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Abstract

The aim of this paper is to study the F-contraction mapping introduced by Wardowski to obtain fixed
point results by method of Samet in generalized complete metric spaces. Our findings extend the results
announced by Samet methods and some other works in generalized metric spaces.
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1. introduction

Dhage [11], presented the extended metric or D-metric spaces and obtained some re-
sults about it. Many researchers have taken these results for granted and applied them in
studying fixed point results in D-metric spaces. Rhoades [21], extended Dhages contrac-
tive condition by increasing a number of factors and studied the existence and uniqueness
of fixed point of some mappings in D-metric space. Wardowski introduced the concepts
of F-contraction and F-weak contraction to generalize the Banach’s contraction in many
ways (see [28],[29]). Sedghi et al. [26] have introduced the concept of S-metric space
and investigated that this is a generalization of a G-metric space and a D

∗ -metric space.
Also, they have studied properties of S-metric spaces and some fixed point results for a
self-map on an S-metric space. In the following, some authors extended this work (see
[2, 20, 24, 25]). Samet et al. [23, 22] proved that α−φ contractions unify large classes
of contractive type operators, whose fixed points can be obtained by means of the Picard
iteration. Afterward, these results expanded by many mathematicians (see, for example
[1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 17]).
Here, we investigate the result of Wardowski and Samet in generalized applying the result
obtained by E. Karapinar in [16] we prove new fixed point theorems in generalized metric
spaces which have many applications in solving integral equations ([14, 15, 27]).
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2. Preliminaries

Let M be a nonempty set. A generalized D-metric on M is a function,
D : M3 → R

+ that satisfies the following
(D1) D(ζ,η, ζ) > 0,
(D2) D(ζ,η, ζ) = 0 if and only if ζ = η = ζ,

(D3) D(ζ,η, ζ) = D(p{ζ,η, ζ}), (symmetric) where p is a permutation function,
(D4) D(ζ,η, ζ) 6 D(ζ,a,a) + D(a,η, ζ),

where ζ,η, ζ,a ∈ M. D is called a generalized D-metric and the pair (M, D) is called a
generalized D-metric space.
Let

dD(ζ,η) = D(ζ,η,η) + D(η, ζ, ζ), ∀ζ,η ∈ M. (2.1)

Obviously that dD is a metric.

Remark 2.1. In a D-metric space, we have:
(i) D(ζ, ζ,η) 6 D(ζ, ζ, ζ) + D(ζ,η,η) = D(ζ,η,η),

(ii) D(η,η, ζ) 6 D(η,η,η) + D(η, ζ, ζ) = D(η, ζ, ζ),

(iii) D(ζ, ζ,η) = D(ζ,η,η).

Definition 2.2. [19] Let {ζn} be a sequence of (M, D). {ζn} is D-convergent to ζ ∈ M if

lim
n,m→+∞

D(ζ, ζn, ζm) = 0.

that is, for ε > 0, there exists N ∈ N with D(ζ, ζn, ζm) < ε, for n,m > N.

Proposition 2.3. [19] Let (M, D) be a D-metric space. The following are equivalent

(i) {ζn} is D-convergent to M,

(ii) D(ζn, ζn, ζ) → 0 as n→ ∞,

(iii) D(ζn, ζ, ζ) → 0 as n→ ∞,

(vi) D(ζn, ζm, ζ) → 0 as n,m→ ∞.

Definition 2.4. [19] Let (M, D) be a D-metric space. {ζn} is called a D-Cauchy if for
any ε > 0, there exists N ∈ N with D(ζn, ζm, ζl) < ε for all m,n, l > N, that is,
D(ζn, ζm, ζl) → 0 as n,m, l→ ∞.

Definition 2.5. [28] Let F : R
+ → R satisfying,

(F1) F is strictly increasing, i.e. for α,β ∈ R+ with α < β, F(α) < F(β);
(F2) for {αn}n∈N of positive real numbers limn→∞ αn = 0 if and only if limn→∞ F(αn) =

−∞;
(F3) ∃ k ∈ (0, 1) with limα→0+ α

kF(α) = 0.

We say that T : M → M is F-contraction if there exists τ > 0 such that

∀ ζ,η ∈ M, d(Tζ, Tη) > 0 ⇒ τ+ F(d(Tζ, Tη)) 6 F(d(ζ,η)).
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Example 2.6. Let fi : R+ → R (i = 1, 2, 3, 4, 5, 6), defined by
e1) f1(t) = − 1√

α
,α > 0,

e2) f2(t) = ln(α),α > 0,
e3) f3(t) = α+ ln(α),α > 0,
e4) f4(t) = ln(α2 +α),α > 0,
e5) f5(t) = F(α) = tan(α+ π

2
),

e6) f6(t) = F(α) = − 1
α2 , α > 0. Then f1, f2, f3, f4, f5 and f6 satisfy (F1)-(F3) and so are

F-contractions.

