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Abstract

In this paper, we solve some fifth and sixth-order boundary value problems (BVPs) by the improved

residual power series method (IRPSM). IRPSM is a method that extends the residual power series method

(RPSM) to BVPs without requiring an exact solution. The presented method is capable of handling both linear

and nonlinear BVPs effectively. The solutions provided by IRPSM are compared with the exact solutions and

with the existing approximate solutions. The results demonstrate that the approach is extremely accurate and

dependable.

Keywords: Improved residual power series method, Fifth and sixth order BVPs, Comparative analysis,

Different techniques.

1. Introduction

In engineering and science, real-world problems can be modelled mathematically by

differential equations (DEs). Only a limited class of them can be solved exactly, and for the

rest of the equations, numerical methods are used to provide approximate solutions of ac-

ceptable accuracy. Recent numerical methods include the Adomian decomposition method

[1, 2, 3, 4, 5], variational iteration method [6], homotopy perturbation method [7, 8],

homotopy analysis method [9] and the differential transform method [10]. Traditional

perturbation methods use large or small parameters and are unable to produce a gen-

eral form of approximate solutions, especially in nonlinear problems. Non-perturbation

techniques like DTM and ADM can handle highly nonlinear problems, but their series so-

lution convergence zone is often limited. The HPM, which is an excellent integration of

homotopy and perturbation methods, overcomes the limitations of problems with small

or large parameters. It successfully solves a wide range of nonlinear problems. Vasile

Marinca et al. [11, 12, 13, 14] recently proposed OHAM for the approximate solution

of nonlinear problems of fourth-grade fluid thin film flow down a vertical cylinder. They
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employed OHAM to better understand the behavior of non-linear mechanical vibration in

electrical machines in their research. In the mathematical modeling of viscoelastic flows

[15], fifth-order BVPs arise. The thin convicting layers are bordered by stable layers that

are thought to surround A-type stars and may be represented by sixth-order BVPs that are

known to arise in astrophysics [16]. Glatzmaier [17] also looked at how such equations

may be used to predict dynamo activity in some stars. Wazwaz [4, 5] used the decom-

position technique to solve fifth and sixth-order linear and non-linear problems. Noor et

al. [18, 19, 20] used the VIM with He’s Polynomials, the HPM, and the VIM to study

these types of problems. Javed Ali et al. [21, 22] used OHAM and VDM to solve fifth

and sixth-order BVPs. The residual power series method (RPSM) was recently established

for solving reduced-order initial value problems (IVPs). RPSM creates the approximate

solution of linear and nonlinear order initial value problems (IVPs) in the form of a poly-

nomial. Numerous mathematicians have used RPSM to solve different problems. Some

of them are given below. Arqub and his co-author implemented the RPSM for the linear

and nonlinear Lane Emden equation [23]. Al-Smadi applied the RPSM to solve first-order

linear and nonlinear IVPs in [24]. These problems are initial values and low orders. We

extend this method to boundary value problems by solving fifth and sixth-order boundary

value problems. To find the missing initial conditions, a truncated series is developed,

and then the residual of the solution is forced to zero at the given boundary conditions.

With this extension, we name this method the Improved Residual Power Series Method

(IRPSM). This approach is easy to understand, dependable, and well defined. The results

obtained by using our approach are validated against OHAM, MDM, HPM, VAM, VDM,

and exact solutions.

The following is a breakdown of the structure of the paper. The basic idea of the

proposed method is covered in Section 2. In Section 3, you will find several numerical

examples. In Section 4, we discussed the outcomes of the numerical simulation performed

with Mathematica 11.3.

2. Basic idea of IRPSM

In this section, we explain the IRPSM for nth order IVPs and BVPs along with the

conditions. The IRPSM comprises the expansion of the power series about the initial point

x = x0 for finding the solution of BVPs. For unknown initial conditions, we use assumed

values and later use boundary values to find them. Consider nth order BVP:

f(n)(x) = ψ(x, f(m)(x)) , 0 ⩽ x ⩽ t m = 0, 1, 2, 3, ...,n− 1 , (2.1)

with boundary conditions:

f(m)(x) = αm , m = 0, 1, 2, 3, ...,n− 1

assume initial conditions:

f(m)(0) = βm , m = 0, 1, 2, 3, ...,n− 1 , (2.2)

In Eq. (2.1) and Eq. (2.2) ψ and βm are known functions or constants while f is unknown.

