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Abstract 

Bessel differential equation is one of the applied equation in physics is about heat transfer. 
Application of modified Bessel function of order zero on heat transfer process of two-dimensional 
objects which can be modelled in the form of a two-order partial differential equations as follows, 
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 With the obtained solutions of Bessel's differential equation 

application of circular fin,  
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two-dimensional temperature stated on the point  ,r   against time t . 
Keywords:  Bessel differential equation, Bessel function of order zero, heat transfer. 
 

1. PENDAHULUAN 
Matematika adalah salah satu disiplin ilmu eksakta yang mencoba merepresentasikan 

mengenai fenomena alam. Oleh karena itu, Matematika juga dapat dikatakan sebagai dasar 

dari beberapa disiplin ilmu lainnya seperti Fisika, Biologi, Kimia, Teknik bahkan Ekonomi. 

Pada Matematika, terdapat pembahasan lebih dalam lagi tentang pengkajian teori – teorinya. 

Berdasarkan objeknya pengkajiannya Matematika dikelompokan menjadi beberapa 

pembahasan antara lain Matematika terapan, Statistika, Aljabar, Analisis, dan Komputasi.  
Pada perkembangannya ilmu Matematika banyak digunakan dalam bidang ilmu lain, 

begitu juga dengan banyaknya teori-teori matematika yang menjadi dasar dalam pembahasan 

ataupun pengkajiannya. Pada penelitian ini kaitaan ilmu Matematika dengan pengkajian 

bidang ilmu lain, akan lebih banyak dibahas pada ilmu Fisika dan Teknik. Salah satu teori 

Matematika yang dikaji lebih rinci dibidang ilmu Fisika ataupun Teknik adalah teori 

Persamaan Diferensial atau disebut PD.  
Pembahasan mengenai PD dimulai setelah penemuan Kalkulus dan Integral. Pada tahun 

1676 Isaac Newton telah berhasil menyelesaikan sebuah PD menggunakan deret tak hingga, 
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tetapi Newton tidak mempublikasikan hal tersebut sampai dengan tahun 1693, pada saat itu 

Gotfried Wilhelm Leibniz menghasilkan rumusan PD yang pertama. PD mulai berkembang 

dari tahun ketahun. Pada tahun 1694 - 1697 John Bernoulli menjelaskan “Metode Pemisahan 

Variabel” dan membuktikan bahwa PD homogen orde satu dapat direduksi menjadi bentuk 

PD dengan variabel – variabel yang dapat dipisahkan. 
Pada tahun 1784 – 1846 pengkajian PD mulai disempurnakan disempurnakan salah 

satunya oleh Friedrich Wilhelm Bessel, seorang matematikawan Jerman yang juga astronom. 

Bessel mempublikasikan penelitiannya melalui makalah yang diterbitkan tahun 1826 yang 

disebut Persamaan Diferensial Bessel. Bentuk umum PD Bessel adalah 
2 ,, , 2 2( ) 0x y xy x n y    . Solusi dari PD Bessel disebut dengan fungsi Bessel. Pada 

penyelesaian fungsi Bessel terdapat tiga order, yaitu order bukan bilangan bulat, order 

bilangan bulat dan order nol. Bentuk penyelesaian umum PD Bessel adalah : 

     1 2n n
y x C J x C Y x  , dengan n  menyatakan order Bessel. 

PD Bessel merupakan salah satu PD yang diterapkan dalam ilmu Fisika yaitu mengenai 

perpindahan panas. Perpindahan Panas adalah berpindahnya energi panas atau kalor pada 

suatu benda dari bersuhu tinggi ke suhu rendah. PD Bessel pada masalah perpindahan panas 

di reduksi dari persamaan panas yang digunakan untuk mengetahui laju perpindahan panas. 

Persamaan panas yang akan dikaji lebih rinci yaitu persamaan panas dua dimensi. Benda dua 

dimensi adalah benda yang mempunyai ukuran luasan. Adapun contoh dari benda dua 

dimensi ini yaitu persegi panjang, kotak, segitiga, lingkaran dan lain sebagainya. Pada 

penelitian ini akan dikaji lebih khusus lagi pada benda dua dimensi yang berbentuk lingkaran. 