Definition 2.7. Suppose T : M → M and α : M×M×M → R+. T is α-admissible if
ζ,η, ζ ∈ M, α(ζ,η, ζ) > 1 =⇒ α(Tζ, Tη, Tζ) > 1.

Denote with Φ the family of nondecreasing functions φ : [0,+∞) → [0,+∞) continu-
ous in t = 0 such that
(i) φ(t) = 0 if and only if t = 0,
(ii) φ(t+ s) 6 φ(t) +φ(s),

and
∑+∞

n=1φ
n(t) < +∞ for t > 0, where φn is the n-th iterate of φ.

Lemma 2.8. For φ : R+ → R+ the following holds:

if φ is nondecreasing then for t > 0, limn→+∞φ
n(t) = 0 implies φ(t) < t.

Theorem 2.9. Let {Aj}
m
j=1 be a family of nonempty D-closed subsets of complete space

(M, D). Let η = ∪m
j=1Aj and T : Y → Y be a α−admissible satisfying

T(Aj) ⊆ Aj+1, j = 1, ...,m, where Am+1 = A1.

If there exist α : Y × Y × Y → R+ and φ ∈ Φ such that

α(ζ,η, Tz)D(Tζ, Tη, Tζ) 6 φ(D(ζ,η, ζ)), (2.2)

holds for all ζ ∈ Aj and η, ζ ∈ Aj+1, j = 1, ...,m, and there exist ζ0 ∈ Y such that

α(ζ0, Tζ0, T 2ζ0) > 1, then T has a unique fixed point in ∩m
j=1Aj.

Proof. Let ζ0 ∈ Y with α(ζ0, Tζ0, T 2ζ0) > 1. Suppose ζ0 ∈ A1. Define the sequence {ζn} in
Y as follows

ζn = Tζn−1 for all n ∈ N.

Since T is cyclic, ζ0 ∈ A1, ζ1 = T(ζ0) ∈ A2, ... and so, if ζn0+1 = ζn0
for some n0 ∈ N,

clearly, the fixed point of T is ζn0
. Let ζn 6= ζn+1 for n ∈ N. Since T is α−admissible, we

have

α(ζ0, ζ1, ζ2) = α(ζ0, Tζ0, T 2ζ0) > 1 ⇒ α(Tζ0, Tζ1, Tζ2) = α(ζ1, ζ2, ζ3) > 1.

By induction, we get

α(ζn−1, ζn, ζn+1) > 1, for all n ∈ N. (2.3)

Applying (2.9) with ζ = ζn−1 and η = ζ = ζn, and utilizing (2.10), we deduce

0 6 D(ζn, ζn+1, ζn+1) = D(Tζn−1, Tζn, Tζn)

6 α(ζn−1, ζn, Tζn)D(Tζn−1, Tζn, Tζn) 6 φ(D(ζn−1, ζn, ζn)).
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Therefore,

D(ζn, ζn+1, ζn+1) 6 φ
n(D(ζ0, ζ1, ζ1)), for all n ∈ N. (2.4)

Fix ε > 0 and let n(ε) ∈ N such that
∑

n>n(ε)φ
n(D(ζ0, ζ1, ζ1)) < ε.

By (D3) and (D4), we have

D(ζ,η,η) = D(η,η, ζ) 6 D(η, ζ, ζ) + D(ζ,η, ζ) = 2D(η, ζ, ζ). (2.5)

The inequality (2.5 ) with ζ = ζn and η = ζn−1 becomes

D(ζn, ζn−1, ζn−1) 6 2D(ζn−1, ζn, ζn). (2.6)

Letting n→ ∞ in (2.6 ), we get

lim
n→∞

D(ζn, ζn−1, ζn−1) = 0,

we show {ζn} is Cauchy (M,dD). Let n, l ∈ N with n > l > n(ε) we obtain

dD(ζn, ζl) 6 dD(ζn, ζn−1) + dD(ζn−1, ζn−2) + ... + dD(ζl+1, ζl)

= D(ζn, ζn−1, ζn−1) + D(ζn−1, ζn, ζn)

+D(ζn−1, ζn−2, ζn−2) + D(ζn−2, ζn−1, ζn−1) + ...

