame {δk̄, ∂̇k̄} on T
′′

u (T
′

M). The dual adapted
bases are {dzk, δηk} and {dz̄k, δη̄k}.

In complex Hermitian Finsler space, since complex nonlinear connection de-
pends on fundamental metric function called as Chern-Finsler (c.n.c) and its coef-
ficients are defined by:

N i
k = gm̄i ∂L2

∂zk∂η̄k
= gm̄i(

∂gr̄m̄

∂zk
η̄r +

∂gsm̄

∂zk
ηs). (5)

Further, Chern-Finsler (c.n.c) generates complex spray in the form:

Gi =
1

2
N i

kη
k =

1

2
gm̄i(

∂gr̄m̄

∂zk
η̄r +

∂gsm̄

∂zk
ηs)ηk. (6)

Since L is R-homogeneous of degree 2 in the fibre variables that Chern-Finsler
(c.n.c) (5) and its induced complex spray (6) satisfy the constraints,

(∂̇jG
i)ηj + (∂̇r̄G

i)η̄r = 2Gi; (∂̇jN
i
k)η

j + (∂̇r̄N
i
k)η̄

r = N i
k. (7)

This shows that Gi and N i
k are R-homogeneous of degree 2 respectively of degree

1, with respect to η.

Further, the complex spray (6) generates a (c.n.c) by
c

N i
j := ∂̇jG

i, which is called

canonical (c.n.c). In the simpler computation gives that
c

N i
j , are R-homogeneous of

degree 1 and, the complex spray induced of the canonical (c.n.c) is this
c

Gi :=
1

2

c

N i
jη

k = Gi −
1

2
(∂̇r̄G

i)η̄r. (8)

It is obvious that the Chern-Finsler (c.n.c) and the canonical (c.n.c) induce the

same complex spray (6), (
c

Gi = Gi) if and only if the coefficients Gi given in (6)
are (2, 0)-homogeneous with respect to η.

Also, we have recovered the Chern-Finsler connection, in an R-complex Her-
mitian Finsler space [5, 7], which is metrical of (1, 0)-type and it is given by

Li
jk = gm̄i(δjgkm̄); Ci

jk = gm̄i(∂̇jgkm̄); Li
jk̄

= Ci
jk̄

= 0, (9)

where δj is the frame corresponding to the Chern-Finsler (c.n.c).

Finally, we recall from [4] the definition of an R-complex Hermitian Finsler
space with Berwald property. Let (M,F ) is Berwald if the local coefficients Li

jk
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depend only on the position z. In this case, the local coefficients of the Chern
Finsler (c.n.c) have the particular form

Li
jk = ∂̇jN

i
k; N i

k = Li
jk(z)η

j + (∂̇r̄N
i
j(z)η̄

r). (10)

which together with 8 lead to

(∂̇jL
i
hk)η

j + (∂̇r̄L
i
hk)η̄

r = 0, (11)

i.e., the horizontal coefficients Li
jk are R-homogeneous of degree 0 with respect to

η. Also, an elementary calculation gives δk(∂̇r̄L) = 0.
Now, we associate to the canonical (c.n.c), a complex linear connection of Berwald
type

BΓ :=

(

c

N i
j , Bi

jk := ∂̇k

c

N i
j , Bi

jk̄
:= ∂̇k̄

c

N i
j , 0, 0

)

, (12)

where
c

δk is with respect to
c

N i
j . BΓ is neither h-nor v-metrical. Moreover, it satisfies

the following properties

Bi
jkη

j =
c

N i
k − (∂̇r̄

c

N i
k)η̄

r; Bi
jk = Bi

kj . (13)

3. PURELY HERMITIAN R-COMPLEX FINSLER SPACE

We consider z ∈ M , η ∈ T
′

zM , η = ηr ∂
∂zr . An R-complex Finsler space

(M,F ) is called R-complex purely Hermitian Finsler space if

L = α2 + εβ2, ε = ±1 (14)

where

α2(z, η, z̄, η̄) = Re{arsη
rηs + ars̄η

rη̄s};

β(z, η, z̄, η̄) = Re{brη
r},

with ars = ars(z), ars̄ = ars̄(z), and b = br(z)dz
r is a differential (1, 0)-form. The

purely Hermitian function (14) produces two tensor fields grs and grs̄.