Lingkaran didefinisikan sebagai garis melengkung yang kedua ujungnya bertemu pada jarak 

yang sama dari titik pusat. 
Hal diatas yang melatarbelakangi penelitian ini yaitu tentang pengkajian secara 

matematis PD Bessel ketika ordernya sama dengan nol serta penerapannya dalam 

merepresentasikan laju perpindahan panas pada benda dua dimensi.  

 
2. PEMBENTUKAN PERSAMAAN PANAS PADA KOORDINAT KARTESIUS 

Perpindahan panas bergantung dari jenis bahan benda yang diamati, antara lain kalor 

jenis bahan c , konduktifitas thermal bahan k , masa jenis bahan  . Persamaan konduksi 

panas dua dimensi  dapat diturunkan melalui perubahan luas benda. Perubahan panjang pada 

sumbu kartesius dapat dilihat pada Gambar 1. 
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Gambar 1. Koordinat kartesius dua dimensi 
 

Perubahan luas pada benda dua dimensi disimbolkan dengan L , L x y    , dan 

 , ,u x y t  menyatakan suhu pada posisi  ,x y  pada saat waktu t . Oleh karena itu, 

perpindahan konduksi panas pada koordinat x  dan y  dapat diselesaikan dengan persamaan 

Fourier, yaitu 
x

q kAu   [1].  

Persamaan Fourier digunakan untuk menentukan laju perpindahan panas dan laju 

perpindahan konduksi panas pada benda, penjabarannya sebagai berikut. Pada koordinat x , 

laju perpindahan panas (dinotasikan dengan 
x

q ), diperoleh dengan mengalikan arus konduksi 

panas posisi x  dengan sisi bendanya yaitu y , sehingga diperoleh, 

     ,
x x

q kAu y           (1)
 

Sedangkan laju  perpindahan  konduksi  panas  di  dalam  benda, diperoleh dengan 

mengalikan arus konduksi panas pada koordinat x luas permukaan benda yang disimbolkan 

dengan 
x x

q  , maka diperoleh,
 

 x x x xxq kAu kAu y            (2)  

Laju perpindahan panas pada koordinat y  diperoleh dengan mengalikan arus konduksi 

panas pada koordinat y  dengan luas permukaan benda, yang disimbolkan dengan 
y

q , maka 

akan diperoleh, 

( , ) ,
y y

q q y t x kAu x            (3) 
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Sedangkan laju  perpindahan  konduksi  panas  di  dalam  benda, diperoleh dengan 

mengalikan arus konduksi panas pada koordinat x  luas permukaan benda yang disimbolkan 

dengan 
x x

q  , maka diperoleh,
 

y y y yyq kAu kAu x      
       

(4)  

Setelah diperoleh persamaan arus dan laju perpindahan panas pada koordinat benda, 

selanjutnya akan dijelaskan energi pada pada benda itu. Jika energi pada benda disimbolkan 

dengan E , maka jumlah energi benda adalah  . , ,E c x y u x y t   , dan jumlah perubahan 

energi pada benda berdasarkan koordinat x dan y pada waktu t adalah,  

 . , ,
t t

E c A x y u x y t  
       

(5) 

Berdasarkan [1] energi yang masuk ke dalam benda – energi yang keluar dari benda 

sama dengan jumlah perubahan energi pada benda, secara matematika dapat masalah ini 

dituliskan sebagai berikut, 

   t x y x x x xE q q q q            (6) 

Selanjutnya, dengan mensubtitusikan persamaan (1), (2), (3), (4) dan (5) kedalam 

persamaan (6), maka akan diperoleh  

   . , , . .t x yc A x y u x y t kAu y kAu x       
 

  . . . .
x xx y yy

kAu kAu y kAu kAu x        

    . , ,xy t xx yyc A x y u x y t kA x y u u      
     (7) 

