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1. Introduction

Fixed point theory has been one of the most swiftly developing fields in analysis in

the last few years. This theory, with its broad application possibilities, has advanced the

research activities in enormous areas. Many researchers have generalized the classical

concept of metric space by partially changing the conditions of the metric. The intro-

duction of a rectangular metric spaces concept by Branciari ([1]) resulted in establishing

fixed points theorems for numerous contractions on those spaces. In (1969), Boyd and

Wong ([2]) characterized a class of contractive mappings called φ contractions. Then, in

(1997), Alber and Guerre-Delabriere ([3]) generalized this concept by introducing weak

φ contraction. Various researchers have examined contractions of this kind. The class of

(ψ,φ) weakly contractive mappings has attracted interest by many researchers (see, e.g,

[4, 5, 6, 7, 8, 9]). In this paper, we consider (ψ,φ)−contractive mappings on controlled
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rectangular b−metric spaces. We also introduce fixed point theorem for controlled rect-

angular b−metric spaces for mappings satisfy (ψ,φ)−contractive mappings. The paper

starts with some preliminaries covering definitions and notations needed throughout the

papers. The main result is stated and proved in the third section. The application of our

results to integral equations.

2. Preliminaries

The concept of rectangular metric spaces was introduced by Branciari in [1] as follows;

Definition 2.1. [1] (Rectangular (or Branciari) metric spaces)) Let X be a nonempty set.

A mapping ∆ : X2 → [0,∞) is called a rectangular metric on X if for any x,y ∈ X and all

distinct points u, v ∈ X \ {x,y}, it satisfies the following conditions:

(R1) x = y if and only if ∆(x,y) = 0;

(R2) ∆(x,y) = ∆(y, x);
(R3) ∆(x,y) 6 ∆(x,u) +∆(u, v) +∆(v,y).
In this case, the pair (X,∆) is called a rectangular metric space.

In [10], George et al introduced the concept of b−rectangular metric spaces as follows.

Definition 2.2. [10] (Rectangular b−metric spaces)) Let X be a nonempty set. A mapping

B : X2 → [0,∞) is called a rectangular b−metric on X if there exists a constant a > 1 such

that for any x,y ∈ X and all distinct points u, v ∈ X \ {x,y}, it satisfies the following

conditions:

(Rb1) x = y if and only if B(x,y) = 0;

(Rb2) B(x,y) = B(y, x);
(Rb3) B(x,y) 6 a[B(x,u) +B(u, v) +B(v,y)].
In this case, the pair (X,B) is called a rectangular metric space.

As a generalization of rectangular b−metric spaces, Abdeljawad et al. in [11], intro-

duced the concept of extended Branciari b-distance spaces as follows:

Definition 2.3. [11] For a non-empty set S and a mappingω : S× S→ [1,∞), we say that

a function Bdist : S× S→ [0,∞) is called an extended Branciari b-distance if it satisfies

(i) Bdist(x,y) = 0 if and only if x = y;

(ii) Bdist(x,y) = Bdist(y, x);

(iii) Bdist(x,y) 6 ω(x,y)[Bdist(x,u) +Bdist(u, v) +Bdist(v,y)],

for all x,y ∈ S and all distinct u, v ∈ S\ {x,y}. The couple of the symbols (S,Bdist) denotes

an extended Branciari b-distance space (shortly, Bdist-metric space).

Mlaiki et. al. in [12], introduced the concept of controlled rectangular b−metric

spaces, which an extension of the rectangular metric spaces.

Definition 2.4. [12] Let X be a non empty set, a function ζ : X4 → [1,∞)

and dζ : X2 → [0,∞). We say that (X,dζ) is a controlled rectangular b−metric space if all

distinct a,b,u, v ∈ X we have:

1. dζ(a,b) = 0 if and only if a = b;
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2. dζ(a,b) = dζ(b,a);

3. dζ(a,b) 6 ζ(a,b,u, v)[dζ(a,u) + dζ(u, v) + dζ(v,b)].

Next, we present the topology of controlled rectangular b−metric spaces.

Definition 2.5. [12] Let (X,dζ) be a controlled rectangular b−metric space,

1. A sequence {an} is called dζ−convergent in a controlled rectangular b−metric space

(X,dζ), if there exists a ∈ X such that limn→∞ dζ(an,a) = dζ(a,a) = 0.

2. A sequence {an} is called dζ−Cauchy if and only if limn,m→∞ dζ(an,am) exists and finite.

3. A controlled rectangular b−metric space (X,Dζ) is called dζ−complete if for every

dζ−Cauchy sequence {an} in X, there exists ν ∈ X, such that limn→∞ dζ(an,ν) =
limn,m→∞ dζ(an,am) = dζ(ν,ν) = 0.

