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Abstract

In this present case, we focus and explore the idea of a new family of convex function namely exponen-
tial type m—convex functions. To support this newly introduced idea, we elaborate some of its nice algebraic
properties. Employing this, we investigate the novel version of Hermite-Hadamard type integral inequality.
Furthermore, to enhance the paper, we present several new refinements of Hermite-Hadamard (H — H) in-
equality. Further, in the manner of this newly introduced idea, we investigate some applications of special
means. These new results yield us some generalizations of the prior results in the literature. We believe, the
methodology investigated in this paper will further inspire intrigued researchers.

Keywords: Convex function, Holder’s inequality, Power-mean integral inequality, m-type Convexity,
Exponential convex function.
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1. Introduction

The theory of convexity is very important in the theoretical aspects of mathematicians
and economists and also for physicists. Mathematicians use this theory, to provide the
solution of problems that arise in different branches of sciences. This theory touches
almost all branches of mathematics. Convex functions play an important role in many
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areas of mathematics, as well as in other areas of science, economy, engineering, medicine,
industry, and business. It is especially important in the study of optimization problems,
where it is distinguished by a number of convenient properties (for example, any minimum
of a convex function is a global minimum, or the maximum is attained at a boundary
point). This explains why there is a very rich theory of convex functions and convex
sets. Optimization of convex functions has many practical applications (circuit design,
controller design, modeling, etc.). Due to a lot of importance, the term “convexity" has
become a rich source of inspiration and absorbing field for researchers. Interested readers
are referred to [1, 2, 3, 4, 5,6, 7, 8, 9].

During the last few decades, the concept of convex analysis has played crucial and
consequential role in the generalizations and extensions of theory of inequalities. Both
the theory of convexity and the theory of inequality are closely related to each other. The
integral inequalities have elegant and effective importance in information technology, in-
tegral operator theory, numerical integration, optimization theory, statistics, probability,
and stochastic process. During the last few decades, many mathematicians and research
scholars concentrated their great contributions and attentions on the study of this inequal-
ity. Thus a rich and meaningful literature on inequalities can be found for the convexity,
see the references [10, 11, 12, 13, 14, 15, 16, 17, 18].

2. Preliminaries
In this section we recall some known concepts.

Definition 2.1. [1] Let Q : X — R be a real valued function. A function Q is said to be

convex, if
Q(d16+(1—6)d2) < 0Q (d1)+(1—6)0(d2), (2.1

holds for all d;,d> € X and 0 € [0, 1].

Any paper on Hermite inequalities seems to be incomplete without mentioning the well-
known Hermite-Hadamard inequality. This inequality states that, if Q : X € R — R is
convex in X for dy,d> € X and d; < dp, then

d; +dp 1 & Q(d;) + Q(d2)
< dy < —H2 =20 2.2
o( 52 )< g | anoax < 0 @2)
Interested readers can refer to [19, 20, 21, 22].
The family of m—convex functions was first time explored and introduced by G. Toader in

[23].

Definition 2.2. [23] A function Q : [0,d;] — R, d» > 0, is said to be m—convex, where
€ (0,11, if
Q(0d; +m(1—0)dy) <0Q(d1)+m(1—06)Q(dp) (2.3)

holds V d;,d» € [0,d»] and 6 € [0, 1]. Otherwise Q is m—concave if (—Q) is m—convex.

Definition 2.3. [24] Let Q be a nonnegative function. Then Q : X — IR, is said exponential
type convex, if
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Q (6 +(1-0)d) < (7 —1) Q(ar) + (e ~1) Q(cr) (2.4)
holds V d;,d, € X and 0 € [0, 1].

Inspired by the above results and literatures of inequality theory, we organize the paper as
follow : In section 3, we elaborate the concept and algebraic properties of exponential type
m-convex function. In section 4, we deduce new generalization of (H — H) type inequal-
ity for the exponential type m—convex function. Next, in section 5, we establish some
refinements of the H— H inequality, whose first derivative in absolute value at certain
power are exponential type m—convex. Further, in section 6, in the manner of this newly
introduced idea, we investigate some applications of special means. Finally, in section 7,
we give a briefly conclusion.