Jika persamaan (4.7) diatas dibagi  dengan kA x y  maka diperoleh, 

   . , ,t xx yy

c
u x y t u u

k


 

       
(8) 

Selanjutnya, c

k


  adalah konstanta penghambur panas. Jika nilai penghambur panas 

makin besar, maka makin cepat panas membaur pada benda. Oleh karena itu persamaan (8) 

akan menjadi, 

 . , ,t xx yyu x y t u u           (9) 

Persamaan (9) diatas disebut juga persamaan panas pada benda dua dimensi. 

Terdapat beberapa contoh benda dua dimensi seperti benda yang memiliki luasan, 

antara lain segitiga, kotak, persegi panjang, lingkaran dan lain sebagainya. Pada penelitian ini 
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benda dua dimensi yang akan di kaji yaitu sebuah benda yang berbentuk lingkaran. Hal ini 

dikarenakan untuk mempermudah pemahaman tentang benda dua dimensi dalam pengkajian 

di penerapan fungsi Bessel. 

Selanjutnya, karena benda dua dimensi ini berbentuk lingkaran, maka terlebih dahulu 

akan diubah koordinatnya, dari koordinat kartesius ke koordinat lingkaran atau lebih dikenal 

dengan koordinat kutub.  

 

3. PEMBENTUKAN PERSAMAAN PANAS PADA KOORDINAT KUTUB 
Selanjutnya akan dijelaskan langkah – langkah dalam pembentukan persamaan panas 

pada koordinat kutub yaitu, 
Langkah pertama, mengubah koordinat kartesius menjadi kutub.  

Jika  , ,u x y t  pada koordinat kartesius, diubah ke koordinat kutub maka akan menjadi 

  , ,u r t  ini menyatakan suhu pada posisi  ,r   pada saat waktu t . Perubahan koordinat ini 

dengan memisalkan cosx r   dan siny r  , dan kemudian didapatkan turunan atau 

derivatif pertama dan kedua, 

Langkah kedua, mencari turunan parsial pertama dan kedua terhadap r dan  dari fungsi 

  , ,u x y t yaitu, 

Turunan parsial pertama terhadap r  yaitu,  

cos sinu u u

r x y
   

 
  

 

atau dapat dituliskan dalam bentuk, 

cos sinr x yu u u           (10) 

Turunan parsial pertama terhadap   yaitu,  

   sin cosx yu u r u r            (11) 

Berdasarkan persamaan (10) dan (11), dapat diperoleh turunan pertama terhadap x dan 

y , dengan cara membentuk persamaan kedalam bentuk matriks, yaitu 

cos sin
sin cos

xr

y

uu

uu r r

 
 

    
           

Selanjutnya, variabel r dikeluarkan, dan ruas kanan dipindah ruas kekiri, dan dengan 

menggunakan aturan matriks, maka akan diperoleh, 
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sincos

cossin

r
x

y

r

u u
u r

u
u u

r









 
  

   
  
  

       (12) 

Turunan parsial kedua terhadap r  yaitu, 

 rr r
u u

r





 

2 2cos 2 sin cos sinrr xx xy yyu u u u      
     

(13) 

2 22 sin cos cos sinxy xx yy rru u u u            (14) 

Turunan parsial kedua terhadap   yaitu,  

 u u 





 

cos sinx yu r u u         

2 2 2sin 2 sin cos cosxx xy yyr u u u            (15) 
Jika fungsi ,

x y
u u  yang telah diperoleh dari persamaan (12), dan fungsi 2 sin cos

xy
u    

yang diperoleh pada persamaan (14), disubtitusi kedalam persamaan (15), maka diperoleh 

 

sin coscos cos sin sin
r r

u u
u r u u

r r

 


    
          
    

 
  

2 2 2 2 2sin cos sin cosxx xx yy rr yyr u u u u u           

2
1 1 .xx yy r rru u u u u
r r

           (15a) 

Langkah ketiga, untuk memperoleh persamaan panas, dengan cara mensubtitusi 

persamaan (15a) ke persamaan (9) maka diperoleh, 

  2
1 1. , ,r r rru r t u u u
r r

    
    

atau dapat dituliskan dalam bentuk  

 
2 2

2 2 2
1 1. , , .u u u u

r t
t r r r r

 


   
  

   
      (16) 

Persamaan (16) disebut persamaan panas dua dimensi dalam bentuk koordinat kutub.  
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Selanjutnya, akan dijelaskan penerapan fungsi pada benda yang berbentuk lingkaran. 

