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Abstract

The paper is concerned with stochastic random impulsive integro-differential equations with non-local
conditions. The sufficient conditions guarantees uniqueness of mild solution derived using Banach fixed
point theorem. Stability of the solution is derived by incorporating Banach fixed point theorem with certain
inequality techniques.
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1. Introduction

Mathematical modelling in Engineering and Scientific fields results in integral, ordi-
nary or partial differential equations, stochastic differential equations or integro-differential
equations. Specifically, in the fluid dynamics, chemical kinetics and biological disciplines,
systems in general are of integro-differential type refer [1, 2, 3, 4]. Evolution processes
from fields of population dynamics, aeronautics, economics, telecommunications and physics
experiences drastic change of state at certain moments of time between the intervals of
continuous evolution. Comparatively, the duration of these changes are negligible to the
total duration that acts instantaneously in the form of impulse. The theory of impulsive
differential equations represents a more natural framework for mathematical modelling
see [5, 6, 7] and the references therein.

Impulses exist at fixed time or random time. There are many articles featuring the
qualitative properties of fixed impulsive type equations [8, 9]. Wu and Meng [10] initiated
the study of random impulsive ordinary differential equations and investigated bounded-
ness of solution by Liapunov’s direct function. By regular fluctuations in the deterministic
models due to noise which appears to be random, the researchers moved to the stochastic
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differential equations. There are several articles regarding the study the Stochastic Dif-
ferential Equations (SDE) [11, 12, 13, 14, 15, 16, 17, 18]. Stochastic effects with the
impulsive effect exist in evolution processes in the real world phenomena refer [19, 20].
Sakthivel and Luo [21] investigated the existence and asymptotical stability for mild solu-
tion of Impulsive Stochastic Differential Equations.

Pan and cao [22] solved the exponential stability of impulsive stochastic partial dif-
ferential equations with delays. Cui and yan [23] investigated the existence results for
fractional neutral stochastic integro-differential equations with infinite delay. Mao [24]
established stability results of stochastic integro-differential equations. Li et.al [25] inves-
tigated the existence and Hyers-Ulam stability of random impulsive stochastic functional
differential equations with finite delay.

For instance, let us consider the classical stock price model [26]

d(N(t)) = uN(t)dt+ oN(t)dBy, t>0,t % 5, (1.1)
N(&) = aeN(5y), k=1,23..,
N(0) = No.

The system 1.1 represents impulsive stochastic differential equations. Here By is a Brow-

nian motion or Wiener process. N(t) represents the price of stock at time t and 5y rep-

resents the release time of an information relating to the stock N(&,) = liém ON(t)
t—0x—

and Ny € R. In reality, {0y} represents a sequence of random variable which satisfies
O0<d<6r <.

El. Borai [27] studied the existence and uniqueness of stochastic fractional integro-
differential equations. Ahmed and El. Borai [28] established the existence results of
mild solutions of Hilfer fractional stochastic integro-differential equations with non-local
conditions. Guo et.al [29] analysed the exponential stability of impulsive stochastic func-
tional differential equations. Liu and Xu [30] studied the averaging results for impulsive
fractional neutral stochastic differential equations.

Sayooj et.al [31] considered a non-local random impulsive integro-differential system
and calculated the existence, uniqueness and stability results. There are several papers
that includes the study of impulsive integro-differential equations involving random im-
pulses [32, 33]. Therefore, the study of random impulsive stochastic differential equations
has a room for improvement. Thus the main objective of this work is to present non-local
random impulsive stochastic differential equations hoping that the results obtained would
contribute to the area.

