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Abstract: A conventional surface mapping is calculated by any means of linear interpolator such as nearest neighborhood 

point (NNP), inverse distance (IDW)/inverse distance square (IDS), polygon, contour weighing, Ordinary Kriging (OK). The latter 

is included in geostatistic methods and provides more advanced weighing method that differs from the rest. Although OK 

provides smoothing over mapping data but it does not cover categorial (non-value) data. Besides, it is not best in strongly skewed 

data that are common in exploration data and is limited to the expected value at some location. On the other hand, a non-linear 

interpolator is conducted to estimate the conditional expectation at a location, that not only to simply predict the grade or other 

parameter itself, but also the probability of the parameter at a location with known nearby samples. An integrated surface 

mapping should have many kinds of data that can be categorized into continous data (grade, thickness, elevation, etc.) and 

categorial data (lithology, alteration, structural data, etc.). In order to create a block that consist of all data available in a given 

deposit, a non-linier transformation will be conducted to estimate values at determined thresholds by Kriging methods, known 

as Indicator Kriging method and its variants.  

Keywords: conditional expectation, geostatistics, indicator kriging, integrated mapping, non-linear interpolator  

Abstrak: Metode pemetaan konvensional hanya melibatkan pembobotan dan interpolator linier. Pembobotan konvensional 

meliputi nearest neighborhood point (NNP), inverse distance (IDW)/inverse distance square (IDS), poligon, dan kontur, 

sedangkan pembobotan non-konvensional menggunakan pembobotan Kriging. Ordinary Kriging (OK) sebagai salah satu metode 

linier memiliki kelebihan seperti peta sebaran smoothed namun tidak bisa mengolah data kategorial seperti jenis litologi, alterasi, 

tipe urat, keterdapatan struktur, dan sebagainya. Selain itu, metode linier ini tidak cocok untuk pengolahan data dengan 

distribusi tidak normal. Di sisi lain, suatu transformasi non-linier dapat dilakukan untuk data kontinu maupun kategorial untuk 

mengestimasi nilai pada ambang batas yang ditentukan (Indicator Kriging/IK dan variannya). Transformasi non-linier akan 

menghasilkan distribusi bersyarat pada suatu lokasi dari sampel-sampel sekitar yang diketahui. Distribusi tersebut dapat 

dikonversi menjadi nilai – seperti hasil akhir estimasi dengan interpolator linier – atau berupa probabilitas suatu kadar atau 

parameter lain pada suatu lokasi, hasil dari parameter sampel lain yang diketahui. Sebuah pemetaan non-konvensional pada 

suatu tipe endapan akan melibatkan berbagai variabel sehingga untuk membentuk pemetaan yang integratif, pendekatan non-

linier lebih efektif untuk memproses variabel kontinu maupun kategorial pada satu blok yang sama.  

Kata Kunci : distribusi bersyarat, geostatistik, indicator kriging, interpolator non-linier, pemetaan integratif 

Introduction 

In the preliminary stage of exploration, a broad 

spectrum of exploration methods is conducted; remote 

sensing [1] and airborne geophysics [2], [3] are usually 

used prior to geochemistry [4], detailed ground 

mapping, and drilling [5]. All methods are intended to 

give the direction of interest in the prospected area(s), 

e.g. geophysical method that making use of gold lodes 

and host rocks conductivity contrast [3] to locate 

prospect area showing those contrasts. Thus, by 

focusing on the area of interest, more evidences will lead 

to the deposit itself [6]. Nevertheless, the data obtained 

from every method are unique; one is vast and has high 

resolution, and one is localised, erratic or widely ranged; 

one is quantified by numbers, and the other is non-value 

or categorial data.  

The local nature of data is common in any mineral 

resources exploration since from the beginning, an 

anomaly is expected – whether lower or higher 

anomalies – to distinguish from background and decide 
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the next stage. The problem comes when exploration 

mapping uses conventional methods – nearest 

neighborhood, inverse distance/inverse power of 

distance, polygon, contour area (isograde/isopach), etc. 

[7], [8] – of which weights do count on other than the 

data distance and the erratic and localised nature of the 

data. At this point, manual anomaly mapping from 

experts can cover the data nature but it sure is 

scientifically subjective and time consuming. 

A more shophisticated method for weighing is 

introduced and known as ‘Kriging’ [6], [9], [10]. This 

method consists of various kinds of linear and non-linear 

approaches. A non-linear approach will be conducted 

throughout this research to estimate categorial data 

which do not have values, and continous data which 

have values as a comparison to other conventional 

methods. Previously, researchers have shown linear 

approach uses to conduct resource/reserve estimations 

such as metal grades, coal qualities, and soil gas 

concentrations in geothermal field [11]–[14]. A non-

linear approach has been used by previous researchers 

as well in an epithermal gold resource estimation, having 

structurally complex gold lodes, veinlets, and 

stockworks [15], similar to this research’s geogical 
background – except that it was applied directly to 

mineralization (gold grade), not in an exploration stage 

where surface maps are essential to guide further 

exploration activity showing complex structural 

background, lithology types, geochemical features, that 

are featured in the case study. 