Sebelumnya akan diberikan terlebih dahulu asumsi membatasi permasalahan yang 

disesuaikan dengan kondisi batasnya. Asumsi yang akan diberikan berupa syarat awal dan 

syarat batas. 

 
4. SYARAT AWAL DAN BATAS 

Jika suhu mula – mula pada waktu adalah 0 0t  , maka  0 0, , 0u r t u    atau 

 , ,0 0u r   . Suhu pada lingkaran yang dinyatakan dengan   , ,u r t , menyatakan syarat 

awal suhu pada  ,r  0 r R   dan 0 2    pada saat waktu t. Suhu di sekitar lingkaran 

yaitu, 

  0, , , 0 2u r t u      

  0,0, 0u r t u r R    

  0, 2 , 0u r t u r R         (17) 

dengan 0 0u   

 
5. PENYELESAIAN MODEL  

Pada penyelesaian model ini akan dijelaskan penyelesaian model persamaan panas pada 

lingkaran Metode yang digunakan adalah dengan separasi variabel. Penyelesaian dengan 

menggunakan separasi variabel, digunakan asumsi, 

     ,u x t X x T t . 

Jika diterapkan pada persamaan (16), akan dicari solusi pada setiap fungsinya, maka 

untuk langkah pertama mencari solusi untuk fungsi  T t . Oleh karena itu asumsi separasi 

variabel menjadi,  

     , , ,u r t X r T t         (18) 

Jika persamaan (18) disubtitusi ke persamaan (16), maka akan menjadi, 

           
2

2
1. , , ,A r T t A r T t A r T t

t r r r
     

 
    

   
2

2 2
1 ,A r T t
r








 



 
Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua Dimensi  

___________________________________________________________________________ 

___________________________________________________________________________ 
 

145 
 

           
2

2
1. , , ,A r T t T t A r T t A r

t r r r
     

   
  

 

   
2

2 2
1 ,T t A r
r




     (19) 

Kemudian membagi persamaan (18) diatas dengan    ,X r T t , maka akan menjadi, 

           
2

2
1 1 1 1. , ,

, ,
T t A r A r

T t t r A r r A r r
  

 
  

  
  

 

   
2

2 2
1 1 ,

,
A r

r A r


 



 

           
2

2
1 1 1 1. , ,

, ,
T t A r A r

T t t r A r r A r r
  

 
  

   
  

 

   
2

12 2
1 1 ,

,
A r

r A r
 

 


 


    (20) 

dengan konstanta separasi variabel = 1 , sehingga akan diperoleh, 

Berdasarkan persamaan (20) maka diperoleh nilai dari fungsi  T t  adalah, 

    1
1 d

T t
T t dt

   .        (21) 

Penyelesaian persamaan (21) menggunakan PD orde satu, maka penyelesaiannya adalah, 

     
   1

d
T t T t

dt
  

 
1 t

T e
            (22)

 Jika   0T t  , maka  ,0X r ,  , 2X r   secara berurutan akan sama dengan nol.
 

