

Journal of Mathematical Analysis and Modeling jmam.sabapub.com ISSN 2709-5924

On fuzzy Henstock-Kurzweil-Stieltjes-Diamond-double integral on time scales

David Adebisi Afariogun^{a,*} ,Adesanmi Alao Mogbademu^b, Hallowed Oluwadara Olaoluwa ^c

^a Department of Mathematical Sciences, Ajayi Crowther University, Oyo, Nigeria ^{b,c} Department of Mathematics, University of Lagos, Lagos, Nigeria

Received: 13 June 2021
 Accepted: 29 June 2021
 Published Online: 30 June 2021

Abstract

We introduce and study some properties of fuzzy Henstock-Kurzweil-Stietljes- \diamond -double integral on time scales. Also, we state and prove the uniform convergence theorem, monotone convergence theorem and dominated convergence theorem for the fuzzy Henstock-Kurzweil-Stieltjes- \diamond -double integrable functions on time scales.

Keywords: Fuzzy, Convergence theorems, Double integral, Henstock-Kurzweil integral, Time scales.

1. Introduction

In modern day analysis, Henstock [1] and Kurzweil [2] independently introduced the concepts of Henstock and Kurzweil integration. This later developed into Henstock-Kurzweil integration which is the generalization of the two integrals for real-valued functions. The generalization of this concept in the fuzzy setting is a rare case. Wu and Gong [3] introduced Henstock integral of fuzzy-number-valued functions, fuzzy sets and systems and presented some of its basic properties. Gong and Shao [4] gave the controlled convergence theorems for the strong Henstock integrals of fuzzy-number-valued functions, fuzzy sets and systems. For other interesting results involving fuzzy Henstock-Kurzweil integral, see e.g., the papers [3, 4, 5] and references cited therein.

In 1988, the theory of time scales was introduced by Hilger in his Ph.D. thesis [6]. The aim is to unify and generalize the concept of discrete and continuous dynamical systems. The Henstock delta integral on time scales was introduced by Allan Peterson and Bevan Thompson [7], and Henstock-Kurzweil integrals on time scales were studied by Thomson [8]. Park et al. [9] studied the convergence results for the Henstock delta integral on time scales. It is clear that most of the properties of a time scale integral can be realized by

© 2020 SABA. All Rights Reserved.

^{*}Corresponding author: afrodavy720@gmail.com

using the techniques tailored to the time scale setting (see [6, 8, 9, 10, 11, 12, 13]) and references cited therein.

In this paper, we introduce fuzzy Henstock-Kurzweil-Stieltjes- \diamond -double integral on time scales.

2. Preliminaries

A time scale \mathbb{T} is any closed non-empty subset of \mathbb{R} , with the topology inherited from the standard topology on the real numbers \mathbb{R} .

Let $a, b \in \mathbb{T}_1, c, d \in \mathbb{T}_2$, where a < d, c < d, and a rectangle $\mathcal{R} = [a, b]_{\mathbb{T}_1} \times [c, d]_{\mathbb{T}_2} = \{(t, s) : t \in [a, b), s \in [c, d), t \in \mathbb{T}_1, s \in \mathbb{T}_2\}$. Let $g_1, g_2 : \mathbb{T}_1 \times \mathbb{T}_2 \to \mathbb{R}$ be two nondecreasing functions on $[a, b]_{\mathbb{T}_1}$ and $[c, d]_{\mathbb{T}_2}$, respectively. Let $F : \mathbb{T}_1 \times \mathbb{T}_2 \to \mathbb{R}$ be bounded on \mathcal{R} . Let P_1 and P_2 be two partitions of $[a, b]_{\mathbb{T}_1}$ and $[c, d]_{\mathbb{T}_2}$ such that $P_1 = \{t_0, t_1, ..., t_n\} \subset [a, b]_{\mathbb{T}_1}$ and $P_2 = \{s_0, s_1, ..., s_n\} \subset [c, d]_{\mathbb{T}_2}$. Let $\{\xi_1, \xi_2, ..., \xi_n\}$ denote an arbitrary selection of points from $[a, b]_{\mathbb{T}_1}$ with $\xi_i \in [t_{i-1}, t_i)_{\mathbb{T}_1}, i = 1, 2, ..., n$. Similarly, let $\{\zeta_1, \zeta_2, ..., \zeta_n\}$ denote an arbitrary selection of points from $[c, d]_{\mathbb{T}_2}$ with $\zeta_j \in [s_{j-1}, s_j)_{\mathbb{T}_2}, j = 1, 2, ..., k$.

Definition 2.1. ([5]) Let α be a real axis, a fuzzy subset of $\alpha : \mathbb{R} \to [0, 1]$ is called a fuzzy number if the following conditions occur:

(i) α is normal. That is $x_0 \in \mathbb{R}$ exists with $\alpha(x_0) = 1$;

(ii) α is fuzzy convex, i.e. $\alpha(kx_1 + (1-k)x_2) \ge \min\{\alpha(x_1), \alpha(x_2)\}$ for all $x_1, x_2 \in \mathbb{R}$ and all $k \in (0, 1)$;

(iii) α is upper semi-continuous;

(iv) $[\alpha]^0 = \overline{\{x \in \mathbb{R} : \alpha(x) > 0\}}$ is compact.

We shall denote the space of fuzzy numbers by $f_{\mathbb{R}}$ and define the λ -level set $[\alpha]^{\lambda}$ by

$$[\alpha]^{\lambda} = \{ x \in \mathbb{R} : \alpha(x) \ge \lambda \}, \lambda \in (0, 1].$$

By the conditions (i)-(iv) of Definition 2.1, denote $[\alpha]^{\lambda}$ by $[\alpha]^{\lambda} = [\alpha^{\lambda}, \overline{\alpha^{\lambda}}]$ and for $\alpha_1, \alpha_2 \in f_{\mathbb{R}}$ and $k \in \mathbb{R}$, we define

$$[\alpha_1 + \alpha_2]^{\lambda} = [\alpha_1]^{\lambda} + [\alpha_2]^{\lambda}$$
 and $[k \odot \alpha_1]^{\lambda} = k[\alpha_1]^{\lambda}$

for all $\lambda \in [0, 1]$.

Definition 2.2. ([14]) Let $(f_{\mathbb{R}}, D)$ be a complete metric space. The Hausdorff distance between α_1 and α_2 is defined by

$$D(\alpha_1, \alpha_2) = \sup_{\lambda \in [0,1]} \max\{|\underline{\alpha_1^{\lambda}} - \underline{\alpha_2^{\lambda}}|, |\overline{\alpha_1^{\lambda}} - \overline{\alpha_2^{\lambda}}|\}.$$

We now introduce Henstock-Kurzweil-Stieltjes- \diamond -double integral over versions in $\mathbb{T}_1 \times \mathbb{T}_2$. Let $\mathcal{R} = [a, b]_{\mathbb{T}_1} \times [c, d]_{\mathbb{T}_2}$ be a rectangle, and denote by $f_{\mathbb{R}}$ the space of fuzzy numbers on real line.

Definition 2.3. Let $F : [a, b]_{\mathbb{T}_1} \times [c, d]_{\mathbb{T}_2} \to f_{\mathbb{R}}$ be a bounded function on \mathcal{R} and let g_1 and g_2 be increasing functions defined on $[a, b]_{\mathbb{T}_1} \times [c, d]_{\mathbb{T}_2}$ with partitions $P_1 = \{t_0, t_1, ..., t_n\} \subset \mathbb{T}_2$

 $[a, b]_{\mathbb{T}_1}$ with tag points $\xi_i \in [t_{i-1}, t_i]_{\mathbb{T}_1}$ for i = 1, 2, ..., n and $P_2 = \{s_0, s_1, ..., s_k\} \subset [c, d]_{\mathbb{T}_2}$ with tag points $\zeta_j \in [s_{j-1}, s_j]_{\mathbb{T}_2}$ for j = 1, 2, ..., k. Then

$$S(P_1, P_2, F, g_1, g_2) = \sum_{i=1}^{n} \sum_{j=1}^{k} F(\xi_i, \zeta_j)(g_1(t_i) - g_1(t_{i-1}))(g_2(s_j) - g_2(s_{j-1}))$$

is defined as fuzzy Henstock-Kurweil-Stieltjes- \diamond -double sum of F with respect to functions g_1 and g_2 .