The study will show how the non-linier transformation 

handles both categorial and continous data in order to 

estimate transformed values at each thresholds. The 

‘threshold’ can be treated as the cut-off-grade in mining 

process (for continous data) or in terms of data grouping 

(for categorial data), e.g. lithology types, alteration 

groups, vein textures, etc. The Kriging weight that is 

applied to the non-linear transformation is known as 

‘Indicator Kriging’. The broad spectrum of data obtained 

from many exploration method (remote sensing, 

geophysics, geochemistry, trenching, drilling, etc.) can 

be treated purposefully and quantifically with this non-

linear Kriging method.  

Data 

This data is taken from a mountainous area in Tanggamus, 

Lampung province that is prospected to epithermal gold 

deposit. Therefore, preliminary exploration in the form of 

surface mapping is crucial. This surface maps, especially the 

geological map and alteration map, are typically done 

subjectively. The data used to represent the two separate 

characteristics of data, as well as representing the indirect 

exploration methods, i.e. remote sensing, geophysics, and 

geochemistry; and direct exploration methods, i.e. grab 

sampling and trenches, are as follows. 

1. Digital Elevation Model (DEM), lineaments from 

Garwin (2012), and airborne residual aeromagnetic 

survey. 

2. Outcrop sampling, from surface mapping, 

comprises lithology type and alteration group. 

The data obtained are presented in Figure 1 contains a 

contour map derived from DEM, lineament density, residual 

aeromagnetic anomaly (RGB format), XRD sampling points 

(for analysing alteration group), and observation points from 

which litology types are taken. Direct exploration methods 

was conducted in the area of interest because it covers both 

high and low anomalies of aeromagnetic survey as well as 

what is suspected to be the depression of the nothern tail of 

East Semangko pull-apart basin (SPB). This regional structural 

setting is common in open fissures or dilatational fractures 

forming vein-type deposit [16].  

Methods 

Non-linear transformation 

The highlight of this paper is the non-linear appoach 

(data transformation) to handle any kinds of exploration 

data; matematically expressed as the following forms 

[17]. The data transformation applied to all data is binary 

number (0, 1). However, the transformation is 

technically different for each data type. For instance in 

alteration group, value ‘1’ is given to all data ‘Smectite’ 
and the rest is ‘0’. The same goes with other alteration 

group, and so on. The threshold for this kind of data is 

often ‘type’, or ‘class’, or ‘classification’. Thus, the 
general expression of categorial data transformation is 

given in Eq. 1. 𝑖𝑗(𝑣𝑐) = {1, 𝑖𝑓𝑣𝑗 = 𝑣𝑐  0, 𝑖𝑓 𝑣𝑗 ≠ 𝑣𝑐  (1) 

On the contrary, continous data, e.g. Bi dan Mo 

elements in soil, will have quartiles as thresholds. For 

instance, on lower quartile (Q1) threshold, value ‘1’ will 
be given to all bismuth (Bi) and molybdenum (Mo) data 

above Q1, and so on. The threshold can be decile values 

or geochemical background value. 
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Figure 1. Observation points and XRD sampling points upon strong NW-SE lineament. 
 

For any threshold/cut-off 𝑣𝑐  of a set of continous 

variable, datum will be transformed into indicator 𝑖𝑗(𝑣𝑐), using the following formula Eq. 2 [17]: 𝑖𝑗(𝑣𝑐) = {1, 𝑖𝑓𝑣𝑗 ≥ 𝑣𝑐  0, 𝑖𝑓 𝑣𝑗 < 𝑣𝑐  (2) 

Therefore, using the quartile thresholds for all continous 

data will be at 25%, 50%, dan 75% data, or expressed as 𝑖(𝑣0.25), 𝑖(𝑣0.50), and 𝑖(𝑣0.75). The following table (Table 

1) shows the data type as well as each thresholds the 

data will be assigned to. 

The binary values assigned to continous data can be 

treated in the opposite manner. For searching high 

value/high anomaly like Bi and Mo geochemical anomaly 

data, the thresholds are the minimum value or cut-off 

grade. For treating lower value/anomaly, the thresholds 

are the maximum value allowed, such as ash content, 

sulphur content in a coal seam. The latter, value ‘1’ will 
be assigned to all data below thresholds.  