Selanjutnya, langkah kedua mencari penyelesaian dari fungsi    , maka asumsi dari 

persamaan (18), akan menjadi,
      ,X r R r           (23) 

Persamaan (23) disubtitusikan ke persamaan (20) akan menjadi, 

                 
2

1 2
1 1 1

R r R r
r R r r R r r

    
   

 
   

 
 

        
2

2 2
1 1

R r
r R r

 
  



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           
2

1 2
1

R r R r R r
r r r

       
   

   

   
2

2 2
1

R r
r

 






      (24) 

Persamaan (24) dibagi dengan    R r   , maka akan menjadi, 

           
2 2

1 2 2 2
1 1 1 1 1

R r R r
r R r r R r r r

  
  

  
   

  
 

           
2 2

2 2 2
12 2

1 1 1 1.r R r r R r r
r R r r R r r

  
  

  
    

    
Selanjutnya, persamaan diberikan konstanta separasi variabel = 2 , sehingga akan diperoleh,

 
         

2
2 2

2 12
1 1

r R r r R r r
R r r R r r

  
    

 
 

       
2

2 2
2 12

1 1
r R r r R r r

R r r R r r
  

   
   

persamaan diatas dibagi dengan  R r , maka akan persamaan menjadi
 

          
2

2 2
2 12R r r R r r R r r R r

r r
  

  
      

(25)
 

Berdasarkan persamaan (24) akan diperoleh nilai dari fungsi  R r  adalah,
 

   
2

22
1   

  


 


 

   
2

2 20     



  
   

     (26)
 

Persamaan (26) akan diselesaikan dengan menggunakan PD orde dua. Pemisalkannya adalah
 

  . j
f e

   ,  

Turunan pertama   . jd
f je j

d

  


    

Turunan kedua     
2

2 2
2 . jd

f j e j
d

  


  .  

Pemisalan disubtitusikan ke persamaan (26), maka akan diperoleh bentuk, 
2

2 0j j     

 2
2 0j j    ,  
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Diperoleh akar-akar karakteristik adalah 1 2 ,j i dan 2 2j i  . Akar – akar karakteristik 

berupa dua akar kembar, berdasarkan subbab 2.1. maka penyelesaian dari persamaan (26), 

adalah, 

     2 2cos sinF G i F G          

Selanjutnya, dimisalkan g  untuk   dan h untuk  i F G , maka persamaan diatas akan 

menjadi, 

  2 2cos sing h             (27) 

Pada persamaan (27), dimisalkan 2
2 n   maka 2n  . Oleh karena itu, akan diperoleh,  

  cos sing n h n            (27a) 

Berdasarkan syarat batas pada persamaan (17), maka akan diperoleh, 

     ,0 0u r R r 
 

     , 2 2u r R r  

 Jika   0R r  , maka   0    dan  2 0   . Mensubtitusi persamaan batas ini ke 

persamaan (27a), akan menjadi,

 Jika disubtitusi   0    maka, 

 0 .1 0g   , dengan 0h         (28) 

Jika disubtitusi  2 0    maka,   

     2 cos . 2 sin . 2g n h n           (29) 

Berdasarkan persamaan (28), maka akan dipilih 0h  , persamaan diatas menjadi, 

  sin 2n h n   ,         (30) 

dengan     adalah sebuah fungsi periodik dengan periode 2 , dan 0,1, 2,3,...n   

Selanjutnya, langkah ketiga mencari penyelesaian dari fungsi  R r , berdasarkan 

persamaan (24), yaitu 

       
2

2 2
2 12R r r R r r R r r R r

r r
  

  
   

       
2

2 2
1 220 r R r r R r r R r

r r
  

    
    

  (31)
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Berdasarkan persamaan (31), untuk mempermudah penyelesaian akan dimisalkan, 
2 2

1 2( )s r    , oleh karena itu 1 2( )s r    . Akan dicari turunan pertama dan kedua, dari 

fungsi  R r  terhadap 1 2( )s r    , sehingga akan diperoleh,
 

Turunan pertama,
 

1 2( )R R

r s
  

 
    

      (32) 

Turunan kedua,  
22

1 22 2 .( )R R

r s
  

 
    

      (33) 

Persamaan (32) dan (33) disubtitusi ke persamaan (31)¸ maka akan diperoleh, 

     
2

2 2
2 0s R r s R r s R r

r r

 
  

   
atau dapat ditulis dengan bentuk 

 
 