To discuss the Hermitian R-complex Finsler spaces with purely Hermitian
metric, we suppose that ars̄ = 0. Thus, only the tensor field grs̄ is invertible and it
is characterized by the following properties.

Proposition 3.1. In an R-complex Hermitian Finsler spaces with purely Hermitian
metric the following equalities hold:

αLα + βLβ = 2L, αLαα + βLαβ = Lα, (15)

αLαβ + βLββ = Lβ , α2Lαα + 2αβLαβ + β2Lββ = 2L,
where

Lα :=
∂L

∂α
, Lβ =

∂L

∂β
, Lαβ =

∂2L

∂α∂β
, Lαα =

∂2L

∂α2
, Lββ =

∂2L

∂β2
. (16)
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For a R-complex Hermitian Finsler spaces with L = α2 + εβ2, we have:

Lα = 2α, Lβ = 2εβ, Lαβ = 0, Lαα = 2, Lββ = 2ε (17)

Theorem 3.2. The fundamental metric tensor of the R-complex purely Hermitian
Finsler spaces with (α, β)-metric: L = α2 + εβ2, ε = ±1 is given by

grs̄ = ars̄ +
ε

2
brbs̄ (18)

Proof. The invarients of an R-complex purely Hermitian Finsler spaces with
(α, β)-metric are given by

ρ0 = 1, ρ1 = εβ, ρ−2 = 0, ρ−1 = 0, µ0 =
ε

2
(19)

Subscripts -2, -1, 0, 1 give us the degree of homogeneity of these invariants we have
using obtained the results in (18).

The next aim is to find the formulas for the determinant and the inverse of
tensor field grs̄. The solution is obtained by the following lemma from [6], for an
arbitrary non-singular Hermitian matrix (Qrs̄). �

Lemma 3.3. Suppose:
• (Qrs) is a non-singular n× n complex matrix with inverse (Qrs);
• Cr and Cr̄ = C̄r, r = 1, ........n are complex numbers;
• Cr := Qs̄rCs̄ and its conjugates; C2 := CrCr = C̄rCr̄; Hrs̄ := Qrs̄ ± CrCs̄.
Then

(1) det(Hrs̄) = (1± C2)det(Qrs̄),
(2) whenever (1 ± C2) 6= 0, the matrix (Hrs̄) is invertible and in this case its

inverse is Hrs̄ = Qs̄r ∓ 1
1∓C2C

rC s̄.

Theorem 3.4. For the R-complex purely Hermitian Finsler space with the metric
L = α2 + εβ2, ε = ±1 the determinant and the inverse of the fundamental metric
tensor grs̄ are given by
(1) gs̄r = as̄r + 1

2+ω̄
brbs̄,

(2) det(grs̄) =
2+ω̄
2 det(ars̄),

where ω̄ = brb
r, br = bs̄ars̄, b

r = as̄rbs̄.

Proof. Applying lemma (3.3) we set Qrs̄ = ars̄ and Cr = 1√
2
br. We obtain

Qs̄r = as̄r, Cr = as̄r 1√
2
bs̄, C

2 = 1
2 ω̄, 1+C2 = 2+ω̄

2 6= 0. So the matrixHrs̄ = grs̄ is

invertible with H s̄r = as̄r + 2
2+ω̄

(ak̄r 1√
2
bk̄)(a

s̄l 1√
2
bl̄) and det(Hrs̄) =

2+ω̄
2 det(ars̄),

thus grs̄ = ars̄ + 1
2+ω̄

brbs̄ and det(grs̄) = 2+ω̄
2 det(ars̄) from here obtained the

results (1) and (2). �

Example 3.5. We consider α as in [8], given by

α2(z, η) =
|η|2 + ǫ(|z|2|η|2 − | < z, η > |2)

(1 + ǫ|z|2)2
, (20)
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defined over the disk △n
r = {z ∈ Cn, |z| < r, r =