The alteration minerals were identified by bulk XRD, air-

dried oriented XRD, and ethyleneglycol-treated oriented 

XRD in X-Ray Laboratorium of Economic Geology, 

Department of Earth Resource Engineering, Kyushu 

University Japan.  These alteration minerals were then 

regrouped based on typical alteration grouping for 

epithermal gold deposit [18], [19]; alteration mineralogy 
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is constrained by initially leached host-rock (by very 

acidic fluid, pH <2) and later neutralized by wall-rock 

reaction and meteoric water. Alteration minerals vary 

laterally and vertically. Since the study focuses on 

surface map, the lateral alteration mineral distribution is 

favored; vein-outward-wise, smectite, propylitic, and 

kaolinite-alunite alterations are typically found. XRD 

analyses out of 54 samples resulted in chlorite-smectite, 

propylitic, and silicification alteration – the latter is 

especially by the veins. Chlorite-smectite is an interlayer 

alteration typically transitioning smectite zone and 

propylitic zone in a deeper level; assemblaged from 

chlorite + smectite ± kaolinite ± alunite ± albite. Whereas 

propylitic mineral assemblage is chlorite + albite ± calcite 

± smectite. 

Table 1. Data transformation 

Variable Data Type Thresholds/ 

cut-offs 

Marginal 

Probability 

Alteration 

group 

Categorial Chlorite - smectite 0.185 

Propylitic 0.504 

Silicification 0.311 

Lithology Categorial Vein 0.512 

Andesitic tuff 0.346 

Andesitic lithic tuff 0.123 

Lineament 

density 

Categorial Very high 0.065 

High 0.113 

Moderate 0.005 

Low 0.683 

Very low 0.134 

Soil elements 

(Bi) 

Continous Lower quartile 0.227 

Median 0.275 

Upper quartile 0.388 

Soil elements 

(Mo) 

Continous Lower quartile 1.078 

Median 1.392 

Upper quartile 2.003 

A resampling was commited to lineament data at 6.6 

meter interval. This was aimed to get a magnitude 

(length) per area of lineament, hence the lineament 

(length) density. The lineament density is classified into 

five groups - >21.58 m/m2 that represents “very high 
length density”; 16.18-21.58 m/m2 that represents “high 
length density”; 10.79-16.18 m/m2 that represents 

“moderate length density”; 5.39-10.79 m/m2 that 

represents “low length density”; and below 5.39 m/m2 

represents “very low length density”. These indicators or 
thresholds are derived based on this criterion to see how 

lineament will correlate to other variables. 

Primary enrichments of trace elements in vein-type gold 

deposit include As, Ba, Bi, Mo, Pb, and Sb [20], [21]. 

Hence, the soil elements analysis included the 

mentioned elements for the clear correlation even 

statistically (bivariate analysis). However, Bi and Mo 

have the highest correlation coefficient among others 

(0.701) and considered strongly correlated (positive) 

[22]. This Bi rise in the area reveals the positive 

correlation to the gold vein indicating the typical 

intrusion-related gold deposits [23]. To add more, both 

Bi and Mo are grouped into the sub-ore halo (meaning 

the altered rock relatively in the bottom of the deposit) 

as the geochemical indicators in hydrothermal gold vein 

deposits [24]. Different elements will be formed in every 

stage of orebody forming (vertically) as individual 

element requires a certain chemistry to stay immobile. 

The other elements, As, Ba, Pb, and Sb, are often 

featured in the near-ore halo and relatively closer to the 

surface (supra-ore halo) that explains why the 

correlations of Bi-Mo and the rest of the elements 

cannot come about.  

Indicator Kriging algorithm 

The non-linear Indicator Kriging general process is 

shown in Figure 2. After transforming the data, indicator 

variogram models are required for estimation. Indicator 

variogram searches for critical variance within which an area 

of interest or range of influence for each variables are 

determined. An indicator variance can guide to search the 

critical variance (sill). An experimental variogram has to be 

calculated from Eq. 3 [25], [26] and modelled through Eq. 4 

[27], [28] based on spherical model that suits skewed data 

better. ∑ (𝑌𝑗(𝑥 + ℎ) − 𝑌𝑗(𝑥))2 = 2𝛾(ℎ)𝑁(ℎ)𝑗=1   (3) 

where 𝑁(ℎ),  𝑌𝑗(𝑥) and 𝛾(ℎ)  are number of data pairs, 

data at location x, and variogram at distance ℎ 

respectively. Variogram searches for variance of data pairs 

separated by distance h, or lag. For every indicators, 

variogram is calculated and hence, indicator variograms will 

be obtained. These experimental indicator variograms were 

fitted by using Matheron/spherical model in nested structure 

to show micro, local, and regional area of influence.  γ(h)𝑣𝑐
=
{  
  
  0,                                                                                                                    ℎ = 0𝐶0 + 𝐶1 (32 |ℎ|𝑎1 − 12(|ℎ|𝑎1  )3) + 𝐶2 (32 |ℎ|𝑎2 − 12(|ℎ|𝑎2  )3) ,        0 < |ℎ| < 𝑎1 𝐶0 + 𝐶1 + 𝐶2 (32 |ℎ|𝑎2 − 12(|ℎ|𝑎2  )3),                                          𝑎1 ≤ |ℎ| < 𝑎2𝐶0 + 𝐶1+𝐶2,                                                                                             |ℎ| ≥ 𝑎2