Let us consider a the non-local stochastic random impulsive integro-differential equa-
tion of the form

dx(t) = f(t, x¢)dt + [ g(n, x(t +m))dw(m), t£ &, t>T,
x(&x) = br(dw)x(& ), k=1,23.., (1.2)
Xt, + h(x) = xo.

where &y is a random variable defined from Q to ©, =9¢f (0,dy) for k = 1,2, ... where
0 < dx < +oo. Moreover, assume that for k = 1,2, ... 5y follows Erlang distribution, let
; and o; are independent with each other as i # j for i,j = 1,2,... Here we suppose,
T € (to,+00), f: [to, TIx € — RY, g : [ty, TI x € — RIX™ §: [ty, T x € — R? and
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bx : D — RY*4 and x; is R%-valued stochastic process such that x(t) € R%,x(t) =

{x(t+6: -8 <0 < 0)}. The impulsive moments &, form a strictly increasing sequence,

e, <& << < <o < lim, and x(§ ) = lim x(t). We assume that
k—o0 t—&—0

&o = toand & = &1+ 0k for k = 1,2,3... Obviously, £y is a process with increment
increments. We assume that {N(t),t > 0} is a simple counting process generated by {&,}
and {w(t):t > 0} is a given Weiner process.We denote §' the o-algebra generated by
{N(t),t > 0}, and denote > the o-algebra generated by {w(s),s > t}. We assume that
FL., 32, and &, are mutually independent.

The manuscript is summarized as follows. Section 2 presents certain preliminaries.
Section 3 is devoted to the existence and uniqueness solution of random impulsive stochas-
tic integro-differential equations with non-local condition. In Section 4, with the Lipschitz
condition, the stability results are derived.

2. Preliminaries

Let (Q,J,IP) is a probability space with Expectation [E and associate with the nor-
mal filtration {}, t > 0 satisfying J; = Sg) \/3@. Let £? (Q,R%) be the collection
of all strongly measurable, §; measurable, R¢-valued random variables x with norm

1/2
x|l ¢, = (IE HXHZ) , where [E = [, xdIP. Let § > 0 denote the Banach space of all piece-
wise continuous R4-valued stochastic process {(t),t € [=5,0]} by € ([5,0], £2 (Q,RY))
equipped with the norm,

1/2

IBle = sup (E[B(0)I%)

0c[—5,0
The initial data,[25]
Xty =xp ={&(0) : =86 <0 <0}, (2.1)
is an §, measurable, [—§,0] to R4-valued random variable such that E 2] < oo.

Definition 2.1. A R¢ valued Stochastic process x(t) on t —& < t < T is called a mild solution
to 2.1, if
(1) For every to <t < T, x(to) = X0, {(xt}t,<t<T s Ft-adapted;
(i)
+o0o k

k k &i
x(t) = Z[Hbdéa(mh(x)wZHbj(aj)j fsx(s)ds  (22)

=0 “i=1 i=1j=1 i1

k
t k k
+ L f(s,x(s))ds—l—ZHbj(éj)J

&
i=1j=1 i

]
L a(n,x(s +n))dw(n)ds

t T
+ J J g(n,x(s—i—n))dw(n)ds}I[Eklakﬂ)(t), te[d, Tl
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q
where H(.) =lasp>q,

Hbj (85) = by (Ok)br—1(8x—1)...bi(84),

and I a)(.) is the index function, i.e.,

Lo 1A
A0, if te A

Lemma 2.2. For any r > 1 and for arbitrary L9- valued predictable process ®(.),

T

2r t
<rzr-1)" ([ ®1owiypas)

X

sup E
s€(0,t]

JS @ (u)dw(u)

0

The following hypotheses are considered to prove our results.

(H1) The function f : [to, T] x € — R¢ satisfies the Lipschitz condition. For x,y € X and
d <t < T there exist LO, My > 0 such that

E [|f(t, %) — f(t, YI* < LoE x—ylf
E[|f(t, 0)]* < M.

(H2) The function g : [to, T] x ¢ — R*™ satisfies the Lipschitz condition. For x,y € X
and 6 < t < T there exist £1, M; > 0 such that

NN

2

E < LB [x(t+1) —y(t+n)|?,

.
L [gn, x(t+n)) —gn,y(t+n))ldn

Ellgm, 0 < M.