Let $P = P_1 \times P_2$ and $\Diamond g_{1_i} \Diamond g_{2_j} = (g_1(t_i) - g_1(t_{i-1}))(g_2(s_j) - g_2(s_{j-1}))$, then the Henstock-Kurweil-Stieltjes- \diamond -double sum of F with respect to functions g_1 and g_2 is denoted by S(P, F, g) is written as

$$S(P, F, g_1, g_2) = \sum_{i=1}^{n} \sum_{j=1}^{\kappa} F(\xi_i, \zeta_j) \Diamond g_{1_i} \Diamond g_{2_j}, \ (i = 1, ..., n; \ j = 1, ..., k).$$

3. Main Results

Definition 3.1. Let $F : [a, b)_{\mathbb{T}_1} \times [c, d)_{\mathbb{T}_2} \to f_{\mathbb{R}}$ be a fuzzy function on $\mathcal{R} = [a, b)_{\mathbb{T}_1} \times [c, d)_{\mathbb{T}_2} : t \in [a, b)_{\mathbb{T}_1}, s \in [c, d)_{\mathbb{T}_1}$. We say that F is fuzzy Henstock-Kurzweil-Stieltjes- \diamond -double integrable with respect to non-decreasing functions g_1, g_2 defined on $[a, b)_{\mathbb{T}_1} \times [c, d)_{\mathbb{T}_2}$ if there is a number \tilde{L} , a member of \mathbb{R} such that for every $\varepsilon > 0$, there is a \diamond -gauge δ (or γ) such that

$$D(S(P, F, g_1, g_2), \tilde{L}) < \varepsilon$$

provided that $P_1 = \{t_0, t_1, ..., t_n\} \subset [a, b]_{\mathbb{T}_1}$ with tag points $\xi_i \in [t_{i-1}, t_i]_{\mathbb{T}_1}$ for i = 1, ..., nand $P_2 = \{s_0, s_1, ..., s_k\} \subset [c, d]_{\mathbb{T}_2}$ with tag points $\zeta_j \in [s_{j-1}, s_j]_{\mathbb{T}_2}$, j = 1, 2, ..., k are δ -fine (or γ) partitions of $[a, b]_{\mathbb{T}_1} \times [c, d]_{\mathbb{T}_2}$.

A positive function $\delta(t,s), \gamma(t,s) : [a,b)_{\mathbb{T}_1} \times [c,d)_{\mathbb{T}_2} \to f_{\mathbb{R}}$ such that $\delta(t,s) > 0$ for all t, s in $[a,b)_{\mathbb{T}_1} \times [c,d)_{\mathbb{T}_2}$ or $(\gamma(t,s) > 0$ for all t, s in $[a,b)_{\mathbb{T}_1} \times [c,d)_{\mathbb{T}_2})$ is known as \diamond gauge on $[a,b)_{\mathbb{T}_1} \times [c,d)_{\mathbb{T}_2}$.

We say that \tilde{L} is the fuzzy Henstock-Kurzweil-Stieltjes- \diamond -double integral of F with respect to g_1 and g_2 defined on $[a, b]_{\mathbb{T}_1} \times [c, d]_{\mathbb{T}_2}$, and write

$$\iint_{\mathcal{R}} F(t,s) \diamondsuit_1 g_1(t) \diamondsuit_2 g_2(s) = \tilde{L}$$

The family of all fuzzy Henstock-Kurzweil-Stieltjes- \diamond -integrable functions on $[a,b]_{\mathbb{T}_1} \times [c,d]_{\mathbb{T}_2}$ is denoted by $\mathcal{FHKS}_{[a,b]_{\mathbb{T}_1} \times [c,d]_{\mathbb{T}_2}}$.

Lemma 3.2. ([15]) Suppose that $\alpha \in f_{\mathbb{R}}$. Then, (i) the interval $[\alpha]^{\lambda}$ is closed for $\lambda \in [0, 1]$; (ii) $[\alpha]^{\lambda_1} \supset [\alpha]^{\lambda_2}$ for $0 \leq \alpha_1 \leq \alpha_2 \leq 1$; (iii) for any sequence $\{\lambda_n\}$ satisfying $\lambda_n \leq \lambda_{n+1}$ and $\lambda_n \to \lambda \in (0, 1]$, we have

$$\bigcap_{n=1} [\alpha]^{\lambda_n} = [\alpha]^{\lambda}.$$

Now we state and provide proofs for our theorems.

Theorem 3.3. If $F : (a, b]_{\mathbb{T}_1} \times (c, d]_{\mathbb{T}_2} \to f_{\mathbb{R}}$ is fuzzy Henstock-Kurzweil-Stieltjes- \diamond -double integrable with respect to two increasing functions g_1, g_2 on $(a, b]_{\mathbb{T}_1} \times (c, d]_{\mathbb{T}_2}$, then the fuzzy Henstock-Kurzweil-Stieltjes- \diamond -double integral of F is unique.

Proof. Suppose that $\tilde{L_1}$ and $\tilde{L_2}$ are both fuzzy Henstock-Kurzweil-Stieltjes- \diamond -double integrals of F on $[a, b]_{\mathbb{T}_1} \times [c, d]_{\mathbb{T}_2}$. With the assumption that $\tilde{L_1}$ and $\tilde{L_2}$ are not unique, then F is said to be fuzzy Henstock-Kurzweil-Stieltjes- \diamond -double integrable on $(a, b]_{\mathbb{T}_1} \times (c, d]_{\mathbb{T}_2}$ if it satisfies the following point wise integrability criterion: for every $\varepsilon > 0$ there are \diamond -gauges δ_1 and δ_2 (or γ_1 and γ_2) defined on $(a, b]_{\mathbb{T}_1}$ and $(c, d]_{\mathbb{T}_2}$ respectively, such that for every $\varepsilon > 0$, there are \diamond -gauges δ_1^1 and δ_2^1 (or γ_1^1 and γ_2^1) for $[a, b]_{\mathbb{T}_1}$ and δ_1^2 (or γ_1^2 and γ_2^2) for $[c, d]_{\mathbb{T}_2}$ such that

$$D\left(S(P^1, F, g_1, g_2), \tilde{L_1}\right) < \frac{\varepsilon}{2} \text{ and } D\left(S(P^2, F, g_1, g_2), \tilde{L_2}\right) < \frac{\varepsilon}{2} \text{ for all pairs } P^1 = P_1^1 \times P_2^1 \text{ and} \\ P^2 = P_1^2 \times P_2^2 \text{ of } \delta_1 \text{-fine (or } \gamma_1)$$

and for every $\varepsilon > 0$ and $i \in \{1, 2\}$, there are \diamond -gauges δ_1^i and δ_2^i (or γ_1^i and γ_2^i) for $[a, b]_{\mathbb{T}_1}$ and $[c, d]_{\mathbb{T}_2}$ respectively such that

$$\mathsf{D}(\mathsf{S}(\mathsf{P}^{\mathsf{i}},\mathsf{F},\mathsf{g}_1,\mathsf{g}_2),\tilde{\mathsf{L}_{\mathsf{i}}}) < \frac{\varepsilon}{2}$$

provided that $P^i = P_1^i \times P_2^i$ is a pair of δ_1^i -fine (or γ_1^i) and δ_2^i -fine (or γ_2^i) partitions of $[a, b]_{\mathbb{T}_1}$ and $[c, d]_{\mathbb{T}_2}$ respectively.

