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ABSTRACT: 

 In fact the liquid-solid surface interactions 

change the dielectric constants by several 

percent. Among the various measurements 

based on TTGC the results obtained by 

Fontanella et alfor alkali halides may be 

considered to be most accurate. These 

investigators have assigned an uncertainty 

of only ± 0.2% for first derivatives of ε0. On 

the other hand the uncertainties reported 

by other workers [20-26 ]are of the order of 

± 5%.The results obtained by Fontanella et 

al have subsequently been corroborated by 

Bertels and Smith[40].  

 

INTRODUCTION: 

             In fact the high accuracy achieved is due 

in part to the use of higher order terms to describe the variation of ε0 with pressure and 

in part to the improved experimental 

techniques. Andeen et al have measured the pressure derivatives of ε0of alkaline earth 

fluoride using the same experimental 

method.Studies on volume and pressure 

derivatives of dielectric constants of ionic 

crystals are useful to make a critical test of the 

theories of dielectric polarization and 

interionic forces operative in these crystals. 

Measurements of first, second and third order 

pressure derivatives of static or low frequency dielectric constant ε0 have been performed for 

a number of ionic crystals. These experiments 

make use of these terminal geometric 

capacitance (TTGC) techniques. The details of 

experimental method based on TTGC 

measurements have been given by Lowndes 

and Martin. The TTGC method is better than 

the old immersion method mainly in two 

respects. First it is quicker method and 

secondly it does not use high dielectric 

constant liquids which can prove troublesome.  

            In fact the liquid-solid surface 

interactions change the dielectric constants by 

several percent. Among the various 

measurements based on TTGC the results 

obtained by Fontanella et alfor alkali halides 

may be considered to be most accurate. These 

investigators have assigned an uncertainty of 

only ± 0.2% for first derivatives of ε0. On the 

other hand the uncertainties reported by other 

workers [20-26 ]are of the order of ± 5%.The 

results obtained by Fontanella et al have 

subsequently been corroborated by Bertels and 

Smith[40]. In fact the high accuracy achieved is 

due in part to the use of higher order terms to describe the variation of ε0 with pressure and 

in part to the improved experimental 

techniques. Andeen et al have measured the pressure derivatives of ε0of alkaline earth 

fluoride using the same experimental 

method.They report an uncertainty of ± 0.01% for the first order pressure derivatives of ε0 for 

CaF2,SrF2 and BaF2.Their results are in very 

good agreement with other investigations[40-
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54].The TTGC method has also been used to 

measure the temperature and pressure 

dependences of the dielectric constants of 

semiconductors.The pressure derivatives of 

static dielectric constant are determined 

through the measurements of the pressure 

dependence of capacitance. The pressure 

derivatives can be reduced to volume 

derivatives using the relations given below 

Where BT = -V(dP/dV) is the isothermal bulk 

modulus. All the derivatives are taken at 

constant temperature. The experimental values of volume derivatives of  ε0 can be from 

equations (4.1) to (4.3) using measured data on the pressure derivatives of ε0. Values of V ( dε0/dV),V2 ( d2ε0/dV2), and V3 ( d3ε0/dV3) 

thus obtained from the experimental 

data.Values of volume derivatives of dielectric 

constant can also be calculated starting from 

the Claussius –Mossotti theory of dielectric 

constant and using interionic potentials. Such 

studies for alkali halides and other ionic 

crystals have been performed [56-60].A 

comparison of the calculated and experimental 

values of calculated and experimental values of the volume derivatives of ε0 provides a 

rigorous test of various polarization and 

interionic potential models. On the basis of 

Claussius –Mossotti relation,i.e., using 

equations (2.6) and (2.10) we can write  

The first and second order volume derivatives 

of dielectric constants are then obtained from 

equation (4.4) as follows, 

The ion-displacement polarizability is given by  αi= [ (Ze)2/A] (1.7) 

Where Ze is the magnitude of ionic charge and 

A is the force constant related to the short 

range –range potential energy ф( r) and its 
derivatives by the following expression, 

       A = [фII( r) + (2/r) фI( r)] (1.8) 

Where the superscript I,II etc. represent the 

first and higher order derivatives with respect to r. The volume derivatives of αi are obtained 

from equation (1.7) as follows (by assuming Z 

not to depend on volume) 

  It is clear from equations (4.5) and (4.6) in order that the volume derivatives of ε∞ and αi are required in order to evaluate the first 

and higher order derivatives of static dielectric 

constant. The method for evaluating the volume derivatives of ε∞ and electronic 

Polarizabilities has been developed for NaCl 

type crystals as well as for CsCl type crystals. It 

should be mentioned that for ionic crystals. In general, the values of volume derivatives of ε∞ 

are much smaller than the corresponding values of those of ε0. This is mainly because the 

volume derivatives of ion –displacement 

Polarizabilities are much larger than those of 

electronic Polarizabilities. 