(H3) The condition max H |5(8;)]| p is uniformly bounded 3 B > 0 such that

j=1
max{H Hb }
forall 5; € Dj, j =1,2,3....

(H4) The functlon b : [to, T] x ¢ — RRY satisfies the Lipschitz condition. For x,y € X and
5 < t < T there exist £, > 0 such that

E|[h(x) —bh(y)|]* < Lo |lx—y]>.

(H5)
L

I' = B2 max{1, B2}(T — §)?
{1, B} ) T_o7

<1.

Lo+ﬁ1+(
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3. Uniqueness

This section is devoted to the study of uniqueness of mild solution of the system 1.2

Theorem 3.1. Assume that the hypotheses (H1)-(H5) holds. Then the system 1.2 has a
unique mild solution in B.

Proof. Let T be an arbitrary number T < +oo. Initially from definition 2.1, we define a
non-linear operator ¢ : B — IB. Note that the problem 2.1 has a solution if and only if the

operator ¢ has a fixed point.

dx(t) = Z [Hb J(xo—b +ZHb L (s,x(s))ds

k=0 i=1j=i

.
+ L ds+ZHb J Lg(n,X(Hn))dw(n)ds

i=1j=1i i1

t T
; J J g(n,x(s+n))dw(n)ds] T e(0),
& JO

where t € [5, T]. We need to show that B maps B under ¢.
()]
Kk

[[v:6:

i=1

&q
j If(s, x(s))] ds

i—-1

k
[1v:65)

j=i

k
I o —bEN+ D

i=1

Jal 1

ds} Lig e (B), t e [5,T]

=

k=0

ds

I1§(s, x(s) ||ds—|—Z

L. %
)

Hb

] =i

+

)
J a(n, x(s +m))daw(n)

+

J x(s 4+ m)dw(n)
&k

2 +00 k

(Xob(X))ZI[z:k,akH)(t)] + [Z [Z

k=0 -i=1

k

T Tba80)

i=1

k=0

< [z{

rEq 2

t
< [ it o as +j 5, ()1 05| T ()]
JEi &k
Hb q Jéi
S X
i

j=i
2
ds:| I[Ek/£k+1) (t):|

r +o0o

S E[x

;
J a(n,x(s +n))daw(n)
k=0 -i=1

0

rt

)
L a(m,x(s +n))dw(n)

JEx
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Kk 2 Kk 2
< 3max ¢ (TToud0)| pllxo—b(x)|*+3 |maxq 1, ||T [bs(85)
im1 v =i
¢ 2 Kk 2
X {J 17(s,x(s))]| dSI[ak,akH)(t)} +3 max 1, Hbj(f)j)
to ’ . .
]—1

)
JO aln, x(s +m))dw(n)

2
dSI[Ek,5k+1)(t)}

Xl |

< 3132on—h(X)||2+3maX{1,Bz}(t—to)J (s, x(s)) 12 ds
to
2
ds] .
< 387 |[xo — h(x)[|* +3max{1, B?}(t — to) j E [[§(s, x(s))||* ds + 3max{1, B*}(t — to)€;
to
t T 2
X J E |J g(n,x(s+mn))dn dSI
to 0
< 38 |lxo— b(x)|* + 3max{L, B(T - 8) j E (s, %(s))] ds
to
2
ds]
t

< 3B%||xg — b(x)||* + 6 max{1,B2}(T — 8)Lo J E ||x(s)||* ds 4+ 6 max{1, B2}(T — 8)>M,

to

.
J g(m,x(s+m))dn

to 0

t
+ 3max{1,B%}(t —t9)C J [

Thus we would obtain,
E [|dx(t)]?

t
+ 3max{1,B*}(T — 5)@4 E

to

.
JO g(m,x(s+m))dn

t

+  6max{1,B*}(T— 6)L1€2J E |[x(s 4+1)|?* ds + 6 max{1, BZ}T — 8)2CoM;

to
Thus,
2
supe(s 1) E |px(t)]]

t
< 3B%|Ixg—h(x) HZ + 6max{1,B>}(T —5)L J sup E|/x(s) HZ ds + 6 max{1, B%}
to te[5,T]
t
x (T—=258)*My+ 6max{1,B*HT —§)L£1C, J sup E ||x(s+mn) H2 ds
to teld,T]

+ 6max{1,B2}(T—8)2CM;, 6§<t<T.