Let $\delta_1 = \min\{\delta_1^1, \delta_1^2\}$ i.e. $(\delta_1)_L = \min\{(\delta_1^1)_L, (\delta_1^2)_L\}$ and $(\delta_1)_R = \min\{(\delta_1^1)_R, (\delta_1^2)_R\}$ and $\delta_2 = \min\{\delta_2^1, \delta_2^2\}$ i.e. $(\delta_2)_L = \min\{(\delta_2^1)_L, (\delta_2^2)_L\}$ and $(\delta_2)_R = \min\{(\delta_2^1)_R, (\delta_2^2)_R\}$, δ_1 and δ_2 are \diamond -gauges for $(a, b]_{T_1}$ and $(c, d]_{T_2}$ respectively, and given a pair $P = P_1 \times P_2$ of δ_1 -fine and δ_2 -fine partitions of $[a, b)_{T_1}$ and $[c, d)_{T_2}$, P_1 is a δ_1^1 -fine and δ_2^2 -fine partition of $(a, b]_{T_1}$, P_2 is a δ_2^1 -fine partition of $[c, d]_{T_2}$, hence

$$\begin{array}{ll} \mathsf{D}(\tilde{\mathsf{L}_{1}},\tilde{\mathsf{L}_{2}}) &\leqslant & \mathsf{D}((\tilde{\mathsf{L}_{1}},\mathsf{S}(\mathsf{P},\mathsf{F},\mathsf{g}_{1},\mathsf{g}_{2})+\mathsf{S}(\mathsf{P},\mathsf{F},\mathsf{g}_{1},\mathsf{g}_{2}),\tilde{\mathsf{L}_{2}})) \\ &\leqslant & \mathsf{D}(\mathsf{S}(\mathsf{P},\mathsf{F},\mathsf{g}_{1},\mathsf{g}_{2}),\tilde{\mathsf{L}_{1}})+\mathsf{D}(\mathsf{S}(\mathsf{P},\mathsf{F},\mathsf{g}_{1},\mathsf{g}_{2}),\tilde{\mathsf{L}_{2}}) \\ &< & \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \end{array}$$

since for all $\epsilon > 0$, there are \diamond -gauges δ_1 and δ_2 (or γ_1 and γ_2), then it follows that $\tilde{L_1} = \tilde{L_2}$.

Hence, the fuzzy Henstock-Kurzweil-Stieltjes- \diamond -double integral of F on $[a, b]_{\mathbb{T}_1} \times [c, d]_{\mathbb{T}_2}$ is unique.

Theorem 3.4. (Bolzano Cauchy Criterion). Let $F : (a, b]_{\mathbb{T}_1} \times (c, d]_{\mathbb{T}_2} \to f_{\mathbb{R}}$ be a fuzzy-valued function over a rectangle $(a, b]_{\mathbb{T}_1} \times (c, d]_{\mathbb{T}_2}$ with respect to g_1, g_2 on $(a, b]_{\mathbb{T}_1} \times (c, d]_{\mathbb{T}_2}$. Then, F is fuzzy Henstock-Kurzweil-Stieltjes- \diamond -double integrable on $(a, b]_{\mathbb{T}_1} \times (c, d]_{\mathbb{T}_2}$ if and only if for each $\varepsilon > 0$ there exists a positive function $\delta : (a, b]_{\mathbb{T}_1} \times (c, d]_{\mathbb{T}_2} \to f_{\mathbb{R}}$ such that $D(S(P_{\delta_1}, F, g_1, g_2), S(P_{\delta_2}, F, g_1, g_2), F, g)) < \varepsilon$ for all δ -fine tagged partitions P_1 and P_2 on $(a, b]_{\mathbb{T}_1} \times (c, d]_{\mathbb{T}_2}$.

Proof. Suppose F is fuzzy Henstock-Kurzweil-Stieltjes- \diamond -double integrable on $(a, b]_{\mathbb{T}_1} \times (c, d]_{\mathbb{T}_2}$ with respect to g_1 and g_2 , and let

$$\tilde{L} = \iint_{\mathcal{R}} F(t,s) \diamondsuit g_1(t) \diamondsuit g_2(s).$$

Let $\varepsilon > 0$. There are \diamond -gauges δ_1 and δ_2 for $[a, b]_{\mathbb{T}_1}$ and $[c, d]_{\mathbb{T}_2}$ respectively such that $D(S(P, F, g_1, g_2), \tilde{L}) < \frac{\varepsilon}{2}$ provided that $P = P_1 \times P_2$ where P_1 is a δ_1 (or γ_1) fine partition of $[a, b]_{\mathbb{T}_1}$ and P_2 is a δ_2 (or γ_2) fine partition of $[c, d]_{\mathbb{T}_2}$. Therefore, if $P = P_1 \times P_2$ and $P = P'_1 \times P'_2$ are pairs of δ_1 (or γ_1) fine partition of $[a, b]_{\mathbb{T}_1}$ and P_2 is a δ_2 (or γ_2) fine partition of $[a, b]_{\mathbb{T}_1}$ and P_2 is a δ_2 (or γ_2) fine partition of $[a, b]_{\mathbb{T}_1}$ and P_2 is a δ_2 (or γ_2) fine partition of $[c, d]_{\mathbb{T}_2}$, then

$$D(S(P, F, g_1, g_2), S(P^1, F, g_1, g_2)) \leqslant D(S(P, F, g_1, g_2), \tilde{L}) +D(\tilde{L}, S(P^1, F, g_1, g_2)) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Conversely, suppose that for all $\varepsilon > 0$ there are \diamond -gauges δ_1 and δ_2 (or γ_1 and γ_2) for $[a, b]_{\mathbb{T}_1}$ and $[c, d]_{\mathbb{T}_2}$ respectively such that

 $D(S(P^1, F, g_1, g_2), S(P^2, F, g_1, g_2)) < \varepsilon$ for all pairs $P^1 = P_1^1 \times P_2^1$ and $P^2 = P_1^2 \times P_2^2$ of δ_1 (or γ_1)-fine partitions of $[a, b]_{\mathbb{T}_1}$ and δ_2 (or γ_2)-fine partitions of $[c, d]_{\mathbb{T}_2}$.

Let $n \in \mathbb{N}$. Taking $\varepsilon = \frac{1}{n}$, there are \diamond -gauges $\delta_{1,n}$ and $\delta_{2,n}$ (or $\gamma_{1,n}$ and $\gamma_{2,n}$) for $[a, b]_{\mathbb{T}_1}$ and $[c, d]_{\mathbb{T}_2}$ respectively such that

 $D(S(P', F, g_1, g_2), S(P^2, F, g_1, g_2)) < \varepsilon$ for all pairs $P^1 = P_1^1 \times P_2^1$ and $P^2 = P_1^2 \times P_2^2$ of $\delta_{1,n}$ (or $\gamma_{1,n}$)-fine partitions of $[a, b]_{T_1}$ and $\delta_{2,n}$ (or $\gamma_{2,n}$)-fine partitions of $[c, d]_{T_2}$.

By replacing $\delta_{i,n}$ by min{ $\delta_{i,1}, \delta_{i,2}, ..., \delta_{i,n}$ } with $i \in \{1, 2\}$, we may assume that $\delta_{i,n+1} \leq \delta_{i,n}$. Thus, for all $j > n \ \delta_{i,j} \leq \delta_{i,n}$ so any pair $P^n = P_1^n \times P_2^n$ of $\delta_{1,n}$ (or $\gamma_{1,n}$)-fine partitions of $[a, b]_{\mathbb{T}_1}$ and $\delta_{2,n}$ (or $\gamma_{2,n}$)-fine partitions of $[c, d]_{\mathbb{T}_2}$ is also a pair of $\delta_{1,j}$ (or $\gamma_{1,j}$)-fine partitions of $[a, b]_{\mathbb{T}_1}$ and $\delta_{2,j}$ (or $\gamma_{2,j}$)-fine partitions of $[c, d]_{\mathbb{T}_2}$, hence

$$D(S(P^n, F, g_1, g_2), S(P^j, F, g_1, g_2)) < \frac{1}{j}.$$

This shows that $\{S(P^n, F, g_1, g_2)\}_{n \in \mathbb{N}}$ is a Cauchy sequence.