4. Let a ∈ X define an open ball in a controlled rectangular b−metric space (X,dζ) by

Bζ(a,η) = {b ∈ X | dζ(a,b) < η}.

Notice that, rectangular metric spaces and rectangular b−metric spaces are controlled

rectangular b−metric spaces, but the converse is not always true. In the following exam-

ple, we present a controlled rectangular b−metric space which is not a rectangular metric

space.

Example 2.6. [12] Let X = Y ∪ Z where Y = { 1
m

| m is a natural number} and Z be the

set of positive integers. We define dζ : X2 → [0,∞) by

dζ(a,b) =






0, if and only if a = b

2β, if a,b ∈ Y
β
2 , otherwise,

where, β is a constant bigger than 0. Now, define ζ : X4 → [1,∞) by

ζ(a,b,u, v) = max{a,b,u, v}+ 2β. It is not difficult to check that (X,dζ) is a controlled

rectangular b−metric space. However, (X,dζ) is not a rectangular metric space, for in-

stance notice that dζ(
1
2 , 1

3) = 2β > dζ(
1
2 , 2) + dζ(2, 3) + dζ(3, 1

3) =
3β
2 .

In the next section, we present our main result.

3. Main Results

First of all, before we present our first theorem we give the definition of the following

class of functions;

Definition 3.1. Suppose that there exist control functions Ψ and φ so that ψ : [0,+∞) →

[0,+∞) with ψ(0) = 0 and ψ(t) = 0 if and only if t = 0 , the function ψ is a continuous

monotone- decreasing function. and

φ : [0,+∞) → [0,+∞) with φ(0) = 0 and φ(t) > 0 for all t > 0 where L > 0, the function

ψ is nondecreasing.

Moreover, throughout this paper we use the following notations;

M(x,y) = max{dζ(x,y),dζ(x, Tx),dζ(y, Ty)};

m(x,y) = min{dζ(x, Tx),dζ(y, Ty),dζ(x, Ty),d(y, Tx)}.
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Theorem 3.2. Let (X,dζ) be a Hausdorff and complete controlled rectangular b−metric

space and let T : X→ X be a self-map satisfying

ψ(dζ(Tx, Ty)) 6 ψ(M(x,y))˘φ(M(x,y)) + Lm(x,y), (3.1)

for all x,y ∈ X and ψ,φ ∈ Ψ, where L > 0.

Suppose

lim
n,m→∞

ζ(xn, xn+1, xn+2, xm) 6
1

q
, for some 0 < q < 1.

Then T has a unique fixed point in X.

Proof. Let x0 be an arbitrary point in X. Define the sequence {xn} ⊂ X by xn = Txn−1,n =

1, 2, 3, ... .

First, we prove that dζ(xn−1, xn) → 0 as n → +∞, assume that xn−1 6= xn substitute

x = xn−1,y = xn in (3.1)

ψ(dζ(Txn−1, Txn)) = ψ(dζ(xn, xn+1)) 6 ψ(M(xn−1, xn)) −φ(M(xn−1, xn)) + Lm(xn−1, xn)

= ψ(M(xn−1, xn)) −φ(M(xn−1, xn)).

Where,

m(xn−1, xn) = min{dζ(xn−1, Txn−1),dζ(xn, Txn),dζ(xn−1, Txn),dζ(xn, Txn−1)}

= min{dζ(xn−1, xn),dζ(xn, xn+1),dζ(xn−1, xn+1),dζ(xn, xn)}

= 0

M(xn−1, xn) = max{dζ(xn−1, xn),dζ(xn−1, Txn−1),dζ(xn, Txn)}.

First, assume that

M(xn−1, xn) = dζ(xn, xn+1).

Hence, we have

ψ(dζ(xn, xn+1)) 6 ψ(dζ(xn, xn+1)) −φ(dζ(xn, xn+1)),

which implies φ(d(xn, xn+ 1)) = 0, and hence dζ(xn, xn+1) = 0. Thus,

xn = xn+1 = Txn,

and that is xn is a fixed point of T and we are done. So, without loss of generality we may

assume that M(xn−1, xn) = dζ(xn−1, xn), that is

ψ(dζ(xn, xn+1)) 6 ψ(dζ(xn−1, xn)) −φ(dζ(xn−1, xn)) 6 ψ(dζ(xn−1, xn)). (3.2)

Since ψ is nondecreasing, we deduce that d(xn, xn+1) 6 d(xn−1, xn) for all n > 1. There-

fore, the sequence {d(xn, xn+1)} is monotone decreasing and consequently, there exists

r > 0 such that

dζ(xn−1, xn) → r. (3.3)
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Letting n→ +∞ in (3.2) and using the continuity of ψ and the continuity of φ, we obtain

ψ(r) 6 ψ(r) −φ(r)

which implies that φ(r) = 0, and then r = 0. Thus we have proved

d(xn−1, xn) → 0 as n→ +∞.