Now we assume solution of the given problem by kth truncated power series as

f(x) =

k∑

i=0

Aix
i , k = 0, 1, 2, 3, ...,n− 1 , (2.3)
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where Ai are unknown to be calculated. Since the differential equation is of nth order so

we have to calculate the constant Ai for i = 0, 1, 2, ...,n− 1. For k = 0 Eq. (2.3) reduces

to

f(x) =

0∑

i=0

Aix
i . (2.4)

Putting x = 0 in Eq. (2.4) and comparing with first initial conditions, we have

A0 = β0 . (2.5)

For the value of A1 taking k = 1 then find out the 1st derivative of Eq. (2.3) and using

x = 0. Afterward comparing with second initial condition leads to

A1 = β1 . (2.6)

Repeating the same procedure for k = 2, find out the second derivative of Eq. (2.3) and

using x = 0. Afterward comparing with third initial condition leads to

A2 =
β2

2!
. (2.7)

Similarly for i = n− 1, find out the (n− 1)th derivative of Eq. (2.3) and using x = 0, then

comparing it with the (n− 1)th initial condition leads to

An−1 =
βn−1

(n− 1)!
. (2.8)

In case of boundary value problems we assume the values of unknown initial conditions,

then latter on we find it by using boundary conditions.

For greater values of the constant Ai, k = n,n + 1,n + 2...., can be calculated by the

following method. We consider the kth truncated series

f(x) = finitial(x) +

k∑

(i=n)

Ai x
i (2.9)

finitial(x) is the kth truncated series, for k = 0, 1, 2, ....,n− 1, finitial(x) can obtained

as:

finitial(x) = f
(n−1)(x) = A0 +A1 x+A2 x

2 +A3 x
3... +A(n−1)x

(n−1) (2.10)

Now by putting the values of Ai in Eq. (2.10) we get:

finitial(x) = f
(n−1)(x) = β0 +β2 x+

β2

2!
x2 +

β3

3!
x3... +

βn−1

(n− 1)!
x(n−1). (2.11)

Furthermore, to find the residuals, Eq (2.1) can be written as follows:

f(n)(x) −ψ(x, f(m)) = 0 (2.12)
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Using Eq. (2.3) in Eq. (2.12) gives the definition of the kth residual function as follows:

Resk(x) =

k∑

i=n

i(i− 1)(i− 2)(i− 3)...(i−n+ 1) Ai x
i−n

− f(x,

k∑

i=m

i(i− 1)(i− 2)...(i−m+ 1)Aix
i−m, m = 0, 1, ....,n− 1. (2.13)

Now by taking derivative with respect to x and then putting x = 0 on both sides of Eq.

(2.13) to get:

dk−n

d xk−n
Resk(x = 0) =

dk−n

d xk−n

k∑

i=n

i(i− 1)(i− 2)(i− 3)...(i−n+ 1) Ai x
i−n

−
dk−n

d xk−n
f
(

x,

k∑

i=m

i(i− 1)(i− 2)...(i−m+ 1

)

Aix
i−m, (2.14)

for m = 0, 1, ....,n− 1. From Eq. (2.14), we can find out the values of An, so the nth

truncated series will be shown as below:

fn(x) = A0 +A1x+A2x
2 +A3x

3.... +Anx
n . (2.15)

This process can be repeated until the problem solution does not achieve the required

accuracy. By obtaining more solution coefficients, higher accuracy will be obtained, or by

selecting a larger value of k in the truncation series (2.3), better results will be obtained.

After measuring all the coefficients, the equation (2.15) can be used to calculate an ap-

proximate solution. From here, we find all the assumed initial conditions βm by using all

the given boundary conditions.

f(m)(x) = αm , 0 ⩽ x ⩽ t m = 0, 1, 2, 3, ...,n− 1 .

From here, we get the n− 1 equation, and then the corresponding equations are solved

with the help of NSolve Mathematica’s built-in code for unknown.

3. Numerical Illustration

Example 3.1. Fifth order non-linear BVP ([18, 19])

f(5)(t) = f2(t) e−t , 0 < t < 1, (3.1)

with BCs,

f(0) = 1 , f′(0) = 1 , f′′(0) = 1 , f(1) = e , f′(1) = e .

The exact solution of this problem is

f(t) = et.
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f(t) =

m∑

i=0

Ai t
i. (3.2)

Eq. (3.2) can be used to calculate the values of unknown Ai. Initially for m = 0 we have

f(t) =

0∑

i=0

Ait
i = A0.

Using t = 0 f(0) = A0. From initial condition f(0) = 1

A0 = 1.