Hence ¢ maps B into itself. Now we have to show that ¢ is a contraction mapping,
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[px(t) — dy(t)|?

2 +o00

[ k k
< |5 IrTouso] 160 - v ey e 0 apa {Z [Toi
Lk=0 |li=1 k=0 ti=1||j=i
r&i t >
< [1§(s, x(s)) —f(s,y(s Hds—i—L Hf(s,x(s))—f(s,y(s))”ds]l[ak,akﬂ)(t)]
&i T
+ Z[Z [T s ], stnxtsm)— o yismpawi
k=0 -i=1||j=i &1 |[Y0
rt T 2
o, JO g, x(s +n)) — g, y(s +n))dw(n) dS]I[ak,am)(t)}

el e o]

2
- ot 2
x L [7(s,x(s)) — (s, y(s))|| dsI akakﬂ)(t)} + {Hﬁx{lfnbj@j)}]
LJto ! j=1

< |,

< B2IIFJ(X)—b(y)IZeraX{LBZ}(t—to)J (s, x(s)) — (s, y(s))|? ds

to

]
L a(n,x(s +1)) — g(n, y(s +m))dw(n)

2
dSI[Ek,‘ikH) (t)]

t 2

ds.

]
+ max {18} (t )€z | ||| "atnx(s-+n)) —glny(s-+nl)an

to

However,
E || px(t) — dy(t)]
< BZ]EIIU(X)—b(y)|!2+maX{1,B2}(t—toJ E [11(s, x(s)) — (s, y(s))|* ds

2
ds

t
+ max{l,B2}(t—t0)€2J E

to

.
L g, x(s +n)) —gn,y(s+n))dn

t
< BE |Ip(x) — h(y)|? + max {1,B2} (T — )& J E x(s) —y(s)| ds

to

+ max{1, Bz} (T—29) Gzﬁlj E |[x(s+n) —y( s+ﬂ)”2d5-

to
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Taking supremum over t we would obtain,
lox—yl” < B2L.[lx —yl* +max {1,B7} (T~ 8)*Lo [x —ylI”
max{l,BZ} (T—6)2CrL4 Hx—yHZ
[B2L, +max {1,B%} (T —8)Lo +max {1,B*} (T —8)Calq] [[x —yl
[B2L. +max {1,B2} (T —8)%{Lo + C2L1}] [[x —y*
M x—ylP,

_l’_

NN N

where
M =B2L, +max {1,B2} (T—8)*Lo + C2£1}

By (H5) and 0 < T" < 1 we would obtain ¢ is a contraction mapping. By Banach fixed
theorem ¢ has a unique fixed point on B. Hence the system has a unique mild solution.
O

Remark 3.2. Letf: Rs x X = X, g:Rs x X — X and b : X — X satisfy the assumptions
(H1)-(H5). Then there exists a unique, global, continuous solution x to the system 1.2 for
any initial value (tg, xg) with ty > 0 and xo € B.

Remark 3.3. Assume that (H1)-(H5) holds. Then the mild solution without existence of
non-local condition and the solution is

too  k ko k £
M) = Z[Hbi(mmznbi(sﬂj (s, x(s))ds
k=0 “i=1 i=1j=i &i1
t k k
+ L f(s,x(s))ds—l—ZHbj(éj)
k i=1j=i

&i T t T
x J J g(n,X(ern))dw(n)derJ J o, x(s +1)dwmds | T, 6, (1),
&1 J0 &k JO

where t € [5, T].

4. Stability

Theorem 4.1. Let x(t) and X(t) be solution of the system 1.2 with initial value xo — b(x)

and Xy — h(x) respectively. If the assumptions (H1)-(H4) of Theorem 3.1 are satisfied, then
the system 1.2 is stable in the mean square.