Let \tilde{L} be the limit of $\{S(P^n, F, g_1, g_2)\}_{n \in \mathbb{N}}$. For all $\varepsilon > 0$, choosing $N > \frac{2}{\varepsilon}$, for \diamond -gauges $\delta_{1,N}$ and $\delta_{2,N}$ (or $\gamma_{1,N}$ and $\gamma_{2,N}$) for $[a, b]_{\mathbb{T}_1}$ and $[c, d]_{\mathbb{T}_2}$ respectively,

$$\begin{split} \mathsf{D}(\mathsf{S}(\mathsf{P},\mathsf{F},\mathsf{g}_1,\mathsf{g}_2),\tilde{\mathsf{L}}) &\leqslant & \mathsf{D}(\mathsf{S}(\mathsf{P},\mathsf{F},\mathsf{g}_1,\mathsf{g}_2),\mathsf{S}(\mathsf{P}^\mathsf{N},\mathsf{F},\mathsf{g}_1,\mathsf{g}_2)) \\ &\quad +\mathsf{D}(\mathsf{S}(\mathsf{P}^\mathsf{N},\mathsf{F},\mathsf{g}_1,\mathsf{g}_2),\tilde{\mathsf{L}}) \\ &< & \frac{1}{\mathsf{N}} + \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

for pair $P = P_1 \times P_2$ such that P_1 is a $\delta_{1,N}$ (or $\gamma_{1,N}$) fine partition of $[a,b]_{\mathbb{T}_1}$ and P_2 is a $\delta_{2,N}$ (or $\gamma_{2,N}$) fine partition of $[c,d]_{\mathbb{T}_2}$.

The following properties are obtained using the definition of fuzzy Henstock-Kurzweil-Stieltjes- \diamond -double integral of F on $[a,b]_{\mathbb{T}_1} \times [c,d]_{\mathbb{T}_2}$. The proof of the next theorem is straightforward and therefore omitted.

Theorem 3.5. Let $F : [a,b]_{\mathbb{T}_1} \times [c,d]_{\mathbb{T}_2} \to f_{\mathbb{R}}$ be a fuzzy-valued function and let g_1 and g_2 be non-decreasing functions respectively on $[a, b]_{\mathbb{T}_1}$ and $[c, d]_{\mathbb{T}_2}$. If F is fuzzy Henstock-*Kurzweil-Stieltjes-\diamond-double integrable with respect to* g_1 *and* g_2 *on* $\Re = [a, b]_{\mathbb{T}_1} \times [c, d]_{\mathbb{T}_2}$. Then,

i.
$$\iint_{\mathcal{R}} \beta \diamondsuit_1 g_1(t) \diamondsuit_2 g_2(s) = \beta(g_1(b) - g_1(a))(g_2(d) - g_2(c)), \ \beta \text{ is a constant};$$

ii.
$$\iint_{\mathcal{R}} F(t,s) \diamondsuit_1 g_1(t) \diamondsuit_2 g_2(s) = 0 \text{ when } g_1 \text{ or } g_2 \text{ are constants};$$

iii.
$$\iint_{\mathcal{R}} F(t,s) \diamondsuit_1 g_1(t) \diamondsuit_2 g_2(s) = f(a,c)(g_1^{\tau_1}(a) - g_1(a))(g_2^{\tau_2}(c) - g_2(c))$$

with $b = \tau_1(a) \text{ and } \tau_2(c);$
iv.
$$\iint_{\mathcal{R}} \beta F(t,s) \mu[\diamondsuit_1 g_1(t) \diamondsuit_2 g_2(s)] = \iint_{\mathcal{R}} \beta \mu f(t,s) \diamondsuit_1 g_1(t) \diamondsuit_2 g_2(s);$$

 $\beta \text{ and } \mu \text{ are constants}.$

Theorem 3.6. Let F be a fuzzy-number-valued function, consider a sequence of fuzzy-numbervalued function $F_n : (a, b]_{\mathbb{T}_1} \times (c, d]_{\mathbb{T}_2} \to f_{\mathbb{R}}, n \in \mathbb{N}$ in $f_{\mathbb{R}}$ and increasing functions $g_1, g_2 :$ $(\mathfrak{a},\mathfrak{b}]_{\mathbb{T}_1} \times (\mathfrak{c},\mathfrak{d}]_{\mathbb{T}_2} \to \mathfrak{f}_{\mathbb{R}}.$ Assume

(i) $\lim_{n\to\infty} F_n(t,s) = F(t,s)$ holds $\diamond a.e.$; (ii) $G(t,s) \leq F_n(t,s) \leq H(t,s)$ holds \diamond a.e.; (iii) $F_n(t,s), G(t,s), H(t,s) \in \mathcal{FHKS}_{[a,b]_{\mathbb{T}_1} \times [c,d]_{\mathbb{T}_2}}$. Then $F(t,s) \in \text{FHKS}_{[a,b]_{\mathbb{T}_1} \times [c,d]_{\mathbb{T}_2}}$. Moreover,

$$\lim_{n\to\infty}\iint_{\mathcal{R}}\mathsf{F}_{n}(t,s)\diamondsuit_{1}g_{1}(t)\diamondsuit_{2}g_{2}(s)=\iint_{\mathcal{R}}\mathsf{F}(t,s)\diamondsuit_{1}g_{1}(t)\diamondsuit_{2}g_{2}(s)$$

The proof of Theorem 3.6 is straightforward following the style of proof in [7].

Theorem 3.7. Let $F : [a, b]_{\mathbb{T}_1} \times [c, d]_{\mathbb{T}_2} \to f_{\mathbb{R}}$ be a fuzzy-number-valued function and let g_1 and g_2 be non-decreasing functions respectively on $[a,b]_{\mathbb{T}_1}$ and $[c,d]_{\mathbb{T}_2}$. Function $F(t,s) \in$ $\mathfrak{FHKS}_{[\mathfrak{a},\mathfrak{b})_{\mathbb{T}_{1}}\times[\mathfrak{c},\mathfrak{d})_{\mathbb{T}_{2}}} \text{ if and only if } \underline{F}(\mathfrak{t},\mathfrak{s})^{\lambda}, \overline{F}(\mathfrak{t},\mathfrak{s})^{\lambda} \in \mathfrak{HKS}_{[\mathfrak{a},\mathfrak{b})_{\mathbb{T}_{1}}\times[\mathfrak{c},\mathfrak{d})_{\mathbb{T}_{2}}} \text{ for all } \lambda \in [0,1]$ uniformly.