Now for m = 1 taking first derivative of Eq. (3.2), then using t = 0. Comparing with

initial conditions the obtained result is

f′(t) =

1∑

i=0

i Ai t
i−1 = A1.

Using initial condition we get A1 = 1.

In the same way, we calculated A2 = 1
2
, A3 = a

6
A4 = b

24
. Rewriting the given BVP Eq.

(3.1) in the form:

f(5)(t) − e−t f2(t) = 0 , 0 < t < 1 , (3.3)

Plugging the mth truncated series in Eq. (3.3) leads to

Resm(t) =

m∑

i=5

i(i− 1)(i− 2)(i− 3)(i− 4)Ai t
i−5 − e−t

(

k∑

i=0

Ai t
i

)2

. (3.4)

To obtain 5th order approximate solution put m = 5 and t = 0 in Eq. (3.4) we get

Res5(0) = −1 + 120 A5 = 0 .

From above equation it follows thatA5 = 1
120

. Continuing in this way we obtain 14th order

solution. Using procedure in section 2, we obtain the following values by using boundary

conditions

dk−5

d xk−5
Res5(t) =

dk−5

d xk−5

(

5∑

i=5

i(i− 1)(i− 2)(i− 3)(i− 4)Ai t
i−5 − e−t

(

5∑

i=0

Ai t
i

)2)

,

where k=6,7,8,...

f(t) =1 + t+ t2/2 + (at3)/6 + (bt4)/24 + t5/120 + t6/720 + t7/5040 − t8/40320

+ (at8)/20160 − t9/362880 + (bt9)/181440 + t10/3628800 + t11/1900800

− (at11)/997920 + (a2t11)/1995840 − (23t12)/159667200 + (at12)/2280960

− (a2t12)/3421440 − (bt12)/6842880 + (abt12)/6842880 + (67t13)/6227020800

− (139at13)/1556755200 + (a2t13)/11119680 + (bt13)/14826240 − (abt13)/11119680

+ (b2t13)/88957440 + (23t14)/9686476800 + (at14)/103783680 − (a2t14)/51891840

− (157bt14)/10897286400 + (abt14)/34594560 − (b2t14)/138378240
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Here we are using the boundary conditions on above equation to find out the assume

initial condition using NSolve Mathematica inbuilt code to get:

a = 0.9999999999456852, b = 1.00000000023766.

As a result, the solution became

f(t) =1 + t+ t2/2 + 0.166667t3 + 0.0416667t4 + t5/120 + t6/720 + t7/5040 + 0.0000248016t8

+ 2.75573 × 10−6t9 + 2.75573 × 10−7t10 + 2.50521 × 10−8t11 + 2.08768 × 10−9t12

+ 1.6059 × 10−10t13 + 1.14707 × 10−11t14 (3.5)

Table 1: The IRPSM solution (3.5) is compared to the exact solution as well as the error

estimations. Second Last column of table 1, are the errors in the solutions of OHAM, for

the same problem [21]. Last column of table 1, are the errors in the solutions of VIM, for

the same problem [18].

x Exact solution IRPSM solution E∗(IRPSM) E (OHAM)[21] E (VIM)[18]

0. 1. 1. 0.000 0.000 0.000

0.1 1.10517 1.10517 8.1×10−15 1.9×10−10 1.0×10−9

0.2 1.2214 1.2214 5.6×10−14 1.2×10−9 2.0×10−9

0.3 1.34986 1.34986 1.6×10−13 3.3×10−9 1.0×10−8

0.4 1.49182 1.49182 3.2×10−13 6.3×10−9 2.0×10−8

0.5 1.64872 1.64872 5.1×10−13 9.3×10−9 3.1×10−8

0.6 1.82212 1.82212 6.7×10−13 1.1×10−8 3.7×10−8

0.7 2.01375 2.01375 7.3×10−13 1.1×10−8 4.1×10−8

0.8 2.22554 2.22554 6.0×10−13 8.2×10−9 3.1×10−8

0.9 2.4596 2.4596 2.6×10−13 1.9×10−9 1.4×10−8

1. 2.71828 2.71828 1.3×10−14 0.000 0.000

Table 1: E∗(IRPSM)=Actual-Approx

Figure 1: Solution graph of the Eq. (3.5).
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Figure 2: Residual Error graph of IRPSM.

Example 3.2. Consider the following special fifth order linear boundary value problem

([18, 21]):

g(5)(t) = g(t) − 15 et − 10 t et, 0 < t < 1 (3.6)

g(0) = 0 , g′(0) = 1 , g′′(0) = 0 , g(1) = 0 , g′(1) = −e .