Gibbs and Jarman [1962] have found empirically that the total Polarizability α0 

varies nearly as the square of the volume. This 

implies that  

Sharma et.al. (1977) have considered a more 

general relation of the form  

 (1.14) 

 

 

 

Where K and q are constants for a given 

crystals. Using the experimental data on first 

and second order volume derivatives of constant ε0 they have obtained values of  q  

between 2 and 3 .The ion-displacement polarizability αi and the short range force 

constant A also depend on the volume in a form 

similar to that represented by equation 

(4.14)as it is evident from the data on these 

quantities. In fact we note from equation (4.9) that (V/αi)(dαi/dV) and (V/A)(dA/dV) are 

equal and of opposite sign to each other. It 

should be mentioned here that the importance 

of (V/A)(dA/dV) as a useful physical quantity 

for crystals has been established .Sherman has 

used this quantity to study the bond 

anharmonicities and pressure dependence of 

α0 = KVq 
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normal modes of vibrations, whereas Shankar 

and coworkers [  ]have made  use of this to 

obtain some inter-relationships and 

thermodynamic quantities. There have been 

numerous attempts to investigate the volume 

dependence of e*/e .Taking the volume 

derivative of equation (2.23) we get, Where γTO is the transverse optic mode 

Gruneisen parameter. The exponential values of γTO for most of the alkali halides, silver 

halide and thallous halides have been reported 

by Lowndes and Rastogi [1976].It is thus 

possible to estimate (V/e*) (de*/dV) directly 

from experimental data using equation 

(4.15).An alternative method to evaluate the 

volume dependence of e*is based on different 

polarization models such as the shell model 

exchange charge mode, deformation model and 

Phillips Lawaetz ionicity model (Jain and 

Shanker[124]).A comparison of the value of 

(V/e*)(de*/dV) obtained from different models 

is presented in Table 4.3.The common feature 

of the results obtained from different models is 

that (V/e*) (de*/dV) is positive with out any 

expectation.This implies that the decrease in 

the crystal volume due to the effect of pressure 

increases the overlap and distortion of ions, 

thereby causing the decrease in the Szigeti 

effective charge parameter (e*/e).Values 

(V/e*)(de*/dV)obtained from the exchange 

charge model and the deformation dipole 

model are closer to each other and also with 

the experimental values Table(4.3).It has been 

pointed out that the features of the exchange 

charge model and the deformation dipole 

model are similar in certain respects and both 

the model take proper account of ionic overlap 

and distortions. This is the main reason for the 

detailed investigations of the dielectric 

properties of ionic crystals using these two 

models. It should also mentioned that the 

assumption that e*/e does not change with 

volume,i.e (de*/dV) =0, yields the values of γTO 

from equation (4.15) which are in reasonably 

good agreement with experimental data. On 

the other hand, some workers have found that 

(de*/dV) is negative for all alkali crystals. 

Studies based on recent experimental data and 

correct formulation have revealed that 

(de*/dV) should not be negative. It has been 

shown by Barron and Batana that the values of 

(de*/dV) obtained by Jones were to be negative 

because he used a relation between short range 

force constant and compressibility which is 

valid only at atmospheric pressure. Barron and 

Batana have modified this relationship by 

considering the effect of applied pressure. The 

negative values of (de*/d V) obtained by 

Vartosos[180] have been found invalid as he 

has used an incorrect relationship between the 

force constant and transverse optic mode 

frequency.The second order volume derivative 

of the effective charge parameter can also be 

calculated using the data on the volume 

derivatives of dielectric constants. Taking the 

volume derivative of equation (4.15) we get an 

expression for (d2e*/dV2)  in terms of the second order volume derivatives of ε0,ε∞ and ωTO. The volume derivatives of ωTOand γTO can 

be evaluated with the help of the first Szigeti 

relation, which on differentiating yields, And on 

differentiating once more we obtain the 

volume derivative of the given function  

And on differentiating once more we obtain, 

Where the short range force constant A and its 

volume derivative are the same as given by the equations (4.8),(4.11) and (4.12).Values of γTO 

and its volume derivatives calculated from 

equations (4.16) and (4.17) have been found to 

present good agreement with experimental 

data. 