3. Algebraic properties of exponential type m—convex functions

The principal focus of this section, we will present our main definition of exponential type
m~convex function and its associated properties.

Definition 3.1. Let Q be a nonnegative function, then Q : X — IR, is said exponential type
m~convex, if

Q (61 +m (1-0)da) < (° —1)Qdr) +m (e ~1) Q) (3.1)
holds V d;,d, € X, m € [0,1], and 0 € [0, 1].

Remark 3.2. For m = 1, we attain exponential type convexity, which is explored by iscan
in [24].

Remark 3.3. The range of the exponential type m—convex functions for m € [0,1] is
[0, +00).

Proof. The proof is obvious. O

We explore some relations between the class exponential type m—convex functions and
other class of generalized convex functions.

Lemma 3.4. The following inequalities (e® —1) > 0 and (e'~°) —1) > (1 —0) hold,
ve € [0,1].

Proof. The proof is clearly seen and hence omitted. O

Proposition 3.5. If m € [0, 1], then every nonnegative m~convex function is exponential type
m~convex function.

Proof. Since m € [0, 1], and by using Lemma 3.4, we have

Q (6d1 +m (1 — 9) dz) < 0Q (dl) +m(1—-0)Q (d2)

< (e —1)Q(a) +m (179 ~1) Q(a).
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Theorem 3.6. Let Q, ¢ : [d1,dz] — R. If Q and P are exponential type m—convex functions
for m € [0,1], then

1. Q+ P is exponential type m—convex function;
2. For nonnegative real number c, cQ is exponential type m—convex function.

Proof. The proof is obvious and hence omitted. O

Theorem 3.7. Let Q : [0,d2] — ] be m—convex function for d; > 0 and m € [0,1] and
Q : X — R is non-decreasing and exponential type m—convex function. Then for the same
fixed numbers m € (0, 1], the function P o Q : [0,d2] — R is exponential type m—convex.

Proof. Vdq,d; € [0,dp], m € [0,1], and 6 € [0, 1], we have
($poQ)(0d; +m(1—-0)dz2) =P(Q(6d; +m(1—-0)dz)) < $(0Q(d1) +m(1—0)Q(d2))

< (e =1) (PoQ) () +m (e~ 1) (PoQ) (a).
]

Theorem 3.8. Let Q; : [d1,d2] — R be a class of exponential type m—convex functions for
m € [0,1] and let Q(d) = sup; Qi(d). If E ={d € [d1,do] : Q(d) < +o0} # 0, then E is an
interval and Q is exponential type m—convex function on E.

Proof. Forall d;,d, € E, m € [0,1], and 6 € [0, 1], we have
Q(0d; +m(1—-Q)dy) =supQ; (6d; + m(1—0)dy)

< sup [(ee ~1) Qi () +m (e 1) o (dz)]

1

< (ee —1)supQ; (d1) +m (e“_e) — 1) sup Q; (d2)

=(e?—-1)Q(d) +m (e“*e) — 1) Q(dy) < +o0.
O

Theorem 3.9. If the function Q : [d1,d2] — R is exponential type m—convex for m € [0,1],
then Q is bounded on [d;, mdy].

Proof. Suppose x € [dy,dy] be a point and m € [0,1] and L = max {Q(dl),mQ (ds) } and

Then 3 6 € [0,1] such that x = 8d; + m(1 — 6)dy. Thus, since e® < e and e1=9) < e, we
have

Q(x) = Q(0d: +m(1—0)d;) < (e° ~1)Q(cy) +m (7% ~1) Q ()

<(e—1L+m(e—1)L=L(m+1)(e—1)=M.
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4. New generalization of (H — H) type inequality using exponential type m—convex
function

The subject of this section is to deduce new generalizations of (H — H) type integral in-
equality involving exponential type m—convex function.