√

1
|ǫ|} if ǫ < 0, on Cn if ǫ = 0

and on the complex projective space PnC if ǫ > 0, where | < z, η > |2 =< z, η >

< z, η >. By computation, we obtain aij = 0 and aij̄ = 1
1+ǫ|z|2

(

δij̄ − ǫ z̄izj

1+ǫ|z|2

)

and so α2(z, η) = aij̄(z)η
iη̄j. Thus purely Hermitian metrics which have special

properties are determined. They are Kähler with constant holomorphic curvature
Kα = 4ǫ. Particularly, for ǫ = −1 we obtain the Bergman metric on the unit disk
△n = △n

1 ; for ǫ = 0 The Euclidean metric on Cn, and for ǫ = 1 The Fubini-study

metric on Pn(C). Setting β(z, η) = Re <z,η>
1+ǫ|z|2 , where bi =

z̄i

1+ǫ|z|2 , we obtain some

example of Purely Hermitian R-complex Finsler metrics

Fǫ =
|η|2 + ǫ(|z|2|η|2 − | < z, η > |2)

(1 + ǫ|z|2)2
±

(

Re
< z, η >

1 + ǫ|z|2

)2

. (21)

4. CONNECTION COEFFICINTS AND BERWALD SPACE

The Chern-Finsler connection coefficients (c.n.c) of a R-complex purely Her-
mitian Finsler space (M,F ) with (α, β)-metric is defined by

CF

N i
k = gm̄i ∂2L

∂zk∂η̄m
= gm̄i(

∂gr̄m̄

∂zk
η̄r +

∂gsm̄

∂zk
ηs). (22)

After a direct calculus, by using (22) we get

Lemma 4.1. Let (M,F ) be an R-complex purely Hermitian Finsler space with

F =
√

α2 + εβ2 and aij = 0, ε = ±1. Then we have the following expression of
Chern-Finsler (c.n.c)

CF

N i
j =

a

N i
j +

1 + ω̄

2 + ω̄

(

a

δjβ

)

+
1

2 + ω̄

∂lm̄

∂zj
bibm̄ + 2βgm̄i ∂bm̄

∂zj
, (23)

where

a

N i
j = am̄i ∂alm̄

∂zj
ηl,

a

δjβ =
1

2

(

∂b̄r

∂zj
lr̄ +

∂br̄

∂zj
η̄r
)

, gm̄i = aim̄ +
1

2 + ω̄
bibm̄,

and so, the spray coefficients are

Gi
j =

a

Gi
j +

[

1 + ω̄

2(2 + ω̄)

(

a

δjβ

)

+
1

2(2 + ω̄)

∂lm̄

∂zj
bibm̄ + βgm̄i ∂bm̄

∂zj

]

ηk. (24)

After a direct calculus, we can prove that,
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Theorem 4.2. Let (M,F ) be an R-complex purely Hermitian Finsler space with

F =
√

α2 + εβ2 and aij = 0, ε = ±1. If (M,F ) is Berwald then

(2 + ω̄)

(

N i
j −

a

N i
j

)

li = (2 + ω̄)

(

a

δjβ

)

ε̄+ ε̄
∂lm̄

∂zj
bm̄ + 2β(2 + ω̄)gm̄i ∂bm̄

∂zj
bi

(2 + ω̄)

(

N i
j −

a

N i
j

)

bi = (2 + ω̄)

(

a

δjβ

)

ω̄ + ω̄
∂lm̄

∂zj
bm̄ + 2β(2 + ω̄)gm̄i ∂bm̄

∂zj
bi















.

(25)

Proof. If (M,F ) is Berwald. Then N i
k = Li

jk(z)η
j + (∂̇h̄N

i
j(z)η̄

h), which means

that N i
k are R-homogeneous in η and η̄ of degree 1. Thus, using (23) and we

obtained the result (25). �

Lemma 4.3. The functions bi and bi are holomorphic if and only if
a

δjβ = 0.