 

 (4) 

Where γ(h)𝑣𝑐, 𝐶0, 𝐶, ℎ, 𝑎, notation 1 and 2 on Eq. 4 stand 

for variogram at a threshold 𝑣𝑐 , nugget variance, lag 
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distance, range, and notation representing local and 

regional structure, respectively. 

 

 

 

 

 
 

 

Figure 2. Non-linear Indicator Kriging algorithm. 

As the thresholds are not quite the same as that of the 

continous one, the term marginal probability will be 

introduced. Marginal probability works as the initial 

proportion of each block corresponding to each 

category, which is a weighed average of the sample 

indicators, satisfying ∑ 𝑤𝑗 = 1𝑛𝑗=1  [29]. 𝐹̂(𝑣𝑐) = ∑ 𝑤𝑗 ∙ 𝑖𝑗(𝑣𝑐)𝑛𝑗=1   (5) 

Eq. 5 shows 𝐹̂(𝑣𝑐)  and 𝑤𝑗  stand for cummulative 

frequency distribution function and proportional weight 

at the threshold, respectively. The marginal probabilities 

of alteration group, lithology, lineament density, and soil 

element analysis are shown in Table 1. Ordinary Kriging 

will then be performed by the following estimator, Eq. 6, 𝑉̂(𝒙0) at location 𝒙0 by weight 𝜆𝑖,  𝑉̂(𝒙0) = ∑ 𝜆𝑖𝑉(𝒙𝑖)𝑘𝑖=1   (6) 

subject to ∑ 𝜆𝑖 = 1𝑘𝑖=1  [27]. Kriging is known as Best Linear 

Unbiased Estimator ‘BLUE’ [26]. One of the reason it is 

known as BLUE is due the weight 𝜆𝑖  is calculated with 

taking several variables into account: a) the distance 

between block (𝑈 )/point (𝒙0)  to be estimated to the 

sample point (𝒙𝑖); b) the distance amongst sample point 

(𝒙𝑖, 𝒙𝑗); c) and the average variance within the block to 

be estimated. These relationship is shown in Eq. 7 [27].  ∑ 𝜆𝑖𝛾(𝑥𝑖, 𝑥𝑗)𝑁𝑖,𝑗=1 + 𝜇 = 𝛾̅(𝑥𝑗, 𝑈) (7) 

The notation 𝛾(𝑆𝑖, 𝑆𝑗), 𝛾̅(𝑆𝑗, 𝑈), and 𝜇 refer to the value of 

point-to-point variogram, the average point-to-block 

variogram, and population mean respectively. These 

distances and variograms will be calculated by using the 

formula of fitted variogram Eq. 4 to get the 𝛾  values. 

Once weights and mean population are calculated, the 

estimator 𝑉̂(𝒙0) can give the estimates in the form of  

probability. Therefore, each variable at each thresholds 

will give different probability distribution or reliability 

map. 

The last algorithm of Indicator Kriging numerically 

approximates the cumulative probability distribution 

[29]. The realization of kriging with indicator values 

(both continous and categorial data) are not 

equiprobable because of the thresholds and marginal 

probabilities. In this research, realizations for categorial 

data will be left as probability value at a point to give 

easier set of values for further analyses. Whereas the 

realizations for continous data will need to be estimated 

to give a single estimate at each point. Let 𝐹𝑥(𝑣𝑗) be the 

probability at 𝒙 obtained from kriging of indicator values 

derived from threshold 𝑣𝑗, 𝑗 = 1,2, … ,𝑁, the conditional 

expectation estimator 𝑉̂𝐸(𝒙)  that can be derived from 

the sets of thresholds is espressed in Eq. 8. 𝑉̂𝐸(𝒙) ≈ ∑ 𝑣̅𝑗[𝐹𝑥(𝑣𝑗) − 𝐹𝑥(𝑣𝑗−1)]𝑁+1𝑗=1  (8) 

Where 𝑣̅𝑗  is the mean of the class (𝑣𝑖−1,𝑣𝑖 )  with 𝑣0 

representing the lowest sampling value and 𝑣𝑛+1  the 

largest. 

Results And Discussion 

Geostatistics has the ability to assign confidence interval 

to every estimates. It does not give a single estimate but 

along the range or error, derived from the cumulative 

distribution of the random function. Once cumulative 

distribution is known, the confidence limit chosen to 

employ in this study case is a practical ‘threshold 
probability map’ showing the fluctuations in the 
probability that the attribute is limited to a value [29]. 