Theorem 4.1. Let Q : [d;, mdy] — R be exponential type m—convex function for m € (0, 1]
and d; < md,. IfQ S Ll([dl, mdz]), then

1 d; +mdp 1 md dp
(\/E—1)0< : > < (mdzdl){L] Q(X)dx—i—le Q(x)dx}

m

<(e—2) [Q(dﬂ +Q(dy)+m <Q (:é) +Q(d2)> ] 4.1)

Proof. Let denote
d
a1 =0d; +m(1—0)dy, ap=(1— e)al 1+0d,, VOe[0,1],

respectively.
Using the definition of exponential type m—convexity of Q, we have

d; +mdp _ a; +map
o) o (")

B ([6d1 +m(1—0)dy] + [(1—6)d; + m@dz])
=Q >

< (Ve—1) [Q(0d; +m(1 - 0)dz) +Q((1~ 0)ds +mOdy) .

Now, integrating on both sides in the last inequality with respect to 6 over [0, 1], we get

o) < (ve-y

1 1 d
x “ Q(Gdl—l—m(l—e)dz)de—l—J Q ((1—9)1+9d2) dG]
0 m

0
— (\/é_l){ dez Q(x)dx + dez Q(x)dx},

(mdz - dl ) dq a

m

This completes the left side inequality. For the right side inequality, using exponential type
m~convexity of Q, we obtain

! { dez Q(x)dx + mr2 Q(x)dx}

(mdy —dq) | Jg, 4

m

1

1
_ J Q(6d; +m(1 —0)d,)do +J

Q ((1 )%, 9d2> do
0 0 m
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1
< J [(ee ~1)Q(a) +m (e 1) Q(dz)] do

1
|,
0

—(e—2) [Q(dﬂ +Q(dy) +m <Q (dlz> +Q(d2)> ]
m

(°~1) Q) +m (170 ~1) Q <:11 > ] de

The proof is completed. O]
Corollary 4.2. If m = 1 in Theorem 4.1, we get (Theorem 3.1, [24]).

5. Refinements of (H — H) type inequality via exponential type m-convex function

Let us establish some refinements of the (H — H) inequality for functions whose first
derivative in absolute value at certain power is exponential type m—convex. First we
need some new useful lemmas.

Lemma 5.1. Let 0 < k < 1 and a mapping Q : [d1, ] — R is differentiable on (d;, ) with
0<di<dp. IfQ €1, [dl, d—kz] and m € [0, 1], then

Q) +Q(53) Kk s
2 md, — kd; 4

Q(0)do = (mdz—]@d1>

K (5.1)

« Jl (1-20)Q’ <6d1 +m(1—0) dz) do.
. K

Proof. Using the integrating by parts, we have

md; — kdg \ (! , 4y
<2k >L (1-20)Q <9d1—|—m(1—9) k)dS

_ (de_kd1> {(1—29)Q(ed1 —i;:in(l—e) %) 1_J1 Q(Gd]‘f-mgd—e) %) (—2) de}
dl kZ 0 0 dl_Tz

md2 — kdl nidz ) 2k Jl do
0d 1—-0)—=)de

mdy
_ md2_kdl>{ Qdy) +Q ) % J1Q<9d1—|—m(1—9)12)d9}

mdy — kd1 mdy; —kd; Jg

mdy

Q(d) +Q (& w0

d) de.
2 mdz—kd1 Jdl Qfd)

This completes the proof. O
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Remark 5.2. If m =1 in Lemma 5.1, we have

d

Q) +Q(%)  k * dp — kdy
2 Cdy—kd; Ll Q0)ae = ( 2k ) -2
X J (1-20)Q’ <9d1 +(1-0) k> do.
0
Remark 5.3. If k =1 in Lemma 5.1, we have
Q(d1) +Q(mdy) 1 dez mdy — d;
> B Ja, Q(e)de = 5 (5.3)

1
XJ (1-20)Q’ (0d; +m (1 —0)dy) do.
0

Remark 5.4. If m =k =1 in Lemma 5.1, then we have a Lemma 2.1 in [25].

