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Abstract

In this paper, the authors introduced a novel definition based on Hilfer fractional derivative, which name

q-Hilfer fractional derivative of variable order. And the uniqueness of solution to q-Hilfer fractional hybrid

integro-difference equation of variable order of the form (1.1) with 0 < α(t) < 1, 0 6 β 6 1, and 0 < q < 1
is studied. Moreover, an example is provided to demonstrate the result.
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1. Introduction

Fractional calculus caught much attention towards mathematical worlds (see [1, 2,

3, 4, 5, 6, 7, 8, 13, 14, 15, 22]). In fact, fractional calculus is a branch of mathematical

analysis, which separate itself from normal calculus, with non-integers order of derivatives

and integrals as special characteristics. The development of fractional calculus started

from the first-order derivative such that

d

dt
f(t) = D1f(t) = lim

h→0

f(t+ h) − f(t)

h
.

In this case, it is said that the discrete version of such operator is called h-derivative, which

is

Dhf(t) =
f(t+ h) − f(t)

h
.
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Fractional calculus is developed towards time, and various experts propose many defi-

nitions of fractional derivatives. The two famous senses that caught the most attention in

the differential equation are Caputo fractional derivative and Riemann-Liouville fractional

derivative. Subsequently, Hilfer developed the general definition of fractional derivative by

interpolating such operators motivated by these two derivatives. Determine n− 1 < α < n
and β ∈ [0, 1], the three visualizations of Caputo, Riemann-Liouville and Hilfer derivatives

are given as follows. Firstly, The left Riemann-Liouville fractional derivative of order α for

the function f(t) is defined by

aD
α
t f(t) =

1

Γ(n−α)

dn

dtn

∫t

a

(t− s)n−α−1f(s)ds.

Secondly, The left Caputo fractional derivative of order α is defined by

C
aD

α
t f(t) =

1

Γ(n−α)

∫t

a

(t− s)n−α−1f(n)(s)ds.

Lastly, The Hilfer fractional derivative [18] is defined by

aD
α,β
t f(t) = aI

α(n−β)
t Dn

aI
(1−β)(n−α)
t f(t).

As the consequences, these common definitions lead to further enormous generalization

of fractional derivatives such as fractional derivatives of a function with respect to another

function [10, 27], fractional proportional derivative, variable-order fractional derivatives

[9, 21, 29], etc. Also, there are several methods used to illustrate the existence and

uniqueness of solution such as Banach fixed point theorem, Schaefer fixed point theorem,

Schauder fixed point theorem, etc. (see [16, 17, 26, 12, 31, 20])

In 1909, Jackson [19] introduced the new branch of calculus by defining q-derivative

with 0 < q < 1 as

Dqf(t) =
f(qt) − f(t)

qt− t
,

and q-integral operator such that

Iqf(t) =

∫t

0
f(s)dqs = (1 − q)

∞∑

n=0

tqnf(tqn).

Moreover, the definition of q-derivative and q-integral is studied and gradually developed

by many researchers (see [11, 23, 24, 28]). The definitions of q-derivative and q-integral

are developed, which are based on the q-Riemann-Liouville fractional integral.

In this work, motivated by [17, 26, 29, 30, 21], and the Hilfer operator in [18], the

authors will introduce a novel definition based on Hilfer fractional derivative, which name

q-Hilfer fractional derivative of variable order. Also, the main purpose of this paper is to

study q-Fractional Hybrid Integro-Difference Equation of Variable Order (q-FHIDEVO) of

the form

qD
α(t),β
t [x(t) − f(t, x(t))] = g(t, x(t), qI

β
t x(t)), t ∈ (0, T ]

qI
1−γ(t)
t x(0) = x0, qI

1−γ(t)
t f(0, x(0)) = f0, γ(t) = α(t) +β−α(t)β

(1.1)
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where 0 < α(t) < 1, 0 6 β 6 1 and 0 < q < 1. Our result illustrates the uniqueness of the

solution.

This paper is constructed as follows. In section 2, the notation and concept of q-

fractional calculus will be introduced. In section 3, the concept of variable order and

essential conditions to display the uniqueness and stability of the solution to q-FHIDEVO

will be displayed. In sections 4 and 5, the uniqueness of solution in subinterval and the

uniqueness of continuous solution will be presented, respectively. Lastly, in section 6, the

example will be illustrated.