Proof. For the necessary condition, let P_1 and P_2 be two partitions of $[a, b]_{\mathbb{T}_1}$ and $[c, d]_{\mathbb{T}_2}$ such that $P_1 = \{t_0, t_1, ..., t_n\} \subset [a, b]_{\mathbb{T}_1}$ and $P_2 = \{s_0, s_1, ..., s_n\} \subset [c, d]_{\mathbb{T}_2}$. Let L = $\int \int_{\mathcal{R}} F(t,s) \diamond_1 g_1(t) \diamond_2 g_2(s)$. Given $\varepsilon > 0$, there exists a $\delta(t,s)$ such that $D\left(S(P_{\delta}, F, g_1, g_2), \tilde{L}\right) < 0$ ϵ for any fine tag partition P_1 and $P_2.$ Then,

$$\begin{split} \sup_{\lambda \in [0,1]} \max \left\{ \left| \frac{[S(P_{\delta}, F, g_{1}, g_{2})]^{\lambda} - \underline{L}^{\tilde{\lambda}}}{|S(P_{\delta}, F, g_{1}, g_{2})|^{\lambda} - \overline{L}^{\tilde{\lambda}}} \right| \right\} \\ = \sup_{\lambda \in [0,1]} \max \left\{ \left| S(P_{\delta}, \underline{F}^{\lambda}, g_{1}^{\lambda}, g_{2}^{\lambda}) - \underline{L}^{\tilde{\lambda}} \right|, \left| S(P_{\delta}, \overline{F}^{\lambda}, g_{1}^{\lambda}, g_{2}^{\lambda}) - \overline{L}^{\tilde{\lambda}} \right| \right\} < \varepsilon \\ \left| S(P_{\delta}, \underline{F}^{\lambda}, g_{1}^{\lambda}, g_{2}^{\lambda}) - \underline{L}^{\tilde{\lambda}} \right| < \varepsilon, \quad \left| S(P_{\delta}, \overline{F}^{\lambda}, g_{1}^{\lambda}, g_{2}^{\lambda}) - \overline{L}^{\tilde{\lambda}} \right| < \varepsilon \end{split}$$

and

for any $\lambda \in [0, 1]$ and for partitions $P = P_1 \cup P_2$. Thus, $\underline{F(t, s)^{\lambda}}, \overline{F(t, s)^{\lambda}} \in \mathcal{HKS}_{[a,b]_{\mathbb{T}_1} \times [c,d]_{\mathbb{T}_2}}$ uniformly for any $\lambda \in [0, 1]$.

Now for sufficient condition, let $\varepsilon > 0$. By assumption, there exists a $\delta(t, s)$ such that

$$\left| [S(\mathsf{P}_{\delta},\underline{\mathsf{F}^{\lambda}},g_{1}^{\lambda},g_{2}^{\lambda})] - \underline{\tilde{\mathsf{L}^{\lambda}}} \right| < \varepsilon, \quad \left| [S(\mathsf{P}_{\delta},\overline{\mathsf{F}^{\lambda}},g_{1}^{\lambda},g_{2}^{\lambda})] - \overline{\tilde{\mathsf{L}^{\lambda}}} \right| < \varepsilon$$

for any $\lambda \in [0,1]$ and for partitions $P = P_1 \cup P_2$ where

$$\underline{\tilde{L^{\lambda}}} = \iint_{\mathcal{R}} \underline{F(t,s)^{\lambda}} \diamond_1 g_1(t) \diamond_2 g_2(s), \ \overline{\tilde{L^{\lambda}}} = \iint_{\mathcal{R}} \overline{F(t,s)^{\lambda}} \diamond_1 g_1(t) \diamond_2 g_2(s).$$

To prove that $\left\{ \left[\underline{\tilde{L}\lambda}, \overline{\tilde{L}\lambda} \right], \lambda \in [0, 1] \right\}$ represents a fuzzy number, check that $\left[\underline{\tilde{L}\lambda}, \overline{\tilde{L}\lambda} \right]$ satisfies the conditions (i)-(iii) of Lemma :

(i) for $\lambda \in [0,1]$, if $\underline{F(t,s)^{\lambda}} \leqslant \overline{F(t,s)^{\lambda}}$, then $\underline{L}^{\tilde{\lambda}} \leqslant \overline{L}^{\tilde{\lambda}}$, i.e., the interval $\left[\underline{L}^{\tilde{\lambda}}, \overline{L}^{\tilde{\lambda}}\right]$ is closed.

(ii) $F(t,s)^{\lambda}$ and $\overline{F(t,s)^{\lambda}}$ nondecreasing and nonincreasing functions on [0,1] respectively. For any $0 \leq \lambda_1 \leq \lambda_2 \leq 1$

$$\begin{split} \int\!\!\!\int_{\mathcal{R}} \frac{F(t,s)^{\lambda_1}}{\Phi_1} & \diamond_1 g_1(t) \diamond_2 g_2(s) & \leqslant \quad \int\!\!\!\int_{\mathcal{R}} \frac{F(t,s)^{\lambda_2}}{F(t,s)^{\lambda_2}} & \diamond_1 g_1(t) \diamond_2 g_2(s) \\ & \leqslant \quad \int\!\!\!\int_{\mathcal{R}} \overline{F(t,s)^{\lambda_1}} & \diamond_1 g_1(t) \diamond_2 g_2(s). \end{split}$$

Thus, $\left[\underline{L}^{\tilde{\lambda}_1}, \overline{L}^{\tilde{\lambda}_1}\right] \supset \left[\underline{L}^{\tilde{\lambda}_2}, \overline{L}^{\tilde{\lambda}_2}\right]$.

(iii) Now, for any $\{\lambda_n\}$ satisfying $\lambda_n \leqslant \lambda_{n+1}$ and $\lambda_n \to \lambda \in (0, 1]$, we have

$$\bigcap_{n=1}^{\infty} \left[\mathsf{F}(\mathsf{t},\mathsf{s}) \right]^{\lambda_n} = \left[\mathsf{F}(\mathsf{t},\mathsf{s}) \right]^{\lambda},$$

that is,

$$\bigcap_{n=1}^{\infty} \left[\underline{F(t,s)^{\lambda_n}}, \overline{F(t,s)^{\lambda_n}} \right] = \left[\underline{F(t,s)^{\lambda}}, \overline{F(t,s)^{\lambda}} \right],$$

 $\lim_{n\to\infty}\underline{F(t,s)^{\lambda_n}} = \underline{F(t,s)^{\lambda}} \text{ and } \lim_{n\to\infty}\overline{F(t,s)^{\lambda_n}} = \overline{F(t,s)^{\lambda}}.$ Moreover,

$$\underline{F(t,s)^{0}} \leq \underline{F(t,s)^{\lambda_{n}}} \leq \underline{F(t,s)^{1}}, \ \overline{F(t,s)^{1}} \leq \overline{F(t,s)^{\lambda_{n}}} \leq \overline{F(t,s)^{0}}$$

By Theorem 3.6, we have $\underline{F(t,s)^{\lambda}}, \overline{F(t,s)^{\lambda}} \in \mathcal{HKS}_{[a,b]_{\mathbb{T}_1} \times [c,d]_{\mathbb{T}_2}}$ and

$$\begin{split} &\lim_{n\to\infty} \iint_{\mathcal{R}} \underline{F(t,s)^{\lambda_n}} \diamond_1 g_1(t) \diamond_2 g_2(s) = \iint_{\mathcal{R}} \underline{F(t,s)^{\lambda}} \diamond_1 g_1(t) \diamond_2 g_2(s), \\ &\lim_{n\to\infty} \iint_{\mathcal{R}} \overline{F(t,s)^{\lambda_n}} \diamond_1 g_1(t) \diamond_2 g_2(s) = \iint_{\mathcal{R}} \overline{F(t,s)^{\lambda}} \diamond_1 g_1(t) \diamond_2 g_2(s). \end{split}$$

Consequently,

$$\bigcap_{n=1}^{\infty} \left[\underline{L}^{\tilde{\lambda}_n}, \overline{L}^{\tilde{\lambda}_n} \right] = \left[\underline{L}^{\tilde{\lambda}}, \overline{L}^{\tilde{\lambda}} \right].$$

Now, $\tilde{L} = \left\{ \left[\underline{\tilde{L^{\lambda}}}, \overline{\tilde{L^{\lambda}}} \right], \lambda \in [0, 1] \right\}$. Thus,

$$D(S(P, F, g_1, g_2), \tilde{L}) < \varepsilon$$

for each partitions $P = P_1 \cup P_2$ and for any n. This ends the proof.