Lemma 5.5. Let 0 < k < 1 and Q : [kdj, dp] — R is differentiable on (kdi,dy) with
0 <dy <dp. IfQ € Lg[kdy, ap] and m € [0, 1], then

Q (mkd) + Q(d2) 1 sz _[(dp—mkdy
2 dy — kd; Q(0)d6 = 2

(5.4)

mkd1

1
X J (26 —1)Q’ (6dy + mk (1 —6)d;) de.
0

Proof. Using the integrating by parts, we have

1
(dz—mkdl” (20 -1)Q' (042 +mk (1-0) 1)
2 0

_ [d2— mkd;
N 2

(20 —1)Q(8dy +mk (1 —0)d1)|* 1 Q(8dy +mk(1—0)dy)

x — (2) do
dr — mkd; 0 0 d> — mkd;

_ (da—mkd; | Q(d2) +Q(mkd;) 2 Jl
_( ! >{ P i, |, Q042+ mic(1-0)d1) a0

dp — mkd; (d2) + Q (mkdy) 2 Jl

( >{ rpprey o R OQ(ed2+mk(1 0)d;) do
do
_ mkd1)—|-Q 2) 1 J’ Q(0) do,
 dp — mkdy mkd;

which completes the proof. O]
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Remark 5.6. If m =1 in Lemma 5.5, we have

Q(kd;) +Q(dp) 1 sz (2 —kdy
5 FR— kde(e)dS— 5 (5.5)
1
xJ (20 —1)Q (8ds +k (1— ) dy) 6.
0
Remark 5.7. If k = 1 in Lemma 5.5, we have
Q(md;) +Q(dp) 1 sz [ —md
> G2—d Joma Q(0)do = — (5.6)

1
XJ (20 —1)Q’ (0dy + m (1 —0)dy) de.
0

Remark 5.8. If m =k =1 in Lemma 5.5, then we have a Lemma 2.1 in [25].

Theorem 5.9. Let Q : X — R is differentiable on X with 0 < d; < d2 and 0<k<1l
If |Q'| is exponential type m—convex function on X for q > 1 and + —|— = =1, then for

m € [0, 1], the following inequality holds:
1
mdy — kdy 1 P
< .
h ( 2k ) <P + 1) &7

mdy

Q(a1) +Q(52) k K
' 2 C mdy — kdy L] Q(6)dd

‘ { (e—2) (\Q' ()] +m e (‘jj) q) }

Proof. From Lemma 5.1, Holder’s inequality and exponential type m—convexity of |Q|9,
we have

mdy

Lk Q(6) de

{

2  mdy — kdy

(md2 kdl) (E1—29|P de>1
(md2 kdl) <E1—2e|p d6>p
{

[e —1) Q' (a1)] +m( “*9)—1)

‘Q(d1)+0(“}f2) K

T

Q <9d1+m(1—9)12)

N

[ A2 ! %
Q <k> ]de}

mdy — kd; 1 % ,
:< 2k ><p+1> {(e_z) <‘Q (@[ +m

This completes the proof. O
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Remark 5.10. If m =1 in Theorem 5.9, we have

d

Lk Q(6) de

|Q(d1)+Q(‘§3) k

1
dr — kd; 1 3

— < 5.8

2 dy — kdy ( 2k ><p—|—l> (>.8)

1
TEATRN S
*(2));-
Remark 5.11. If k = 1 in Theorem 5.9, we have

Q(d1) +Q(may) 1 mdy md, — dy 1 %
‘ 2 T md—d Ll Q(e)de' << 3 ><p+1> (5.9)

X { (e —2) (‘Q' (d1)|q +

1
q

X { (e—2) (|Q' (a)|*+m|Q' (d2)|?) } .
Remark 5.12. If m = k = 1 in Theorem 5.9, we have

Q(dy) +Q(do) 1 (@ dy —dy 1 \»
' 2 &g LlQ(e)de‘<< 2 )(pﬂ) (510

X { (e—2) (|Q (a)]? + Q' (d2)|?) } .