2 2" ' 0s R sR s R       
     (34) 

Berdasarkan persamaan (34) dapat dilihat bahwa, ini adalah persamaan diferensial 

Bessel. Selanjutnya akan diselesaikan fungsi  R r  dengan menggunakan persamaan 

diferensial Bessel. Penyelesaian fungsi  R s  adalah  

     1 0 2 0R s c J s c Y s         (35) 
Oleh karena itu, peneyelesaian dari fungsi  R s  adalah,  

     1 0 2 0R s c J s c Y s   

 
 

2
1 22

0

1
2 1!

k

k

k
k

c s




 
 
 
 
    

 

1
2

2 0 22
0

12 ln
2 2 !

k

k k

k
k

hs
c J s s

k








            
  (36) 

Jika disubtitusikan kondisi batas 0s   kedalam persamaan (36) maka diperoleh, 

     1 0 2 00 0 0R c J c Y   

2 0c   

untuk memperoleh solusi yang non-trivial dari persamaan (36), dipilih 1 0c   maka diperoleh,  

   
 

2
1 22

0

1
2 1!

k

k

k
k

R r c s




 
 
 
 
        (37) 

Selanjutnya, karena 1 2( )s r     maka persamaan (37) menjadi,  
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   
 

 2

1 1 222
0

1
( )

2 1!

k
k

k
k

R r c r  




 
  
 
 
     

Oleh karena itu fungsi  R r adalah,  1 0 1 2( )c J r         (38) 

Sehingga, berdasarkan (22), (30), dan (38) dan prinsip superposisi diperoleh 

penyelesaian persamaan panas pada koordinat kutub dua dimensi yaitu,  

      1
0 1 2, , sin 2 ( ) t

nu r t C n J r e
            (39) 

syarat awal dari persamaan (18) yaitu,   0, ,0u r u  sehingga diperoleh, 

   0 0 1 2sin 2 ( )nu C n J r   
     

  (40) 

Berdasarkan persamaan (4.39), akan dicari 
n

C  merupakan sebuah koefisien tertentu, 

maka untuk menentukan nilai 
n

C  dapat mengunakan deret fourier. Pada persamaan (39) 

digunakan akan diubah menjadi deret-fourier Bessel menjadi, 

 0 0 1 2n
u C J r     

Ruas kanan dan kiri dikalikan dengan  0 1 2J r   , dan kemudian di integralkan maka akan 

diperoleh, 

 
0

2

0 1 20
.

n

u
C

J r r dr


 



       (41) 

Merupakan nilai dari deret fourier Bessel selanjutnya, persamaan (41) disubtitusi ke 

persamaan (40), maka akan diperoleh 

   0
0 0 1 22

0 1 20

sin 2 ( )
.

u
u n J r

J r r dr
   

 

 
     

 

 

6.  KESIMPULAN 
Berdasarkan pembahasan yang telah dipaparkan dalam penelitian ini yaitu mengenai 

penerapan persamaan diferensial Bessel order nol pada perpindahan panas benda dua dimensi, 

maka dapat diambil kesimpulan : penerapan fungsi Bessel order sama dengan nol pada proses 

perpindahan panas benda dua dimensi yang dapat dimodelkan dalam bentuk persamaan 

diferensial parsial orde dua sebagai berikut, 
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 
2 2

2 2 2
1 1. , , .u u u u

r t
t r r r r

 


   
  

   
 

dengan diberikan syarat awal dan batas berikut, 

 , ,0 0u r       ,r  0 r R    

  0, , , 0 2u r t u      

  0,0, 0u r t u r R    

  0, 2 , 0u r t u r R   
   

dengan 0 0u   

maka diperoleh solusi dari penerapan PD Bessel di piringan melingkar adalah, 

      1
2 0 1 2, , sin ( ) t

n nu r t C J r e
      

 
yang menyatakan suhu dua dimensi pada dititik  ,r   terhadap waktu t .  
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