Definition 3.8. A sequence { $F_n(t, s)$ } of Henstock-Kurzweil-Stieltjes integrable functions is called uniformly fuzzy Henstock-Kurzweil-Stieltjes- \diamond -integrable on $[a, b]_{\mathbb{T}_1} \times [c, d]_{\mathbb{T}_2}$ with respect to increasing functions g_1 and g_2 if for each $\varepsilon > 0$ there exists a $\delta(t, s)$ such that

$$D\left(S(\mathsf{P},\mathsf{F}_{\mathfrak{n}}(\mathsf{t},s),\mathfrak{g}_{1},\mathfrak{g}_{2}),\int\int_{\mathcal{R}}\mathsf{F}_{\mathfrak{n}}(\mathsf{t},s)\diamondsuit_{1}\mathfrak{g}_{1}(\mathsf{t})\diamondsuit_{2}\mathfrak{g}_{2}(s)\right)<\varepsilon$$

for any partition P and for any $n \in \mathbb{N}$.

Theorem 3.9. Let $F_n(t, s) \in \mathfrak{FHKS}_{[a,b]_{\mathbb{T}_1} \times [c,d]_{\mathbb{T}_2}}$, n = 1, 2, ..., satisfy:(*i*) $\lim_{n \to \infty} F_n(t, s) = F(t, s)$ on $[a, b]_{\mathbb{T}_1} \times [c, d]_{\mathbb{T}_2}$; (*ii*) $F_n(t, s)$ are uniformly fuzzy Henstock-Kurzweil-Stieltjes- \diamond -integrable on $[a, b]_{\mathbb{T}_1} \times [c, d]_{\mathbb{T}_2}$. Then $F(t, s) \in \mathfrak{FHKS}_{[a,b]_{\mathbb{T}_1} \times [c,d]_{\mathbb{T}_2}}$ and

$$\lim_{n\to\infty}\iint_{\mathcal{R}}\mathsf{F}_n(t,s)\diamondsuit_1g_1(t)\diamondsuit_2g_2(s)=\iint_{\mathcal{R}}\mathsf{F}(t,s)\diamondsuit_1g_1(t)\diamondsuit_2g_2(s).$$

Proof. Let $\varepsilon > 0$. There exists a $\delta(t, s)$ such that

$$D\left(S(\mathsf{P},\mathsf{F}_{n}(\mathsf{t},\mathsf{s}),\mathsf{g}_{1},\mathsf{g}_{2}),\iint_{\mathcal{R}}\mathsf{F}_{n}(\mathsf{t},\mathsf{s})\diamondsuit_{1}\mathsf{g}_{1}(\mathsf{t})\diamondsuit_{2}\mathsf{g}_{2}(\mathsf{s})\right)<\epsilon$$

for any partition P and for every n. Fix a $P_0 \in [a, b]_{\mathbb{T}_1} \times [c, d]_{\mathbb{T}_2}$. From above statement of Theorem 3.6, there exists N such that $P_0 = P_1 \times P_2$ where P_1 is a δ_1 (or γ_1) fine partition of $[a, b]_{\mathbb{T}_1}$ and P_2 is a δ_2 (or γ_2) fine partition of $[c, d]_{\mathbb{T}_2}$ and P_0 is a δ_0 fine partition of $[a, b]_{\mathbb{T}_1} \times [c, d]_{\mathbb{T}_2}$. Then

$$D(S(P_{\delta_0}, F_n(t, s), g_1, g_2), S(P_{\delta_0}, F_m(t, s), g_1, g_2)) < \varepsilon$$

for arbitrary n, m > N. Then,

$$\begin{split} & D\left(\iint_{\mathcal{R}}F_{n}(t,s)\diamond_{1}g_{1}(t)\diamond_{2}g_{2}(s), \iint_{\mathcal{R}}F_{m}(t,s)\diamond_{1}g_{1}(t)\diamond_{2}g_{2}(s)\right) \\ \leqslant & D\left(S(P_{\delta_{0}},F_{n}(t,s),g_{1},g_{2}), \iint_{\mathcal{R}}F_{n}(t,s)\diamond_{1}g_{1}(t)\diamond_{2}g_{2}(s)\right) \\ & + & D\left(S(P_{\delta_{0}},F_{n}(t,s),g_{1},g_{2}),S(P_{\delta_{0}},F_{m}(t,s),g_{1},g_{2})\right) \\ & + & D\left(S(P_{\delta_{0}},F_{m}(t,s),g_{1},g_{2}),\iint_{\mathcal{R}}F_{m}(t,s)\diamond_{1}g_{1}(t)\diamond_{2}g_{2}(s)\right) \\ & < & 3\epsilon \end{split}$$

for any n,m>N and, hence, $\{\int\int_{\mathfrak{R}}F_n(t,s)\diamondsuit_1g_1(t)\diamondsuit_2g_2(s)\}$ is a Cauchy sequence. Let

$$\lim_{n\to\infty}\iint_{\mathcal{R}}\mathsf{F}_n(t,s)\diamondsuit_1g_1(t)\diamondsuit_2g_2(s)=\tilde{\mathsf{L}}.$$

We now prove that

$$\iint_{\mathcal{R}} F(t,s) \diamondsuit_1 g_1(t) \diamondsuit_2 g_2(s) = \tilde{L}.$$

Let $\varepsilon > 0$. By hypothesis, there exists a $\delta(t, s)$ such that

$$D\left(S(\mathsf{P},\mathsf{F}_{n}(t,s),g_{1},g_{2}),\int\int_{\mathcal{R}}\mathsf{F}_{n}(t,s)\Diamond_{1}g_{1}(t)\Diamond_{2}g_{2}(s)\right)<\varepsilon$$

for any partition P and for all n. Choose N satisfying

$$D\left(\iint_{\mathcal{R}} F_{n}(t,s) \diamondsuit_{1} g_{1}(t) \diamondsuit_{2} g_{2}(s), \tilde{L}\right) < \varepsilon$$

for all n > N. Let there exists $N_0 > N$ satisfying

$$D\left(S(P_{\delta},F_{N_0}(t,s),g_1,g_2),S(P_{\delta},F(t,s),g_1,g_2)\right)<\epsilon.$$

Therefore,

$$\begin{split} & D\left(S(\mathsf{P},\mathsf{F}(\mathsf{t},\mathsf{s}),\mathsf{g}_1,\mathsf{g}_2),\tilde{\mathsf{L}}\right) \\ \leqslant & D\left(S(\mathsf{P}_{\delta},\mathsf{F}(\mathsf{t},\mathsf{s}),\mathsf{g}_1,\mathsf{g}_2),S(\mathsf{P}_{\delta},\mathsf{F}_{\mathsf{N}_0}(\mathsf{t},\mathsf{s}),\mathsf{g}_1,\mathsf{g}_2)\right) \\ & + & D\left(S(\mathsf{P}_{\delta},\mathsf{F}_{\mathsf{N}_0}(\mathsf{t},\mathsf{s}),\mathsf{g}_1,\mathsf{g}_2),\int\int_{\mathcal{R}}\mathsf{F}_{\mathsf{N}_0}(\mathsf{t},\mathsf{s})\diamond_1\mathsf{g}_1(\mathsf{t})\diamond_2\mathsf{g}_2(\mathsf{s})\right) \\ & + & D\left(\iint_{\mathcal{R}}\mathsf{F}_{\mathsf{N}_0}(\mathsf{t},\mathsf{s})\diamond_1\mathsf{g}_1(\mathsf{t})\diamond_2\mathsf{g}_2(\mathsf{s}),\tilde{\mathsf{L}}\right) \\ & < & 3\epsilon \end{split}$$

and the result follows.

Definition 3.10. ([12]) A function $f : [a, b]_{\mathbb{T}} \to \mathbb{R}$ is called absolutely continuous on $[a, b]_{\mathbb{T}}$, if for each $\varepsilon > 0$ there exists $\gamma > 0$ such that

$$\sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| < \epsilon$$

whenever $\bigcup_{i=1}^n [x_{i-1},x_i]_{\mathbb{T}} \subset [\mathfrak{a},\mathfrak{b}]_{\mathbb{T}}$ and $\sum_{i=1}^n \Delta x_i < \gamma$

The following theorem is Dominated convergence theorem.