Proof. Since 2(
a

δjβ) = ( ∂b̄
r

∂zj lr̄ +
∂br̄
∂zj η̄

r), the direct implication is immediate. Con-

versely, the condition (
a

δjβ) = 0 can be rewritten as

∂bi

∂zj
ηi − bi

a

N i
j +

∂bm̄

∂zj
η̄m = 0. (26)

Its derivation with respect to η̄ gives ∂bm̄
∂zj = 0 and so, (26) implies

∂bi

∂zj
ηi − bi

a

N i
j = 0, (27)

which, by derivation with respect to η, it leads to ∂bi
∂zj = bm̄ ∂aim̄

∂zj . The last relation

is equivalently to bm̄aim̄ = bi. This implies ∂bm̄

∂zj = 0, which proves our claim. �

Theorem 4.4. Let (M,F ) be an R-complex purely Hermitian Finsler space with

aij = 0 and F =
√

α2 + εβ2, ε = ±1. If (M,F ) is Berwald space and (N i
j−

a

N i
j)bi =

0, then (
a

δjβ) = 0 and N i
j =

a

N i
j .

Proof. Since under our assumptions, The conditions (25) become

(2 + ω̄)

(

N i
j −

a

N i
j

)

li = (2 + ω̄)

(

a

δjβ

)

ε̄+ ε̄
∂lm̄

∂zj
bm̄ + 2β(2 + ω̄)gm̄i ∂bm̄

∂zj
bi, (28)

0 = (2 + ω̄)

(

a

δjβ

)

ω̄ + ω̄
∂lm̄

∂zj
bm̄ + 2β(2 + ω̄)gm̄i ∂bm̄

∂zj
bi. (29)

In view of (27) and (28), now, by using Lemma 4.3 and (25) we get obtain the

desired results N i
j =

a

N i
j . �

The next theorem provides the sufficient conditions for an purely Hertmitian

R-complex Finsler space F :=
√

α2 + εβ2, with aij = 0 to be Berwald.
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Theorem 4.5. Let (M,F ) be an purely Hermitian R-complex Finsler space, with

aij = 0. If
a

δjβ = 0 then it is a Berwald space and N i
j =

a

N i
j . Moreover, if α is

Kähler, then F is strongly Kähler.

Proof. Using Lemma 4.3 and (23), it results N i
j =

a

N i
j . Since α2 is a purely

Hermitian metric, it is Berwald and by the relation we obtain that F :=
√

α2 + εβ2

is also Berwald and Li
kj(z) =

a

Li
kj(z), where

a

Li
kj := δ̇k

a

N i
j .

Now, if we suppose that α is Kähler, we have T i
jk =

a

Li
jk −

a

Li
kj = 0, which proves

our claim. �

Finally, we give some explicit examples of purely Hermitian R-complex Finsler
metrics which are Berwald or srongly Berwald.

Example 4.6. On M = C2 we consider the metric

α2 = ez
1+z̄1

|η1|2 + ez
2+z̄2

|η2|2, (30)

and we choose ε = ez
2

η2. These imply aij = 0, (r, s = 1, 2), 2β = ez
2

η2 + ez̄
2

η̄2,

b1 = b1 = 0, b2 = ez
2

, b2 = e−z2

and ω = 1.
With the above tools we construct a R-complex purely Hermitian metric function

F =
√

ez
1+z̄1 |η1|2 + ez

2+z̄2 |η2|2 +
1

4
(ez

2

η2 + ez̄
2

η̄2)2, (31)

which is a purely Hermitian R-complex Finsler metric having det(grs̄) =
2+ω̄
2 det(ars̄) =

3
2e

z1+z̄1+z2+z̄2

> 0, (r, s = 1, 2), and ω̄ = 1 > 0. A direct computation gives

2(
a

δjβ) =
∂b̄2

∂zj l2̄ +
∂b2̄
∂zj η̄

2 = 0, ∂lm̄
∂zj = 0 and ∂bm̄

∂zj = 0, (j,m = 1, 2).
Substituting these relations into (23), we obtain

N1
1 =

a

N1
1 = η1; N1

2 =
a

N1
2 = N2

1 =
a

N2
1 = 0; N2

2 =
a

N2
2 = η2, (32)

and so the metric (31) is Berwald one. Also, due to (32) it is obivious that the
metric (30) is Kähler. Thus, by Theorem 4.5, the metric (31) is strongly Berwald.
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