+D(ζl+1, ζl, ζl) + D(ζl, ζl+1, ζl+1)

=

n∑

i=l+1

[D(ζi, ζi−1, ζi−1) + D(ζi−1, ζi, ζi)], (2.7)

By using of (2.12) and (2.6 ) we obtain

0 6 dD(ζn, ζl) 6

n∑

i=l+1

[2D(ζi−1, ζi, ζi) + D(ζi−1, ζi, ζi)]

6

n∑

i=l+1

3φi−1(D(ζ0, ζ1, ζ1))

6
∑

l>n(ε)

3φl(D(ζ0, ζ1, ζ1)) < ε.

Thus {ζn} is Cauchy in (M,dD). (M, D) is D-complete, hence (M,dD) is complete and
then, {ζn} converges to u ∈ M. Furthermore, {ζn} is D-Cauchy in (M, D). Now we
show that u ∈ ∩m

j=1Aj. If ζ0 ∈ A1, then, {ζm(n−1)}
∞
n=1 ∈ A1, {ζm(n−1)+1}

∞
n=1 ∈ A2, by

continuing, {ζmn−1}
∞
n=1 ∈ Am. All the m subsequences are D-convergent so converge

to the same limit u. Moreover, the sets Aj are D-closed, thus the limit u ∈ ∩m
j=1Aj. In

fact u ∈ M is a fixed point of T , considering (2.9 ) and setting ζ = ζn, η = ζ = Tu with
assuming that u 6= Tu or dD(u, Tu) > 0, we get,

0 6 dD(ζn, Tu) = D(ζn, Tu, Tu) + D(Tu, ζn, ζn)

= D(Tζn−1, Tu, Tu) + D(Tu, Tζn−1, Tζn−1)

6 D(Tζn−1, Tu, Tu) + 2D(Tζn−1, Tu, Tu)

6 3α(ζn−1,u,u)D(Tζn−1, Tu, Tu)

6 3φ(D(ζn−1,u,u)). (2.8)
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Tending n → ∞, we end up with 0 6 dD(u, Tu) 6 0 which contradicts the assumption
dD(u, Tu) > 0, hence u = Tu and then u ∈ M is a fixed point of T . To prove the
uniqueness, suppose v ∈ M is another fixed point of T such that v 6= u. Both u and v lie in
∩m
j=1Aj, thus we can substitute ζ = u and η = ζ = v in (2.9). So

D(Tu, Tv, Tv) 6 α(u, v, v)D(Tu, Tv, Tv) 6 φ(D(u, v, v)).

From lemma 2.8 and v = Tv we have

D(u, v, v) 6 α(u, v, v)D(Tu, Tv, Tv) < D(u, v, v),

which is contradiction, Thus u = v, and the fixed point of T is unique.

Theorem 2.10. Let (M, D) be a D−complete D-metric space and {Aj}
m
j=1 be a family of

nonempty D-closed subsets of M. Let η = ∪m
j=1Aj and T : Y → Y be a α−admissible

satisfying

T(Aj) ⊆ Aj+1, j = 1, ...,m, where Am+1 = A1.

If there exist two functions α : Y × Y × Y → R+ and φ ∈ Φ such that

∀ ζ,η ∈ M, (D(Tζ, Tη, Tζ) > 0 ⇒ τ+α(ζ,η, Tζ)F(D(Tζ, Tη, Tζ)) (2.9)

6 F(φ(D(ζ,η, ζ)))).

holds for all ζ ∈ Aj and η, ζ ∈ Aj+1, j = 1, ...,m, and there exists ζ0 ∈ Y such that

α(ζ0, Tζ0, T 2ζ0) > 1, then T has a unique fixed point in ∩m
j=1Aj.

Proof. Suppose ζ0 ∈ Y with α(ζ0, Tζ0, T 2ζ0) > 1, assume that ζ0 ∈ A1. Define

ζn = Tζn−1 for all n ∈ N.

Since T is cyclic, ζ0 ∈ A1, ζ1 = T(ζ0) ∈ A2, ... and so on. If ζn0+1 = ζn0
for some n0 ∈ N,

then, the fixed point of T is ζn0
. If ζn 6= ζn+1 for all n ∈ N, since T is α−admissible, we

have

α(ζ0, ζ1, ζ2) = α(ζ0, Tζ0, T 2ζ0) > 1 ⇒ α(Tζ0, Tζ1, Tζ2) = α(ζ1, ζ2, ζ3) > 1.

By induction, we get

α(ζn−1, ζn, ζn+1) > 1, for all n ∈ N. (2.10)

Applying the inequality (2.9) with ζ = ζn−1 and η = ζ = ζn, and using (2.10), we obtain

0 6 F(D(ζn, ζn+1, ζn+1)) = F(D(Tζn−1, Tζn, Tζn)) (2.11)

6 α(ζn−1, ζn, Tζn)F(D(Tζn−1, Tζn, Tζn))

6 F(φ(D(ζn−1, ζn, ζn))) − τ

< F((D(ζn−1, ζn, ζn))) − τ.