The limit metioned earlier is ‘above’, not ‘below’ a 
certain threshold because data were transformed in that 

manner. This threshold probability map from this point 

will be addressed as reliability map.  

Outstanding features of non-linear indicator 

variogram models for drawing surface maps 

The indicator variogram models for each indicators are 

shown in Figure 3 and Figure 7; refering to categorial 

data and continous data respectively. These indicator 

variogram models show the area of influence which 

attributes are still correlated spatially within (Table 2). 

An attribute comprises local area of influence (yellow 

shading) and regional area of influence (blue shading) 

indicating range of an attribute that has more similarity 

at a distance. For instance, propylitic alteration amongst 

alteration group (Figure 3a) has the most distant range; 

Generating 

indicator data 

sets of several 

thresholds 

Modelling the 

indicator 

variogram 

Performing the 

ordinary kriging of 

each indicator 

data separately 

Numerically 

approximating 

the cumulative 

distribution 

function 
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Figure 3. Indicator variogram models of categorial data; (a) alteration group and (b) lithology, at each thresholds. 
 

exceeding 800m. Theoretically, this range shows that 

propylitic data is similar/connected upto this point. 

Genetically, this shows the occurences of propylitic as 

the ‘peripheral’ alteration that surrounds other 
alteration halos.  

Table 2. Variogram parameter of categorial data; local and regional 
range. 

Variable Thresholds/cut-offs Local (m) Regional (m) 

Alteration 

group 

Chlorite - smectite 245 415 

Propylitic 300 900 

Silicification 130 290 

Lithology Vein 48 250 

Andesitic tuff 120 325 

Andesitic lithic tuff 180 300 

Another example from Figure 3b, vein has a distinct 

variogram model than other in terms of how erratic the 

data are, shown by sudden flatness at a relatively close 

distance to the origin (in this case <50m). This erratic 

behaviour near the origin is often called nugget effect, 

or if very random, pure nugget. The nugget effect is so 

high that if the value is compiled to 𝐶0, the estimation 

process will be flopped, many grids would not have been 

smoothed and would have been spotted. The solution is 

to make local range (𝑎1) and local sill (𝐶1) to represent 

the nugget effect. Resulting in no micro structure but 

very high variance of data at local structure. This 

characteristics of vein erraticness can be explained 

genetically; as vein occurs in an open fissure and not 

bulks, we will find an alternating findings of ‘vein’ and 
‘no-vein’ at close distance in field.  

(a) 

(b) 
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Erratic vein data is not only in the form of the existence 

of vein itself, but also when Au-grade is taken account 

into. Au-grade is so erratic – someplaces very high and 

someplaces very low, or very high and low grades in the 

same place. This randomness also creates nugget effect 

– even pure nugget. 

The lineament density data are so vast, regular, and 

small gridded that the indicator variogram will show 

minimum variance at every lag increase ( 

Figure 4). Because of this data nature, the lineament 

density will show little to no difference to the raw data 

distribution. An ordinary kriging or inverse distance 

weighing will result similarly with this kind of data, 

except it is categorial data. Therefore, an RGB-based 

lineament density is converted to somewhat 

representative value of very high to very low (1-5). This 

process is the non-linear transformation for this data 

and resulted in the same reliability map, that is 

probability distribution map – for the purpose of finding 

correlation coefficient between variables easily with 

bivariate analysis. 

The critical variance where local and regional range ends 

is called sills (y-axis). This variogram parameter reaches 

its stationarity when data is only correlated statistically. 

The sill should be around where the statistical variance 

be – that is why on the variogram model figures, dashed 

red line are presented showing 𝜎2 . Especially for the 

continous data, spatial correlation can be further 

analysed by multi-indicator kriging utilizing sill values to 

get micro, local, and regional relationship of soil 

elements. This topic can be the near-future work to 

better understanding the methods for doing variable 

pairings in non-linear kriging. 

 

 

 

 
Figure 4. Indicator variogram models of lineament density; very high >21.58 m/m2, high 16.18-
21.58 m/m2”, moderate 10.79-16.18 m/m2, low 5.39-10.79 m/m2, and very low below 5.39 m/m2; 
the lineament distribution result by colors.  

Distance (m) 
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The correlation between categorial data is further 

shown by the correlation coefficient at clipping values 

(Figure). With alteration, lithology, and lineament 

density, it is hard to tell the relationship aside from 

subjectively through genesis and accurences of minerals. 

However, non-linear indicator kriging gives a range of 

probability value that can be easily compared one 

another with scatter plot. Using the marginal probability 

value as lower clipping value, these spatial correlation 

can be quantified. 