2. Preliminaries and Framework

The preliminaries section will introduce the necessary definition of operator, space,

and concept of q-difference equation.

Definition 2.1. [11] For any p > 1, the space L
p
q(a,b) is the space of the functions such

that
(∫b

a

|f(t)|pdqt

)
1
p

<∞

For p = 1 it can be denoted the space as Lq(a,b).

Definition 2.2. [11] For any p ∈ R+, the space L
p
q[a,b] is the space of the functions on

interval (a,b]. The space L
p
q[a,b] is a Banach space with the supremum norm ‖.‖p defined

by

‖f‖p = sup
t∈(a,b]

(∫b

a

|f(t)|pdqt

)
1
p

<∞

For p = 1 it can be denoted the space as Lq(a,b).

Definition 2.3. [28] Let, q ∈ (0, 1) and α > 0, then the q-Riemann-Liouville fractional

integral is defined as

qI
α
t f(t) =

1

Γq(α)

∫t

0
(t− qs)(α−1)f(s)dqs.

Where

(n−m)(k) =

∞∏

i=0

n−mqi

n−mqi+k
, n 6= 0, k ∈ R,

and

Γq(t) =
(1 − q)(t−1)

(1 − q)t−1
, t ∈ R − {0,−1,−2, ...}

,where Γq(t+ 1) = [t]qΓq(t) with

[m]q =
1 − qm

1 − q
,m ∈ R.

Also, let α,β > 0 and f(t) is a function on [0, T ], then there are following properties

(1) qI
α
t qI

β
t f(t) = qI

α+β
t f(t)

(2) qD
α
t qI

α
t f(t) = f(t)
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Definition 2.4. [11] Let n− 1 < α < n, the q-Riemann-Liouville fractional derivative of

the function f(t) is defined by qD
α
t f(t) = D

n
qqI

n−α
t f(t)

Definition 2.5. [11] Let n− 1 < α < n, the q-Caputo fractional derivative of the function

f(t) is defined by C
qD

α
t f(t) = qI

n−α
t Dn

qf(t)

Motivated by definition 2.4 and definition 2.5, based on Hilfer fractional derivative,

authors shall introduce the operator of the q-Hilfer fractional derivative as follows.

Definition 2.6. Let 0 < α < 1, 0 6 β 6 1 and 0 < q < 1 then, the q-Hilfer fractional

derivative of the function f(t) is defined by

qD
α,β
t f(t) = qI

β(1−α)
t DqqI

(1−β)(1−α)
t f(t) = qI

γ−α
t qD

γ
t f(t),γ = α+β−αβ

3. Variable approach and mild solution

Definition 3.1. [11] The space Cn
q [a,b] is a space of a continuous function on [a,b] such

that Dn−1
q f(t) ∈ C[a,b]. Also, Cn

q [a,b] is a banach space with supremum norm ‖.‖ such

that

‖f‖ = sup
t∈[a,b]

n−1∑

i=0

|Di
qf(t)| <∞

For n = 1 it can be noted the space as C[a,b], and for q = 1 as Cn[a,b].

Definition 3.2. [11] Let ACq[a,b] be a space of the absolutely continuous functions on

[a,b], then f ∈ ACq[a,b] if and only if there exists an arbitrary constant ω ∈ R and the

function ψ(t) ∈ L
p
q[a,b] such that

f(t) = ω+

∫b

a

ψ(t)dqs.

For q = 1, it can be noted the space as AC[a,b].

Definition 3.3. [11] The space AC
(n)
q [a,b] is a space of function on [a,b] such that

Dn−1
q f(t) ∈ ACq[a,b]. For q = 1, it can be denoted as AC(n)[a,b]

Theorem 3.4. [11] Suppose n− 1 < α < n, f ∈ Lq[0, T ] with qI
n−α
t f(t) ∈ AC(n)

q [0, T ],
then

qI
α
t qD

α
t f(t) = f(t) −

n−1∑

i=0

qI
1+i−α
t f(0)

tα−i−1

Γq(α− i)

where

qI
1+i−α
t f(0) = lim

t→0+
qI

1+i−α
t f(t).