The actual solution of this problem is g(t) = t(1 − t) et.

g(t) =

m∑

i=0

Ait
i. (3.7)

We get the following 14th order solution using the IRPSM technique described in section

2.

a = −2.999999989324808, b = −8.000000046558213.

g(t) =t− 0.5t3 − 0.333333t4 − t5/8 − t6/30 − t7/144 − 0.00119048t8 − 0.000173611t9

− t10/45360 − t11/403200 − t12/3991680 − 2.2964 × 10−8t13 − 1.92709 × 10−9t14

(3.8)

Table 2: The IRPSM solution (3.8) is compared to the actual solution as well as the error

estimations. Second last column of table 2, are the errors in the solutions of OHAM, for

the same problem [21]. Last column of table 2, are the errors in the solutions of VIM, for

the same problem [18].
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x Exact solution IRPSM solution E∗(IRPSM) E (OHAM)[21] E (VIM)[18]

0. 1. 1. 0.000 0.000 0.000

0.1 0.0994654 0.0994654 1.5 × 10−12 −9 × 10−11 −3 × 10−11

0.2 0.195424 0.195424 1.1 × 10−11 −4 × 10−10 −2 × 10−10

0.3 0.28347 0.28347 3.2 × 10−11 −5 × 10−10 −4 × 10−10

0.4 0.358038 0.358038 6.4 × 10−11 −2 × 10−11 −8 × 10−10

0.5 0.41218 0.41218 1.0 × 10−10 1 × 10−9 −1 × 10−9

0.6 0.437309 0.437309 1.3 × 10−10 2 × 10−9 −2 × 10−9

0.7 0.422888 0.422888 1.4 × 10−10 2 × 10−9 −2 × 10−9

0.8 0.356087 0.356087 1.2 × 10−10 1 × 10−9 −2 × 10−9

0.9 0.221364 0.221364 5.7 × 10−11 4 × 10−10 −1 × 10−9

1. 0.000 4.8 × 10−17 -6.6 × 10−18 0.000 0.000

Table 2: E∗(IRPSM)=Actual-Approx

Figure 3: Solution graph of the Eq. (3.8).
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Figure 4: Residual Error graph of IRPSM.

Example 3.3. Sixth order non-linear boundary value problem of ([5, 19]):

g(6)(t) = g2(t)et 0 < t < 1 (3.9)

g(0) = 1 , g′(0) = −1 , g′′(0) = 1 , g(1) = e−1 , g′(1) = −e−1 , g′′(1) = e−1 .

The actual solution for this problem is g(t) = e−t.

g(t) =

m∑

i=0

Ai t
i. (3.10)

We get the following 12th order solution using the IRPSM technique described in section

2. We obtain the following values for a, b and c using boundary conditions.

a = −1.000000031823586, b = 1.0000002831121835 and c = −1.0000007970627998

g(t) =1 − t+ t2/2 − 0.166667t3 + 0.0416667t4 − 0.00833334t5 + t6/720 − t7/5040 + t8/40320

− 2.75573 × 10−6t9 + 2.75573 × 10−7t10 − 2.50521 × 10−8t11 + 2.08768 × 10−9t12

(3.11)

Table 3: The IRPSM solution (3.11) is compared to the actual solution as well as the error

estimations. Second last column of table 3, are the errors in the solutions of MDM, for the

same problem [5]. Last column of table 3, are the errors in the solutions of HPM, for the

same problem [19].
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x Exact solution IRPSM solution E∗(IRPSM) E (MDM)[5] E (HPM)[19]

0. 1. 1. 0.000 0.000 0.000

0.1 0.904837 0.904837 4.1 × 10−12 −2.3 × 10−7 −1.2 × 10−4

0.2 0.818731 0.818731 2.5 × 10−11 −1.3 × 10−6 −2.3 × 10−4

0.3 0.740818 0.740818 6.3 × 10−11 −3.3 × 10−6 −3.2 × 10−4

0.4 0.67032 0.67032 1.0 × 10−10 −5.2 × 10−6 −3.8 × 10−4

0.5 0.606531 0.606531 1.3 × 10−10 −6.1 × 10−6 −4.0 × 10−4

0.6 0.548812 0.548812 1.3 × 10−10 −5.7 × 10−6 −3.9 × 10−4

0.7 0.496585 0.496585 1.0 × 10−10 −4.0 × 10−6 −3.3 × 10−4

0.8 0.449329 0.449329 5.2 × 10−11 −1.9 × 10−6 −2.4 × 10−4

0.9 0.40657 0.40657 1.0 × 10−11 −3.5 × 10−7 −1.2 × 10−4

1. 0.367879 0.367879 2.1 × 10−17 −5.0 × 10−10 2.0 × 10−9

Table 3: E∗(IRPSM)=Actual-Approx

Figure 5: Solution graph of the Eq. (3.11).
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Figure 6: Residual Error graph of IRPSM.