Updating local geological map  

The conventional method will mostly rely on engineer’s 
justification and experience when drawing a lithology 

contact when two nearest points have different 

lithology type. Although those justification and 

experience are still totally needed, now more 

scientifically justified data are provided to better surface 

map. Taking into account other attributes and how they 

correlate with each other. The correlation is expressed 

in probability values that each block has a probability for 

being chlorite-smectite, propylitic, or silicification (in 

terms of alteration group) and also a probability for 

being vein, andesitic tuff, or andesitic lithic tuff (in terms 

of lithology type).  

The local geological maps derived from probability maps 

will consist of alteration distribution (Figure 5) and 

lithology maps (Figure 6), including the lineament 

density, sample points, and structural measurement 

(veins and stockworks). The alteration distribution is 

reflected from the probability maps a) chlorite-smectite, 

b) propylitic, and c) silicification alterations. All three 

maps are built in the same cartesian grid to easily 

compare the probability values between the three. An 

alteration of which probability is the largest will be 

chosen as the identity of a grid. Another consideration is 

that although a probability is the largest, if it is no larger 

than its marginal probability, the other probability 

values have to be evaluated further. This process shows 

that every grid has the chance to become a type of 

alteration by having three values of probability. This 

determation helps engineers to rise confidence in 

valuating alteration and lithology contact.  

A company mined out the central and northern parts of 

the contract of work by 2019-2020. Being yet to be a 

prospect, this study area (Rawa Gabus) does not have 

that  many  detailed  geological  information, except  for   

lineaments from 2012 researches. The lithology distribution 

is derived from probability distribution map of a) vein, b) 

andesitic tuff, and c) andesitic lithic tuff. All three maps are 

indifferent from alteration grid that each grid have more data 

stored. A grid in lithology type Indicator Kriging estimation 

will have possibilities to be either vein, andesitic tuff, or 

andesitic lithic tuff based on their probability values. After 

determining lithology grid identity, result shows the 

distribution as illustrated in Figure 6. Vein illustrated in the 

map represents the vein zones showing the surface outcrop 

distribution zone(s). The linkage of each zones are 

interpreted based on the orientation (strike/dip) plotted in 

the same frame. This vein zone represent neither lateral nor 

vertical continuation of the vein. Nevertheless, this zoning 

can be used to rise the confidence about vein distribution 

and further drilling bearing and dip decision. The former 

geological map created in 2018 only shows andesitic tuff 

throughout the frame. As the data point increased, 

megascopic observation set andesitic lithic tuff apart from 

andesitic tuff.  

The significance of defining detailed lithology data to 

separate lithic tuff from tuff is regarding the genetic process 

of the volcanogenic pyroclastics. Different from the term 

“crystal” that is derived from porphyritic magma and from 
crystalline or porphyritic country rock, the term “lithic” refers 
to fragments or clasts derived from pre-existing rocks, 

including both volcanic and non-volcanic types. In general, 

but not invariable, lithic fragments are absent or sparse in 

lava flows and syn-volcanic intrusion.   

The kinds of fragments in the volcanic rock as the host of the 

gold mineralization may imply to different contributions to 

vein textures, e.g. hydrothermal breccia, colloform, banded 

vein, etc. As the vein textures are limited to the surface 

outcrops, the mapping result cannot explore this matter, let 

alone the mineralization. Rather, the discussion can progress 

to whether the alteration and/or geochemical anomalies  are 

more controlled by another factor, for instance morphology 

or structures. Hydrothermal alterations are various yet 

similar, depending on the nature and chemistry (site-specific 

fluid composition, fluid characteristics, and fluid 

concentration), temperature and pressure of the circulating 

fluid, as well as the permeability and initial composition of 

the host rocks through which the fluids circulate [30]. Thus, 

by updating geological map into more detailed lithology unit 

might help better understand the vein regimes, host rocks, 

and magma-fluid interaction (alteration) forming the ones 

we see today.  
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Figure 5. Interpreted lateral distribution of alteration map derived from non-linear indicator kriging; resulted from analysing probability distribution 
map of a) chlorite-smectite, b) propylitic, and c) silicification alterations. 
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Figure 6. Updated geological map of research area, interpreted from non-linear indicator kriging; resulted from analysing probability distribution map 
of a) vein, b) andesitic tuff, and c) andesitic lithic tuff. 
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(a) 

 

(b) 

Figure 7. Indicator variogram models of continous data; (a) bismuth/Bi and (b) molybdenum/Mo, at each quartile thresholds.  

 

Magma-fluid interaction can be seen through the alteration 

mineral itself. An alteration mineral shows the pH range as 

well as temperature range which the mineral was formed in. 