Theorem 3.11. Let $F : [a, b)_{\mathbb{T}_1} \times [c, d)_{\mathbb{T}_2} \rightarrow f_{\mathbb{R}}$ be a fuzzy-number-valued function and let g_1 and g_2 be non-decreasing functions respectively on $[a, b]_{\mathbb{T}_1}$ and $[c, d]_{\mathbb{T}_2}$. If $F_n(t, s) \in \mathcal{FHKS}_{[a,b]_{\mathbb{T}_1} \times [c,d]_{\mathbb{T}_2}}$, n = 1, 2, ..., satisfy:

(i) $\lim_{n\to\infty} F_n(t,s) = F(t,s)$ a.e.;

(ii) $G(t,s) \leq F_n(t,s) \leq H(t,s)$ a.e., and $G(t,s), H(t,s) \in \mathcal{FHKS}_{[a,b]_{\mathbb{T}_1} \times [c,d]_{\mathbb{T}_2}}$; then sequence $\{F_n(t,s)\}$ is uniformly FHKS- \diamond -integrable. Thus, $F(t,s) \in \mathcal{FHKS}_{[a,b]_{\mathbb{T}_1} \times [c,d]_{\mathbb{T}_2}}$ and

$$\lim_{n\to\infty} \iint_{\mathcal{R}} F_n(t,s) \diamondsuit_1 g_1(t) \diamondsuit_2 g_2(s) = \iint_{\mathcal{R}} F(t,s) \diamondsuit_1 g_1(t) \diamondsuit_2 g_2(s).$$

Proof. Let $\varepsilon > 0$ and for arbitrary p, q > N, we have

$$\begin{split} \mathsf{D}\left(\mathsf{F}_{\mathsf{p}}(\mathsf{t},\mathsf{s}),\mathsf{F}_{\mathsf{q}}(\mathsf{t},\mathsf{s})\right) &= \sup_{\lambda \in [0,1]} \max\left\{|\underline{\mathsf{F}_{\mathsf{p}}(\mathsf{t},\mathsf{s})^{\lambda}} - \underline{\mathsf{F}_{\mathsf{q}}(\mathsf{t},\mathsf{s})^{\lambda}}|, |\overline{\mathsf{F}_{\mathsf{p}}(\mathsf{t},\mathsf{s})^{\lambda}} - \overline{\mathsf{F}_{\mathsf{q}}(\mathsf{t},\mathsf{s})^{\lambda}}|\right\} \\ &\leqslant \sup_{\lambda \in [0,1]} \max\left\{|\underline{\mathsf{H}}(\mathsf{t},\mathsf{s})^{\lambda} - \underline{\mathsf{G}}(\mathsf{t},\mathsf{s})^{\lambda}|, |\overline{\mathsf{H}}(\mathsf{t},\mathsf{s})^{\lambda} - \overline{\mathsf{G}}(\mathsf{t},\mathsf{s})^{\lambda}|\right\} \\ &= \mathsf{D}\left(\mathsf{H}(\mathsf{t},\mathsf{s}),\mathsf{G}(\mathsf{t},\mathsf{s})\right). \end{split}$$

Then, D (H(t, s), G(t, s)) is Lebesgue- \diamond -integrable. Let

$$\mathsf{D}(\mathsf{t},\mathsf{s}) = \iint_{\mathcal{R}} \mathsf{D}\left(\mathsf{H}(\mathsf{x},\mathsf{y}),\mathsf{G}(\mathsf{x},\mathsf{y})\right) \diamondsuit_{1} \mathfrak{g}_{1}(\mathsf{x}) \diamondsuit_{2} \mathfrak{g}_{2}(\mathsf{y}).$$

From Definition 3.3, D(t, s) is absolutely continuous on $[a, b)_{\mathbb{T}_1} \times [c, d)_{\mathbb{T}_2}$. Let $\varepsilon > 0$. Then there exists $\gamma > 0$ such that

$$\sum_{i=1}^{n}\sum_{j=1}^{k}|D(\xi_{i},\zeta_{j})-D(\xi_{i-1},\zeta_{j-1})| < \frac{\varepsilon}{(b-a)(d-c)}$$

whenever $\bigcup_{i=1}^{n} [\xi_{i-1}, \xi_i]_{\mathbb{T}_1} \subset [a, b]_{\mathbb{T}_1}$ and $\bigcup_{j=1}^{k} [\zeta_{j-1}, \zeta_j]_{\mathbb{T}_2} \subset [c, d]_{\mathbb{T}_2}$ and $\sum_{i=1}^{n} \sum_{j=1}^{k} F(\xi_i, \zeta_j)(g_1(t_i) - g_1(t_{i-1}))(g_2(s_j) - g_2(s_{j-1})) < \gamma$. The limit

$$\lim_{n\to\infty}\mathsf{F}_n(\mathsf{t},\mathsf{s})=\mathsf{F}(\mathsf{t},\mathsf{s})$$

holds almost everywhere on $[a, b)_{\mathbb{T}_1} \times [c, d)_{\mathbb{T}_2}$ and $\{D(F_n(t, s), F(t, s))\}$ is a sequence of \diamond -measurable functions. By Egorov's theorem, there is an open set Ω with $\mathfrak{m}(\Omega) < \delta$ such that $\lim_{n\to\infty} F_n(t, s) = F(t, s)$ uniformly for $t, s \in [a, b)_{\mathbb{T}_1} \times [c, d)_{\mathbb{T}_2} \setminus \Omega$. Thus, there exists N such that

$$D(F_p(t,s),F_q(t,s)) < \frac{\varepsilon}{(b-a)(d-c)}$$

for any p, q > N and for any $t, s \in [a, b)_{\mathbb{T}_1} \times [c, d)_{\mathbb{T}_2} \setminus \Omega$. Suppose that δ_1 is in the set of \diamond -gauge on $[a, b)_{\mathbb{T}_1} \times [c, d)_{\mathbb{T}_2}$ such that

$$\left| S(D(H(t,s),G(t,s),P_{\delta_1},g_1,g_2) - \iint_{\mathcal{R}} D(H(t,s),G(t,s)) \diamondsuit_1 g_1(t) \diamondsuit_2 g_2(s) \right| < \varepsilon$$

and

$$D\left(S(\mathsf{P}_{\delta_1},\mathsf{F}_n(t,s),g_1,g_2),\int\int_{\mathcal{R}}\mathsf{F}_n(t,s)\diamond_1g_1(t)\diamond_2g_2(s)\right)<\varepsilon$$

for $1 \leq n \leq N$ and for any partition P. Define $\delta(\xi, \zeta)$ in the set of \diamond -gauge on $[a, b]_{\mathbb{T}_1} \times [c, d]_{\mathbb{T}_2}$ as

$$\delta(\xi,\zeta) = \begin{cases} \delta_1(\xi,\zeta), & \text{if } \xi,\zeta \in [a,b]_{\mathbb{T}_1} \times [c,d]_{\mathbb{T}_2} \backslash \Omega\\ \min\{\delta_1(\xi,\zeta), \ \rho((\xi,\zeta),\Omega)\}, & \text{if } (\xi,\zeta) \in \Omega, \end{cases}$$

where $\rho((\xi,\zeta),\Omega)=inf\{|(\xi,\zeta)-(\xi',\zeta')|:(\xi',\zeta')\in\Omega\}.$ Fix n>N. We have