Theorem 3.5. Suppose 0 < α < 1, 0 6 β 6 1, f ∈ Lq[0, T ] with qI
1−γ
t f(t) ∈ AC(n)

q [0, T ],
where γ = α+β−αβ then,

qI
α
t qD

α,β
t f(t) = f(t) − qI

1−γ
t f(0)

tγ−1

Γq(γ)



Limpanukorn, Ahmed and Ibrahim / Uniqueness of continuous solution to .... 92

Proof. The proof is trivial. By property (1) pursuant to the definition 2.3 and the definition

2.6, we obtain qI
α
t qD

α,β
t f(t) = qI

γ
t qD

γ
t f(t). Subsequently, applies theorem 3.4 with

n = 1 , we will obtain the illustrated result.

Moving into the variable concept, the authors define the q-Hilfer derivative with order

0 < α(t) < 1 and 0 6 β 6 1, and the q-fractional integral of variable order as follows.

Definition 3.6. Let, q ∈ (0, 1) and α(t) > 0, then the q-Riemann-Liouville fractional

integral of variable order is defined as

qI
α(t)
t f(t) =

1

Γq(α(t))

∫t

0
(t− qs)(α(t)−1)f(s)dqs.

Definition 3.7. Let 0 < α(t) < 1, 0 6 β 6 1 and 0 < q < 1 then, the q-Hilfer variable

order fractional derivative of the function f(t) is defined by

qD
α(t),β
t f(t) = qI

β(1−α(t))
t DqqI

(1−β)(1−α(t))
t f(t)

It is obvious that when α(t) = α, the operator is the same as definition 2.6.

In this work, the fractional order hybrid integro-difference equation with initial con-

dition given by (1.1), where f : [0, T ]× R → R, g : [0, T ]× R × R → R and initial data

x0, f0 ∈ R, will be analysed.

Firstly, Let P = {(0, T1], (T1, T2], (T2, T3], ..., (TN−1, T ]} where Pk ∈ P is the kth sub-

interval of P and let α : (0, T ] → (0, 1) be a continuous function.

Secondly, we define the α-approximation function α̃(t) : (0, T ] → (0, 1) as piecewise

continuous function respect to P. The function α̃ is written by

α̃(t) =

N∑

k=1

α(tk)Ik(t) =

N∑

k=1

αkIk(t) =






α1 , t ∈ (0, T1]

α2 , t ∈ (T1, T2]

α3 , t ∈ (T2, T3]

...

αN , t ∈ (TN−1, T ]

, tk ∈ Pk ⊂ (0, T ] (3.1)

where Ik is the indicator on Pk. In other words, Ik(t) = 1 for t ∈ Pk. Otherwise, Ik(t) = 0.

Consequently, the function α(t) = limN→∞ α̃(t), as |αk −αk−1| → 0 for any |tk − tk−1| →
0. Hence (1.1) can be represented by

∞∑

k=1

Ik(t)qD
αk,β
t [x(t) − f(t, x(t))] = g(t, x(t), qI

β
t x(t)), t ∈ (0, T ]

qI
1−γk
t x(0) = x0, qI

1−γk
t f(0, x(0)) = f0, γk = αk +β−αkβ

(3.2)

Now, we present the definition of solution to problem (1.1) , which is fundamental to this

article. From the theorem 3.5 and the equation (3.1), the integral represent solution xk(t)

in subinterval Pk is written by

xk(t) =
Ctγk−1

Γq(γk)
+ f(t, xk(t)) +

1

Γq(αk)

∫t

0
(t− qs)(αk−1)g(s, xk(s), qI

β
t xk(s))dqs, (3.3)



Limpanukorn, Ahmed and Ibrahim / Uniqueness of continuous solution to .... 93

where C = x0 − f0 ∈ R for t ∈ Pk.

Moreover, the continuous mild solution x(t) =
∑∞

k=1 Ik(t)xk(t) is written by

x(t) =
Ctγ(t)−1

Γq(γ(t))
+ f(t, x(t)) +

1

Γq(α(t))

∫t

0
(t− qs)(α(t)−1)g(s, x(s), qI

β
t x(s))dqs. (3.4)

4. Uniqueness of solution in subinterval

In this part, the authors will illustrate the uniqueness of solution according to the

kth-subinterval.

Theorem 4.1. [11] Suppose φ : (0,a] → R is a function, if φ ∈ Lq[0,a], then qI
α
t φ ∈

Lq[0,a], and ‖qIαt φ‖1 6
aα

Γq(α+1)‖φ‖1.