The pH and temperature infer to the hydrothermal fluid. The 

alteration mineral group is matched with genetic epithermal 

alteration model. The wall rock alteration in epithermal 

system is theoretically formed as halos to vein; occurs as 

silicification minerals, sericite (illite) to graded peripheral 

smectite clays with associated pyrite and chlorite, and this 

alteration grades to more marginal chlorite-carbonate 

(propylitic) alteration. Overall distribution of alteration is 

along the vein zone and SE-NW lineament (visually), 

especially the silicification zone. Low temperature acid water 

developed by the condensation of volatiles contribute 

towards the formation of surficial acid sulphate alteration, or 

known as near-surface waters, including silica (chalcedony, 

opal), kaolinite, and local alunite. These acid sulphate water 

is interpreted to collapse to deeper levels and so aid in 

mineral deposition. The distribution of propylitic in this study 

is vast, almost covers and surrounds the other alterations. 

Whereas the distribution of chlorite-smectite is more 

localised.  

Spatial correlation 
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Spatial correlation amongst variable and between 

variables will be provided to further understand the 

interpreted map. Spatial correlations is only possible 

because indicator kriging result for any kinds of variables 

are their probability values, or reliability maps, which 

makes it easier to compare (Table 3). Alteration group 

pairs have overall negative correlation coefficients; 

namely propylitic and silicification, chlorite-smectite and 

silicification, also chlorite-smectite and propylitic have 

reciprocally moderate correlation (-0.62) and 

reciprocally strong correlation for the rest (0.71 and 0.76 

at clipping values), respectively. Reciprocally correlated 

means alteration variables are inversely related or when 

one presents, the other doesn’t. It is too early to 
conclude whether there is no replacement on the 

system yet. However, it is proven that the probability 

values representing the presence of of alteration group 

do not co-exist with the others. 

Table 3. Corellation coefficients of variable pairs. 

Pairs ρ 
Clipping values 

1 2 1 2 

Chlorite-smectite Silicification -0.71 0.50-0.58 0.42-0.50 

Chlorite-smectite Propylitic -0.76 0.90-0.99 0.01-0.10 

Propylitic Silicification -0.62 - - 

Vein Andesitic tuff 0.51 0.30-0.70 0.47-0.52 

Vein Lithic tuff -0.12 0.30-0.47 0.48-0.58 

High Very low 0.97 0.17-0.25 0.50-0.60 

High Very low -0.86 0.05-0.30 0.30-0.50 

High  Moderate -1.00 - - 

Low Moderate 0.99 - - 

Low Very high 0.85 - - 

Low Very low -0.76 0.01-0.25 0.25-0.50 

Moderate  Very high 0.86 - - 

Moderate  Very low -0.91 0.05-0.15 0.30-0.50 

Very high High -0.87 0.01-0.20 0.30-0.51 

Very high High 0.90 0.25-0.42 0.50-0.60 

A contrast is shown in lithology relations. There is a 

noticable difference of coefficient correlation between 

vein and andesitic tuff and between vein and andesitic 

lithic tuff; the former having moderate correlation (0.51 

at clipping values), the latter having little to no 

correlation (0.12). It is obvious that andesitic tuff has the 

dominance in lithology distribution that such value is 

reasonable. Various coefficient correlations are 

potrayed amongst lineament density pairs; strong 

reciprocal relationship between very high – high (-0.87), 

moderate – very low (-0.91), low – very low (-0.76), high 

– moderate (-1.0), and high – very low (-0.86) lineament 

density at clipping values. Lineament densities were 

classified base on its RGB values with no overlaps in the 

first place that this reciprocal relation is expected. 

Elseways, some lineament density pairs have strong 

positive correlation, namely high – very low (0.97), low – 

moderate (0.99), low – very high (0.85), moderate – very 

high (0.86), and high – very high (0.90) at clipping values. 

In this case, positive relation was required because the 

increasing or decreasing probability value at the same 

grid is mutual. 

Soil elements geochemical anomaly and background 

The transformed value of soil element is treated in 

‘minimum‘ manner – meaning data above threshold  are 

converted into 1, as the rest is 0. For this research, 

continous data thresholds are the quartile values. The 

results will be compared to linear geostatistics as 

Ordinary Kriging and conventional method inverse 

distance weighing.     

After variogram models for each quartile have been 

obtained (Figure 7), the estimation algoritm will 

calculate as three separate parts; namely probability 

distribution of a soil element having higher value than 

threshold lower quartile, median, and upper quartile. All 

these values are still like puzzle pieces with no real value 

(in ppb) of the soil element concentration. Converting a 

probability value from a cell in a certain threshold has to 

be weighed with the sample means at each thresholds; 

the mean of upper 75% raw data for lower quartile, the 

mean of upper 50% raw data for median, the mean of 

upper 25% raw data for upper quartile, with data 

sorting. The sample means of bismuth (Bi) used at lower, 

median, upper quartile weighs are 0.277, 0.275, and 

0.388 respectively. Whereas the sample means of 

molybdenum  (Mo) used at lower, median, upper 

quartile weighs are 1.078, 1.392, and 2.003 respectively. 