Proof. From the assumptions x(t) and X(t) are two solutions of the system 1.2 for every
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€ [, T]. Then,

+o0
Xt —R() = Uibl )(xo — %o) + () — BiR))
k=0 -i=1
k k
+ ZHb] J f(s,x(s)) —f(s,x(s))] ds
i=1j=1 &i1
;
n Lkmax(n ds+;;¥1b J L[meu+nn

t

-
J[mew+nDMm?B+nm

- MWﬁu+nn]munMs+L 0

X dw(n)ds] I[El«ékﬂ) (t).

Using the assumed hypotheses (H1)-(H4) we would obtain,

“+00 k
) —xO))> < 4) [
k=0 i=1

[lxo —Xoll + 16(x) = b{X]]

k k &i
T }:Ilwmwuuj 155, x(s)) — (s, %(5)) | ds
i=1j=i &i1
rt
+ . If(s, x(s)) —f(s,X(s Hds—l—ZHHb
v Sk i=1j=i
Es T
x J la(n, x(s +1)) — gln, %(s +n))] daw(m)| ds
J&i—1 ||JO
rt T 2
- . L[ﬂmx@+nh—ﬂmiu+nmdwm)d4

X I[Ek,EkHJ (t),

and
k

[ Ib:(585)

i=1

E|[jx(t) -X®)|* < 4m,gx{

2
} []E X0 —Xoll* + E [[h(x) — h(§||}

] =i

+ 4max{1 HHb }
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2
t 2 k
x IE{J rf(s,x(s))—f(s,i(s))udsl[ak,akm(ﬂ} +4ng§gx{1,Hbj(6j)}

to j=i

t 2
x [E {J dSI[ﬁk,Ekﬂ) (t)}
to

< 4B? {]E Ixo —%o||* + E ||b(x) —b(£||2] +4max {1,B%} (t—to)

]
JO la(n, x(s 1)) — g, %(s +1))] dew(n)

X Jt 1§(s,x(s)) — f(s,X(s))||* ds + 4 max {1,B2} (t—10)C

to

t
X J’

to

< 4B [IE IIxo — Rol|* + E [[B(x) —b(fllz] +4max {1,B%} (t—to) Lo

2

.
J [g(n, x(s +m)) —gMm,X(s +n))l dn|| ds

0

t
X J E |[x(t) —%(t)]|* ds + 4 max {1,B%} (t—19)£1C2

to

t
y J E [|x(t+1) —R(t +1)|? ds.
to

Taking supremum over t,

sup E ||x(t) —x(t)?
te[5,T]

4B?

N

E [[xo —%o[* + sup E|[h(x) —h(X|*| +4max{1,8%}
tels,T]

t
X (T—(S)LOJ sup E|x(t) —X(t)| ds +4max {1,B*}
to te[5,T]
t
X (T—5)L1€2J sup lEHx(t—l—n)—?(t—l—T])Hz ds.
to te[d,T]

By Grownwall inequality,

sup E|[|x(t) —x(t)|* < 4B%E |jxo— Xo||* exp [4max {1,8%} (T —6)?] £
te(s,T]

< TE |xo — %ol
where, I = 4B%exp [4max {1,B%} (T —5)?] £ and £ = Lo+ £1C, +

For given € > 0, we choose « = § such that E ||xg —%o|* < « then,

(T—8)"

sup E[x(t) —x(t)|* < e
te[8,T]
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Remark 4.2. Random impulsive integro-differential equation with local initial condition is
a special case of the system 1.2. So the random impulsive integro-differential equation
with local initial condition is stable in the mean square.

5. conclusion

In this paper, the uniqueness and stability of random impulsive stochastic integro-
differential system has been calculated using the initial data x¢, = x¢. Contraction map-
ping principle is used to prove the existence and uniqueness. With inequality techniques
and Contraction principle the stability is derived. In the future we can extend this work to
stochastic partial differential equations.
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