So,

F(D(ζn, ζn+1, ζn+1)) 6 F(D(ζ0, ζ1, ζ1)) −nτ, for all n ∈ N. (2.12)
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tending n→ ∞ we have

lim
n→∞

F(D(ζn, ζn+1, ζn+1)) = −∞.

Thus,

lim
n→∞

D(ζn, ζn+1, ζn+1) = 0.

Hence
lim
n→∞

D(ζn, ζn−1, ζn−1) = 0.

Also if put γn = D(ζn−1, ζn, ζn), then by using (2.11) we obtain,

(γn)
kF(γn) 6 (γn)

kF(γ0) − (γn)
knτ. (2.13)

Thus

(γn)
kF(γn) − (γn)

kF(γ0) 6 (γn)
k(F(γ0) −nγ) − (γn)

kF(γ0) = −(γn)
knτ 6 0

By attention to, limn→∞ γ
k
nF(γn) = 0 and by limn→∞ γn = 0 and Letting n → ∞ in

(2.13), we get

lim
n→∞

(γn)
kn = 0. (2.14)

From (2.14) there exists n1 ∈ N with (γn)
kn 6 1 for all n > n1, hen we have

γn 6
1

n
1
k

, ∀n > n1.

We show {ζn} is cauchy (M,dD) where dD is given in (2.1). Let n, l ∈ N with n > l > n1

we obtain

dD(ζn, ζl) 6 dD(ζn, ζn−1) + dD(ζn−1, ζn−2) + ... + dD(ζl+1, ζl)

= D(ζn, ζn−1, ζn−1) + D(ζn−1, ζn, ζn)

+D(ζn−1, ζn−2, ζn−2) + D(ζn−2, ζn−1, ζn−1) + ...

+D(ζl+1, ζl, ζl) + D(ζl, ζl+1, ζl+1)

=

n∑

i=l+1

[D(ζi, ζi−1, ζi−1) + D(ζi−1, ζi, ζi)]. (2.15)

Tending n, l → ∞ we obtain that {ζn} is Cauchy in the (ζ,dD). (M, D) is D-complete,
hence, {ζn} converges u ∈ M. Furthermore, {ζn} is D-Cauchy in (M, D). Now u ∈ ∩m

j=1Aj.
if ζ0 ∈ A1, then {ζm(n−1)}

∞
n=1 ∈ A1, {ζm(n−1)+1}

∞
n=1 ∈ A2, by continuing, {ζmn−1}

∞
n=1 ∈

Am. All the m subsequences are D-convergent and hence, they all converge to the same
limit u. In addition, the sets Aj are D-closed, thus the limit u ∈ ∩m

j=1Aj. u ∈ M is a
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fixed point of T , because by (2.1 ) and (2.9 ) with ζ = ζn, η = ζ = Tu if u 6= Tu or
dD(u, Tu) > 0, then,

0 6 dD(ζn, Tu) = D(ζn, Tu, Tu) + D(Tu, ζn, ζn)

= D(Tζn−1, Tu, Tu) + D(Tu, Tζn−1, Tζn−1)

6 D(Tζn−1, Tu, Tu) + 2D(Tζn−1, Tu, Tu)

= 3D(Tζn−1, Tu, Tu)

= 3(D(ζn,u,u)). (2.16)

Tending n → ∞, 0 6 dD(u, Tu) 6 0 which contradicts the assumption dD(u, Tu) > 0,
hence u = Tu, so u ∈ M is a fixed point of T . Suppose v ∈ M is another fixed point of T
such that v 6= u. Both u and v lie in ∩m

j=1Dj, thus we can substitute ζ = u and η = ζ = v

in (2.9). This yields

F(D(Tu, Tv, Tv)) + τ 6 α(u, v, v)F(D(Tu, Tv, Tv)) + τ 6 F(φ(D(u, v, v))),

therefore
F(D(Tu, Tv, Tv)) 6 F(φ(D(u, v, v))).

F is strictly increasing, by 2.8 we obtain

D(Tu, Tv, Tv) 6 φ(D(u, v, v)) < D(u, v, v),

this is a contradiction, thus u = v, and the fixed point of T is unique.

3. Conclusion

In the current study, we used the F-contraction mapping introduced by Wardowski
to obtain fixed point results by method of Samet in generalized complete metric spaces.
Over the last decade authors proved some fixed point results for F-contraction mappings in
metric spaces. We showed that this results hold in D-metric spaces under some conditions.
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