Theorem 5.13. Let Q : X — R is differentiable on X with 0 < d; < dp.and 0 < k < 1. If
|Q’'| is exponential type m—convex function on X for q > 1, and m € [0,1],, we have

1
mdy —kd;\ /1\' 7@
_ < |l —— ) (= 5.11
2 md; — kd; ( 2k )(2) (511)

() (mrenlo (2)]))

Proof. From Lemma 5.1, power mean inequality and exponential type m—convexity of

mdy

Lk Q(6) de

|Q(d1)+Q(m€2) k
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IQ’|9, we have
may

Lk Q(0) de

Q <6d1—|—m(1—6) d;)‘de}

1

! Tarp FRNCERE
J I1—20| do {J I1—20| |Q <9d1+m(1—6)2> de}
0 0 k
) ~
J 11— 20) dG)
0
a 3

TTLdz kdl {

1
q

o ()

1—1
de — kd1 1 q
2

N TR

This completes the proof. O
d—kdy\ /1\' @
< K > (5.12)
8
A () (e

1
dp q g
()1
Remark 5.15. If k =1 in Theorem 5.13, we get

Q(d;) +Q(mdy) 1 md, mds — dy 1 1-1
‘ 2 T mdy—d; Ll Q(G)de‘ < <2> <2> (5.13)

Remark 5.14. If m =1 in Theorem 5.13, we get

d

Lk Q(6) do

Q(d))+Q(P) Kk
2 dr — kd;

1

S (EFET) (@ miaan |

Remark 5.16. If m = k =1 in Theorem 5.13, we get

Q(d) +Q(d) 1 = d —dy 1 -3
‘ 2 T & —d Ll Q(e)‘w’ << 5 ) <2> (5.14)

X{<8f2 >(|0’ !‘*HQ/(dz)\q)}é.
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Theorem 5.17. Let Q : X — R is differentiable on X with 0 < d; < dp. and 0<k<l
If |Q/|9 is exponential type m—convex function on X for q¢ > 1 and * + = 1, then for
m € [0, 1], we have:

1
Q (mkd;) + Q (dy) 1 d2 dy — mkd; 1 \7
] ! S — Jmkdlo(e)de' g( : )(pH) (5.15)

X { (e—2) (m|Q’ (kdp)|* +|Q (a2)]?) } :

Proof. From Lemma 5.5, Holder’s inequality and exponential type m—convexity of |Q|%,
we have

Q (kdl) Q(dz) 1 sz

dz — kd;

Q(9) d6’

kd;

al=

1
P 1
da — kdy ( 20 — 1P de> {J !O’(ed2+mk(1—9)d1)\qd9}
0

1
dp — mkd1> < |29 _ 1|P d@) '
2

E (® = 1) [ (a2)]" +m (9 1) | kdl}}de}

(55
<
6

X { (e —2) (m’Q/ (kdl)‘q + ‘Q’ (d2)|q) } i

This completes the proof. O

N

Q=

Remark 5.18. If m =1 in Theorem 5.17, we obtain

1

Q (kd;) +Q(d2) 1 sz <d2—kd1>< 1 )v

— 9)de| < 5.16

' 2 dp — kdy kde( ) 2 p+1 (5.16)
1
q
x{(e—Z) (‘Q’(kdl)‘q—i—‘Q’(dz)‘q)} .

Remark 5.19. If k = 1 in Theorem 5.17, we obtain
1
‘Q(mdl)-i-Q(dz)_ 1 sz Q(e)de' - <d2—md1> ( 1 >v 5.17)
2 d2 —mdi Jmg, = 2 p+1 )

1
q

X {(6—2) (m|Q (d@)|? +1]Q’ (a2)|?) } :
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Remark 5.20. If m = k = 1 in Theorem 5.17, we obtain

Qd)+Q(d) 1 (% dh—d\ [ 1 \7
‘ 2 S —d LlQ(e)de‘<< 2 ><p+1> &1

1

X { (e—2) (|Q' (a)|*+ Q' (d2)|?) } :

Theorem 5.21. Let Q : X — R is differentiable on X with 0 < d; < dp.and 0 < k < 1. If
|Q’'| is exponential type m—convex function on X for q > 1, and m € [0, 1], then we have:

Q(mkd;) +Q (dy) 1 % d—kdy\ 1\ 4
‘ 2  dp —mkd, Jmkde(G)de S ( 2 ) <2> (:19)
BT (i a4 @Y |

Proof. From Lemma 5.5, power mean inequality and exponential type m-convexity of
|Q’|9, we have

'O(kd1) +Q(dy) B 1 sz

o Q(S)de'

kd;

1
dz—mkdl> {J 20 — 1| |Q’(9d2+mk(1—9)d1)‘de}
0

1—1
d> — mkd; 1 a
( 5 ) (L 26 — 1| d9>
1 a
{J 26 —1| |Q" (6dy + mk (1—6 dl)\qde}
0

1—1
dy — mkd; 1 ‘
5 > (Jo 20 — 1] d9>
J1|2e 1|{ ((1 0) )}Q’ (kd1)|? + (e —1) |Q’(dz)!q}d9]
0
_ dp — mkd, 1 17%
- ( ) <2)

x { <8fe_22e_7) (m [Q (k) [* + @ (d2)]) } .

This completes the proof. O

al=

|
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Remark 5.22. If m =1 in Theorem 5.21, we have

1
Q(kd;) +Q(dp) 1 sz dy—kd\ /1\' @
— < [ = - .
‘ 5 & a, kde(e)de < 5 5 (5.20)
1
8ye—2e—7 a
X {Q(\Q’ (kdl)yqﬂo'(dz)\q)} :
Remark 5.23. If k = 1 in Theorem 5.21, we have
1
Q(md;) +Q(dy) 1 b db—d) /1\' "«
_ <[ =) (2 .
‘ 5 Eap— delo(e)de < 5 5 (5.21)
1
8y/e—2e—7 g
x{*[z(m\o’(dl)\qHQ’(dz)\q)} :

Remark 5.24. If m = k = 1 in Theorem 5.21, we have

Q(d) +Q(d) 1 = d —dy 1 -3
‘ > T 4H—q Ll Q(@d@’ < ( > ) <2> (5.22)

S ST

6. Applications

In this section, we recall the following special means of two positive numbers d;, d;
with d; < dy:
(1) The arithmetic mean

d; +dy
2 V4

A=A(d,d) = di,d2 > 0.

(2) The geometric mean

G = G(dy,dp) = v/didp, dj,dp > 0.

(3) The harmonic mean

2414
H=H(dj,dp) = ——, dj,dp>0.
dy +dp
(4) The logarithmic mean
=l 4 £d
L=1L(dy,dp) = Ind;—Ind; 17 4 dq,dp > 0.
di, d; = dp;

The following relationship are well-known in the literature.

H(d1,d2) < G(dg,d2) < A(dg, d2).



Tariq, Ahmad, Sahoo, Nasir, Awan / Some Hermite-Hadamard Type Integral ... 75

Proposition 6.1. Let d1,d; € [0, 00) with d; < dp and r € (—o0,0) J[1, 00) \ {—1}. Then the
inequalities
AT(dy,dp)

holds.

Proof. If we put Q(x) =x", x € [0,00) and m = 1 in the above theorem 4.1, then we can
easily obtained the inequality 6.1. O

Proposition 6.2. Let di,d; € (0, 00) with d; < dp. Then the inequalities

AT(dy,d2) _ oyt
m <L (dlrdZ) < 2(6 2)H (dlr dZ)/ (6.2)

holds.

Proof. If we put Q(x) = x~!, x € (0,00) and m = 1 in the above theorem 4.1, then we
can easily obtained the inequality 6.2. O

7. Conclusion

In this paper, authors presented new assessment of (H—H) type inequalities for a
new type of convexity, called exponential type m—convex function. We have achieved
refinements of the (H — H) inequality for functions whose first derivative in absolute value
at certain power are exponential type m—convex. As of late, numerous mathematicians
put exertion into the hypothesis of inequality to express new dimension to mathematical
analysis. Because of widespread perspectives and significance, this hypothesis has become
an alluring and engrossing field for researchers. We trust that our novel thoughts and
strategies may propel numerous scientists in this intriguing field.
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