Theorem 4.2. The equation (1.1) has a solution in Lq[0, T ], if there exist x1 ∈ Lq[0, T1],

qI
1−γ1
t x(0) = x0 and qI

1−γ1
t f(0, x(0)) = f0 satisfying (3.3); x2 ∈ Lq[0, T2], qI

1−γ2
t x(0) = x0

and qI
1−γ2
t f(0, x(0)) = f0 satisfying (3.3); x3 ∈ Lq[0, T3], qI

1−γ3
t x(0) = x0 and qI

1−γ3
t f(0, x(0)) =

f0 satisfying (3.3); xi ∈ Lq[0, Ti], qI
1−γi
t x(0) = x0 and qI

1−γi
t f(0, x(0)) = f0 satisfying

(3.3) where i = 3, 4, ...,N.

To display the uniqueness of solution, we state the essential assumptions as follows:

(A0) There exists positive constant Mf such that

‖f(t,u) − f(t, v)‖ 6Mf‖u− v‖

for all u, v ∈ Lq[0, T ].
(A1) There exist positive constants L1, L2, Mg such that

‖g(t,u1,u2) − g(t, v1, v2)‖ 6 L1‖u1 − v1‖+ L2‖u2 − v2‖ 6Mg‖u− v‖

for all u1,u2, v1, v2 ∈ Lq[0, T ].

Theorem 4.3. Suppose the assumptions (A0)-(A1) are satisfied, then the (3.3) is a unique

solution in Lq[0, Tk] if there exist a contraction constant Mf +
MgT

αk+1
k

Γq(αk+1) < 1

Proof. For each k = 1, 2, . . ., we define the contraction mapping Q : Lq[0, Tk] → Lq[0, Tk]
by Qxk = xk, we get

Qxk(t) =
Ctγk−1

Γq(γk)
+ f(t, xk(t)) +

1

Γq(αk)

∫t

0
(t− qs)(αk−1)g(s, xk(s), qI

β
t xk(s))dqs.
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Then,

‖Qxk − Qyk‖1 6 ‖f(t, xk(t)) − f(t,yk(t))‖1

+ ‖qIαk
t 1‖1‖g(t, xk(t), qIβt xk(t)) − g(t,yk(t), qI

β
t yk(t))‖1

6Mf‖xk − yk‖1 +
T
αk+1
k

Γq(αk + 1)
(L1‖xk − yk‖1 + L2‖qIβt xk − qI

β
t yk‖1)

6Mf‖xk − yk‖1 +
T
αk+1
k

Γq(αk + 1)

(

L1 +
L2T

β+1
k

Γq(β+ 1)

)

‖xk − yk‖1

=

(

Mf +
MgT

αk+1
k

Γq(αk + 1)

)

‖xk − yk‖1.

By Banach contraction theorem, since Mf +
MgT

αk+1
k

Γq(αk+1) < 1 then xk is unique solution on

Lq[0, Tk]. The proof is completed.

5. uniqueness of continuous solution

In this part, the uniqueness of (3.4) will be displayed.

Theorem 5.1. [25] For any 0 < q < 1 and 0 < s < 1, the inequality of q-gamma function

for any z > 0 holds,

(

1 − qz+
s
2

1 − q

)1−s

<
Γq(z+ 1)

Γq(z+ s)
<

(

1 − qz+s

1 − q

)1−s

.

Theorem 5.2. For any 0 < q < 1 and 0 < α(t) < 1, the inequality of q-gamma function

holds,

(1 − q)α(t)
6

1

Γq(α(t) + 1)
<

(

1 − q

1 − q
α(t)+1

2

)α(t)

.

Proof. Since 0 < α(t) < 1, the value of z pursuant to theorem 5.1 is lying between the

interval (1, 2). Then, consider

Γq(x) = (1 − q)1−x
∞∏

n=0

1 − qn+1

1 − qn+x
,

we obtain 1 − qn+1 < 1 − qn+x for any x ∈ (1, 2). Consequently, it is clear that

1 − qn+1

1 − qn+x
< 1.

Thus,
∞∏

n=0

1 − qn+1

1 − qn+x
< 1.
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From this point, it is obvious that

Γq(x) 6 (1 − q)1−x, x ∈ (1, 2).