It is possible to find some useful 

interrelationships between higher order elastic 

constants and pressure derivative of dielectric 

constants. Using the equation of state for the 

relationship between pressure and volume 

derivatives of the potential energy W, we can 

write  



NOVATEUR PUBLICATIONS  

JournalNX- A Multidisciplinary Peer Reviewed Journal  

ISSN No: 2581-4230 

VOLUME 3, ISSUE 3, March. -2017  

180 | P a g e  
 

(4.18) 

 

 

The total potential energy W for an ionic 

crystal can be written as Where αM is the Madelung constant and ф( r) is the short-range 

repulsive energy. Using equations (4.8),(4.18) 

and (4.19), we get  

Where  x (=(V/r3) is a geometrical factor 

depending on the type of crystal structure. For 

NaCl –structure solids x=2.On solving 

equations (4.20 to 4.22) we get  

A = - 3xr(VPI+ 4P/3)  

 

Where PI = (dP/dV),PII = d2P/dV2, and PIII = 

(d3P/dV3). 

And these are directly related to the second, 

third, and fourth order elastic constants by the 

following expressions, 

PI = (C11+ 2C12)/3V (4.26) 

PII={[3(C11 + 2 C12) - (C111+ 6C112 +2C123)]/9V2} (4.27) 

PIII =  

Thus equations (4.5) to (4.10) and equations 

(4.230 to (4.28) provide direct interrelations 

between the volume derivatives of dielectric 

constants and higher order elastic constants 

and higher order elastic constants. Using the 

data on second, third and fourth order elastic 

constants one can calculate A, (dA / dV) and 

d2A/dV2 with the help of equations (4.23) to (4.28). The volume derivatives of ε0 and γTO are 

then estimated using equations (4.5) to 

(4.100,(4.16) and (4.17). The results thus 

reported have been found to present good 

agreement with experimental values. There are 

three components for the strain derivatives of 

each dielectric constant. They are represented 

by W11,11 W11,22 and W12,12, defined as follows,( 

Shrinivasan [178]); 

W0ij,kl = dε0ij/ dηkl (.29) 

And  

p∞ij,kl = -W0ij,kl / ε2∞ (4.30) 

Where the subscripts 0 and ∞ correspond to 
low frequency and high frequency dielectric 

constants respectively.p∞ij,kl are known as the 

photo-elastic or strain optical constants. In 

terms of quantities defined above the volume 

derivatives of the dielectric constants are  

The expressions wij,kl and pij,kl in terms of the 

shell model parameters have been obtained by 

Shrinivasan. Continuous efforts have been 

made to calculate these strain derivative 

components of dielectric constants. 

 

REFERENCES 

1) Benson C.G. and Denpsey E.; 

Proc.,Roy.Soc.A266,344 (2015). 

2) Bhende W.N., Bakhi P.S. and Shanker J.; 

Phys. Stat. Sol.(b)128,105(2015). 

3) Born M. and Haung K.; dynamical theory of 

crystal lattices (Clarendon,oxford,1994). 

4) Born M and Lande A. 

;Verh.DPG20,210(2011). 

5) Hafemeister D.W. and Flygara 

W.H.;J.Chem.Phys.43,795(1995). 

6) Hardy J.R.;Phil.Mag.6,27(1990). 

7) Hallinger R.C. and Barash 

G.R.;J.Phys.Chem.Solids 37,845(1976). 

8) Hellman H.;J.Chem.Phys.3,61(1995). 

9) Hopfield J.J.;Privatye communication 

;Phys.Rev.B2,973(2011). 

10) Hylletass E.A.;Z.Physik63,771(1990). 

11) Hafemeister D.W. and Flygara 

W.H.;J.Chem.Phys.43,795(1009). 

12) Hardy J.R.;Phil.Mag.6,27(1990). 

13) Hallinger R.C. and Barash 

G.R.;J.Phys.Chem.Solids 37,845(1996). 

14) Hellman H.;J.Chem.Phys.3,61(1995). 

15) Pauling L.;Cornwell University 

Press,Ithaca(1990). 

16) Pauling L.;Cornwell University 

Press,Proc.Roy. Soc. A114,181(1929); 

17) J.Am Chem.Soc.50,1036(1998). 

18) Penn D. ;Phy.Rev.128,2093 (1992). 

19) Phillips J.C.; Rev. of Mod.Phys.42,317 

(2010). 

20) Phillips and Van Vechten J.A. 

;Phys.Rev.183,709(1999). 

 

W = - (αM e2/r) + ф( r) 

= 