Example 3.4. Sixth order linear BVP involving a parameter d ([19, 20, 22]):

g(6)(t) = (1 + d)g(4)(t) − d g(2)(t) + d t, 0 < t < 1 (3.12)

g(0) = 1 , g′(0) = 1 , g′′(0) = 0 , g(1) =
7

6
+ sinh(1)

g′(1) =
1

2
+ cosh(1) , g′′(1) = 1 + sinh(1) .

The actual solution of this problem is g(t) = 1 + 1
6
t3 + sinh(t).

g(t) =

m∑

i=0

Ait
i. (3.13)

We consider the 11th order solution. Using procedure in section 2, we obtain the following

values for a, b and c. a = 2.0000000299279628, b = −2.889814925018749 × 10−7

and c = 1.0000011603456829

g(t) =1 + t+ 0.333333t3 − 1.20409 × 10−8t4 + 0.00833334t5 − 4.415 × 10−9t6 + 0.000198415t7

− 7.95559 × 10−10t8 + 2.75608 × 10−6t9 − 8.84751 × 10−11t10 + 2.50836 × 10−8t11

(3.14)

Table 4: The IRPSM solution (3.14) is compared to the actual solution as well as the error

estimations. Third last column of table 4, are the errors in the solutions of HPM, for the

same problem [19]. Second last column of table 4, are the errors in the solutions of VIM,

for the same problem [20]. Last column of table 4, are the errors in the solutions of VDM,

for the same problem [22].
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x
Exact

solution

IRPSM

solution
E∗(IRPSM) E (HPM)[19] E (VIM)[20] E (VDM)[22]

0. 1. 1. 0.000 0.000 0.000 0.000

0.1 1.10033 1.10033 -3.8 × 10−12 1.2 × 10−6 1.2 × 10−6 2.9 × 10−6

0.2 1.20267 1.20267 -2.3 × 10−11 7.2 × 10−6 1.2 × 10−6 1.6 × 10−6

0.3 1.30902 1.30902 -5.7 × 10−11 1.7 × 10−5 1.2 × 10−5 3.6 × 10−5

0.4 1.42142 1.42142 -9.5 × 10−11 2.7 × 10−5 1.2 × 10−5 5.3 × 10−5

0.5 1.54193 1.54193 -1.2 × 10−10 3.4 × 10−5 1.2 × 10−5 6.0 × 10−5

0.6 1.67265 1.67265 -1.2 × 10−10 3.2 × 10−5 1.2 × 10−5 5.3 × 10−5

0.7 1.81575 1.81575 -9.3 × 10−11 2.3 × 10−5 1.2 × 10−5 3.5 × 10−5

0.8 1.97344 1.97344 -4.8 × 10−11 1.1 × 10−5 1.2 × 10−5 1.5 × 10−5

0.9 2.14802 2.14802 -1.0 × 10−11 2.2 × 10−6 1.2 × 10−6 2.7 × 10−6

1. 2.34187 2.34187 0.000 0.000 0.000 0.000

Table 4: E∗(IRPSM)=Actual-Approx

Figure 7: Solution graph of the Eq. (3.14).
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Figure 8: Residual Error graph of IRPSM.

4. Conclusion

When the exact solution does not exist, then the residual power series method (RPSM)

cannot solve BVPs. The improved residual power series method (IRPSM) can solve BVPs

without an existing exact solution. In this study, we employed IRPSM to solve fifth and

sixth-order linear and nonlinear BVPs. The simulations associated with the four examples

discussed above were performed using Mathematica. 11.3. The proposed algorithm pro-

duced a rapidly convergent series. When the obtained results are compared to other work,

the IRPSM technique is found to be more reliable and efficient than other techniques. No

restrictive assumptions are needed and one feels very comfortable as the convergence of

the method is not dependent on the initial guess. The low order solutions show excellent

agreement with the exact solution, and the remarkable low error is notable. The solu-

tion curve is remarkably smooth, and it can be investigated and interpreted in any way.

Furthermore, the method’s results are extremely close to the exact solution. This strategy

offers a lot of potential in terms of attracting researchers, scientists, and engineers from

many fields.
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