Let x = α(t) + 1 we obtain the inequality

Γq(α(t) + 1) 6 (1 − q)−α(t).

Next, suppose z = α(t) and s = 1 −α(t) into inequality of theorem 5.1, we get

(

1 − qα(t)+
1−α(t)

2

1 − q

)α(t)

< Γq(α(t) + 1) < 1.

Now, combining inequalities together, the new inequality holds

(

1 − q
α(t)+1

2

1 − q

)α(t)

< Γq(α(t) + 1) 6 (1 − q)−α(t).

Rearrange the inequality, the inequality holds

(1 − q)α(t)
6

1

Γq(α(t) + 1)
<

(

1 − q

1 − q
α(t)+1

2

)α(t)

.

The proof is completed.

Theorem 5.3. Suppose xk is unique on Lq[0, Tk], then x(t) is unique solution on Lq[0, T ]
if there exist a contraction function ϕ : (0, T ] → (0, 1) such that

ϕ(t) =Mf +MgT
α(t)+1

(

1 − q

1 − q
α(t)+1

2

)α(t)

< 1

Proof. Generating the approximation contraction function ϕ̃ on (0, T ] by aggregate the

contraction constant in each subinterval Pk we get

ϕ̃(t) =Mf +

N∑

k=1

Ik(t)

(

MgT
αk+1
k

Γq(αk + 1)

)

, t ∈ (0, T ].

Thus, by take limit N→ ∞, the fundamental contraction function ϕ∗(t) is displayed as

ϕ∗(t) =Mf +

∞∑

k=1

Ik(t)

(

MgT
αk+1
k

Γq(αk + 1)

)

=Mf +
MgT

α(t)+1

Γq(α(t) + 1)
, t ∈ (0, T ]

According to the theorem 5.2, it is obvious that

ϕ∗(t) =Mf +
MgT

α(t)+1

Γq(α(t) + 1)
< Mf +MgT

α(t)+1

(

1 − q

1 − q
α(t)+1

2

)α(t)

= ϕ(t).

Since there exists the contraction function ϕ(t) < 1, the continuous solution x(t) is a

unique solution on Lq[0, T ]. The proof is completed.
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6. Example

In this section, we give an example of q-FHIDEVO to illustrate our result. Consider the

following equation where t ∈ (0, 1] and q = e−π.

qD

1

10 cos(cos( t
2 ))

, 1
2

t

[

x(t) −
x(t)

100(x2(t) + 1)

]

=
tan−1 x(t)

100
+

tan−1
qI

1
2
tx(t)

100

qI
1−γ(t)
t x(0) = 0, qI

1−γ(t)
t f(0, x(0)) = 0, γ(t) =

1

20
sec

(

cos

(

t

2

))

+
1

2

(6.1)

It can be seen that L1 = L2 = 1
100 , and Mg has following value.

Mg =
1

100
+

e
7π
16 (1 − e−π)π

3
4

50 16
√

2
4
√

1 +
√

2(1 − e
−π

2 )
√
eπ − 1Γ(1

4)

For the assumption on f, we can see that Mf = 1
100 for all x ∈ R. By mean value

theorem, we get

|f(t, x) − f(t,y)| =

∣

∣

∣

∣

x

100(x2 + 1)
−

y

100(y2 + 1)

∣

∣

∣

∣

6
1

100
‖x− y‖.

This mean the contraction function ϕ(t) is written as

1

100
+

(

1

100
+

e
7π
16 (1 − e−π)π

3
4

50 16
√

2
4
√

1 +
√

2(1 − e
−π

2 )
√
eπ − 1Γ(1

4)

)

(

1 − e−π

1 − e
−π
20 sec(cos( t

2 ))+
−π

2

)
1

10 cos(cos( t
2 )) ,

which the function ϕ(t) < 1. Thus, according to the theorem 5.3, the equation (6.1) has

unique solution in Lq[0, 1].

7. Conclusion

In this work, the authors introduce novel operators in quantum calculus, which are

q-Hilfer fractional derivative and q-Hilfer fractional derivative of variable order. Also,

we present the novel proof of the uniqueness of continuous solutions to q-FHIDEVO. The

uniqueness of solution is proved by using Banach fixed point theorem under Lipschitz

conditions for nonlinear terms.
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