$$\begin{split} & D\left(S(P_{\delta},F_{n}(t,s),g_{1},g_{2}),S(P_{\delta},F_{N}(t,s),g_{1},g_{2})\right)\\ &= D\left(\sum_{i=1}^{n}\sum_{j=1}^{k}F_{n}(\xi_{i},\zeta_{j})\diamond g_{1}(t)g_{2}(s),\sum_{i=1}^{n}\sum_{j=1}^{k}F_{N}(\xi_{i},\zeta_{j})\diamond g_{1}(t)g_{2}(s))\right)\\ &+ D\left(\sum_{\xi_{i}\in\Omega}\sum_{\zeta_{j}\in\Omega}F_{n}(\xi_{i},\zeta_{j})\diamond g_{1}(t)g_{2}(s),\sum_{\xi_{i}\in\Omega}\sum_{\zeta_{j}\in\Omega}F_{N}(\xi_{i},\zeta_{j})\diamond g_{1}(t)g_{2}(s))\right)\\ &\leqslant \epsilon + \sum_{\xi_{i}\in\Omega}\sum_{\zeta_{j}\in\Omega}D\left(F_{n}(\xi_{i},\zeta_{j}),F_{N}(\xi_{i},\zeta_{j})\right)\diamond g_{1}(t)g_{2}(s)\\ &\leqslant \epsilon + |\sum_{\xi_{i}\in\Omega}\sum_{\zeta_{j}\in\Omega}D(H(\xi_{i},\zeta_{j}),G(\xi_{i},\zeta_{j})\diamond g_{1}(t)g_{2}(s)\\ &- \iint_{\Omega}D(H(t,s),G(t,s)\diamond g_{1}(t)g_{2}(s)|\\ &+ \left|\iint_{\Omega}D(H(t,s),G(t,s)\diamond g_{1}(t)g_{2}(s)\right|\\ &\leqslant 3\epsilon \end{split}$$

for any partition P. Hence,

$$\begin{split} & D\left(S(\mathsf{P},\mathsf{F}_{n}(t,s),g_{1},g_{2}),\int\int_{\mathcal{R}}\mathsf{F}_{n}(t,s)\diamond_{1}g_{1}(t)\diamond_{2}g_{2}(s)\right)\\ \leqslant & D\left(S(\mathsf{P},\mathsf{F}_{n}(t,s),g_{1},g_{2}),S(\mathsf{P},\mathsf{F}_{N}(t,s),g_{1},g_{2})\right)\\ &+ & D\left(S(\mathsf{P},\mathsf{F}_{N}(t,s),g_{1},g_{2}),\int\int_{\mathcal{R}}\mathsf{F}_{N}(t,s)\diamond_{1}g_{1}(t)\diamond_{2}g_{2}(s)\right)\\ &+ & D\left(\iint_{\mathcal{R}}\mathsf{F}_{N}(t,s)\diamond_{1}g_{1}(t)\diamond_{2}g_{2}(s),\iint_{\mathcal{R}}\mathsf{F}_{n}(t,s)\diamond_{1}g_{1}(t)\diamond_{2}g_{2}(s)\right)\\ \leqslant & 5\varepsilon, \end{split}$$

which ends the proof of dominated convergence theorem for fuzzy Henstock-Kurzweil-Stieltjes- \diamond -double integrable functions on time scales.

We obtain the following monotone convergence theorem as a consequence of dominated convergence theorem. The monotone convergence theorem is stated as follows:

Theorem 3.12. Let $F : [a, b)_{\mathbb{T}_1} \times [c, d]_{\mathbb{T}_2} \to f_{\mathbb{R}}$ be a fuzzy-number-valued function and let g_1 and g_2 be non-decreasing functions respectively on $[a, b]_{\mathbb{T}_1}$ and $[c, d]_{\mathbb{T}_2}$. If $F_n(t, s) \in \mathcal{FHKS}_{[a,b]_{\mathbb{T}_1} \times [c,d]_{\mathbb{T}_2}}$, n = 1, 2, ..., satisfy:

(i) $\lim_{n\to\infty} F_n(t,s) = F(t,s) \diamond a.e.;$ (ii) $\{F_n(t,s)\}$ is a monotone sequence and $F_n(t,s) \in \mathcal{FHKS}_{[a,b)_{\mathbb{T}_1} \times [c,d)_{\mathbb{T}_2}};$ then sequence $\{F_n(t,s)\}$ is uniformly FHKS- \diamond -integrable. Consequently, $F(t,s) \in \mathcal{FHKS}_{[a,b)_{\mathbb{T}_1} \times [c,d)_{\mathbb{T}_2}}$ and

$$\lim_{n\to\infty}\iint_{\mathcal{R}}\mathsf{F}_{n}(t,s)\diamondsuit_{1}g_{1}(t)\diamondsuit_{2}g_{2}(s)=\iint_{\mathcal{R}}\mathsf{F}(t,s)\diamondsuit_{1}g_{1}(t)\diamondsuit_{2}g_{2}(s).$$

4. Conclusion

This paper exposed some of the properties of fuzzy Henstock-Kurzweil-Stietljesdouble integral on time scales. Uniform convergence theorem and dominated convergence theorem are proved for the fuzzy Henstock-Kurzweil-Stieltjes--double integrable functions on time scales. We also obtained the monotone convergence theorem as a consequence of dominated convergence theorem.

References

- [1] Henstock R (1961). *Definitions of Riemann type of variational integral*. Proc. Lond. Math. Soc. **11**: 402-418.
- [2] Kurzweil J (1957). *Generalized ordinary differential equations and continuous dependence on a parameter*. Czech. Math. J. **7**: 418-446.
- [3] Wu CX and Gong ZT (2001). On Henstock integral of fuzzy-number-valued functions (I). Fuzzy Sets Syst. 120(3): 523-532. https://doi.org/10.1016/S0165-0114(99)00057-3
- [4] Gong Z and Shao Y (2009). The controlled convergence theorems for for the strong Henstock integrals of fuzzy-number-valued functions, Fuzzy sets and systems. 160: 1528-1546. https://doi.org/10.1016/j.fss.2008.10.013
- [5] Guang-Quan Z (1991). Fuzzy continuous function and its properties. Fuzzy Sets and Systems, 43: 159-171.
- [6] Hilger S (1988). *Ein MaB kettenkalkul mit Anwendung auf Zentrumannigfahigkeiten*. Ph.D. Thesis, Universtat Wurzburg.
- [7] Peterson A and Thompson B (2006). *Henstock-Kurzweil delta and nabla integrals*. J. Math. Anal. Appl. 323(1): 162-178. https://doi.org/10.1016/j.jmaa.2005.10.025
- [8] Thomson B (2008). Henstock-Kurzweil integrals on time scales. Panamer. Math. J. 18(1): 1-19.
- [9] Park JM, Kim YK, Lee DH, Yoon JH and Lim JT (2013). Convergence Theorems for the Henstock delta integral on Time Scales. Chungcheong, J. Math. Soc. 26(4): 880-885. https://doi.org/10.14403/jcms.2013.26.4.879
- [10] Bartosiewicz Z and Piotrowska E (2008). *The Lyapunov converse theorem of asymptotic stability on time scales*. presented at WCNA, Orlando, Florida, July 2-9.
- [11] Bohner M and Peterson A (2001). Dynamic equations on time scales. Birkhauser Boston, MA.
- [12] Cabada A and Vivero DR (2005). Criterions for absolute continuity on time scales. J. Differ. Equ. Appl. 11: 1013-1028. https://doi.org/10.1080/10236190500272830
- [13] Mozyrska D, Pawluszewicz E and Torres DFM (2009). The Riemann-Stieltjes integral on time scales. Austr. J. Math. Anal. Appl. 1-14.
- [14] Zhao D, Ye G, Liu W and Torres DFM (2018). *The fuzzy Henstock-Kurzweil delta integral on time scales*. Springer International Publishing AG. Part of Springer Nature.
- [15] Kaleva O (1987). Fuzzy differential equations. Fuzzy Sets Syst. 24: 301-317. https://doi.org/10.1016/0165-0114(87)90029-7