The continous data treated with Indicator Kriging will 

show several results that can be easily distinguished 

statistically. The histograms on Figure 8 shows the 

change from original data to the estimated value. 

Typically, Ordinary Kriging (OK) will make the lower 

values  higher  and  the  higher  values  lower  to  create  

‘smoothing effect’ or to create lower variance, living up 
to its name ‘BLUE’. This phenomenon is shown in Mo 
results. Meanwhile, the smoothing does give a rise on 

mean value, as Bi mean value rise from  0.189 to 0.221 

ppb; and Mo mean value rise from 0.942 to 1.595 ppb ( 

Table 4). The Ordinary Kriging was done in the similar 

direction with Indicator Kriging (azimuth N 60o E) and 

similar engle of tolerance (45o). This shows more 

advantage of Kriging method to justify estimation result 

not only statistically, but also the spatial data 

distribution.  
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Figure 8. Histograms of raw data, indicator kriging and ordinary kriging results; left – bismuth (Bi), right – molybdenum (Mo). 
 

 
 
Table 4. Comparisons of geostatistic methods on continuous data. 
 

Statistical summary 

Bi Mo 

Mean 
Variance 

(10-2) 
Mean Variance 

Raw data 0.189 1.988 0.942 0.658 

IK – Threshold Q1 0.061 0.228 0.469 0.046 

IK – Threshold Q2 0.068 0.181 0.782 0.086 

IK – Threshold Q3 0.117 0.331 1.425 0.169 

IK - Averaged 0.226 1.898 1.595 0.294 

Ordinary Kriging (OK) 0.221 2.013 1.044 0.537 

Abbrev. : IK – Indicator Kriging, OK – Ordinary (point) Kriging, Q1 to Q3 

– lower, middle, and upper quartile respectively. 

 

Averaged Indicator Kriging means the value weighed 

from its probability values in each quartiles. Multiplying 

the probability value at each grids with the mean 

quartile, gives the sense of which quartile the data is 

more normally distributed and/or similar to its raw data 

characteristics (Figure 8). The first columns of both 

elements show the tiny data shift to the right (less 

skewed to the right). Especially the averaged indicator 

kriging of Mo resulted in very much normal distribution. 

However, the ordinary kriging for the same Mo data 

does not result similar data distribution. This 

phenomenon is supported by the variance drop of Mo 

estimated with averaged indicator kriging (0.294 ppb2) 

Bi Mo 
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than that of raw data (0.658) and ordinary kriging (0.537 

ppb2). The result for Bi does not show the contrast 

variance drop, the cause is inferred to the data nature of 

Bi that is very skewed to the right (positive skewness or 

few data with much higher values). The second column 

of each elements shows the shift of indicator kriging 

results of lower, middle, and upper quartiles. The Bi 

shifts are not as prograssive as Mo shifts; proving that 

the Bi data is much more skewed than Mo data. 

Geochemical anomaly is calculated analitically by mean 

and standard deviation values. What separates 

background and anomaly now is the confidence level for 

each data; the greater the confidence level is, the 

certainty to call some values anomalies is higher. 

Otherwise, the lower the confidence level is, the 

enomaly range should be widened to accommodate the 

uncertainty. In this case study, anomaly values for raw 

data, averaged indicator kriging, and ordinary kriging of 

Bi are similar; a) from 0.330 ppb, 0.364 ppb, and 0.363 

pbb up respectively, at 95% confidence level;  b) from 

0.388 ppb, 0.421 ppb, and 0.422 ppb up respectively, at 

90% confidence level. Meanwhile, The Mo anomaly 

values are lower when estimated with ordinary kriging; 

affected by the effective smoothing from the method.  

Conclusions  

Non-linear indicator kriging provides ‘threshold 
probability maps’ that not only covers continous data 
but also categorial data. The categorial data can be 

transformed into geological features; lineament density, 

lithology, alteration to update the previous maps in 

spatially analysed manner. Spatial correlation can be 

obtained only because both categorial data and 

continous data are presented by their probability values. 

Now the correlation between variables can be 

quantified, and not subjectively by engineer’s 
justification although this correlation must be proven 

further in the field. Analysing data in the same grid will 

have many advantages in terms of data management; all 

data in an exact-same-size-box. Indicator kriging for 

continous data shows its flexibility to be treated in the 

‘minimum’ or ‘maximum’ manner. Beside, the flexibility 
of which data percentages the engineer will use can be 

adjusted – not only by its quartile values, but also 

deciles, and many more. Indicator kriging for continous 

data will not only show this flexibility, but also lower the 

estimation variance like ordinary kriging does. 
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