Similarly, it is not difficult to see that

d(xn−2, xn) → 0 as n→ +∞.

For all n > 1, we have two cases.

Case 1: Let xn = xm for some integers n 6= m. So, if form > n we have Tm−n(xn) = xn.

Choose y = xn and p = m− n. Then Tpy = y, and that is, y is a periodic point of T .

Thus, dζ(y, Ty) = dζ(T
py, Tp+1y) 6 kpdζ(y, Ty). Since k ∈ (0, 1), we get dζ(y, Ty) = 0,

so y = Ty, that is, y is a fixed point of T .

Case 2: Suppose that Tnx 6= Tmx for all integers n 6= m. Let n < m be two natural

numbers, to show that {xn} is a dζ−Cauchy sequence, we need to consider two subcases:

Subcase 1: Assume that m = n+ 2p+ 1. By property (3) of the controlled rectangular

b−metic spaces we have,

dζ(xn, xn+2p+1) 6 ζ(xn, xn+1, xn+2, xn+2p+1)[dζ(xn, xn+1)

+ dζ(xn+1, xn+2) + dζ(xn+2, xn+2p+1)]

6 ζ(xn, xn+1, xn+2, xn+2p+1)dζ(xn, xn+1)

+ ζ(xn, xn+1, xn+2, xn+2p+1)dζ(xn+1, xn+2)

+ ζ(xn, xn+1, xn+2, xn+2p+1)ζ(xn+2, xn+3, xn+4, xn+2p+1)[dζ(xn+2, xn+3)

+ dζ(xn+3, xn+4) + dζ(xn+4, xn+2p+1)]

6 ζ(xn, xn+1, xn+2, xn+2p+1)dζ(xn, xn+1)

+ ζ(xn, xn+1, xn+2, xn+2p+1)dζ(xn+1, xn+2)

+ ζ(xn, xn+1, xn+2, xn+2p+1)ζ(xn+2, xn+3, xn+4, xn+2p+1)dζ(xn+2, xn+3)

+ ζ(xn, xn+1, xn+2, xn+2p+1)ζ(xn+2, xn+3, xn+4, xn+2p+1)dζ(xn+3, xn+4)

+ ζ(xn, xn+1, xn+2, xn+2p+1)ζ(xn+2, xn+3, xn+4, xn+2p+1)dζ(xn+4, xn+2p+1)

6 · · ·

6 ζ(xn, xn+1, xn+2, xn+2p+1)dζ(xn, xn+1)

+ ζ(xn, xn+1, xn+2, xn+2p+1)dζ(xn+1, xn+2)

+ ζ(xn, xn+1, xn+2, xn+2p+1)ζ(xn+2, xn+3, xn+4, xn+2p+1)dζ(xn+2, xn+3)

+ ζ(xn, xn+1, xn+2, xn+2p+1)ζ(xn+2, xn+3, xn+4, xn+2p+1)dζ(xn+3, xn+4)

+ · · ·+ ζ(xn, xn+1, xn+2, xn+2p+1)ζ(xn+2, xn+3, xn+4, xn+2p+1)

· · · ζ(xn+2p−2, xn+2p−1, xn+2p, xn+2p+1)dζ(xn+2p, xn+2p+1)

Now, using the fact that

d(xn−1, xn) → 0 as n→ +∞ and sup
m>1

lim
n→∞

ζ(xn, xn+1, xn+2, xm) 6
1

q
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we deduce,

lim
n,p→∞

dζ(xn, xn+2p+1) = 0.

Subcase 2: m = n+ 2p

dζ(xn, xn+2p) 6 ζ(xn, xn+1, xn+2, xn+2p)[dζ(xn, xn+1)

+ dζ(xn+1, xn+2) + dζ(xn+2, xn+2p)]

6 ζ(xn, xn+1, xn+2, xn+2p)dζ(xn, xn+1)

+ ζ(xn, xn+1, xn+2, xn+2p)dζ(xn+1, xn+2)

+ ζ(xn, xn+1, xn+2, xn+2p)ζ(xn+2, xn+3, xn+4, xn+2p)[dζ(xn+2, xn+3)

+ dζ(xn+3, xn+4) + dζ(xn+4, xn+2p)]

6 ζ(xn, xn+1, xn+2, xn+2p)dζ(xn, xn+1)

+ ζ(xn, xn+1, xn+2, xn+2p)dζ(xn+1, xn+2)

+ ζ(xn, xn+1, xn+2, xn+2p)ζ(xn+2, xn+3, xn+4, xn+2p)dζ(xn+2, xn+3)

+ ζ(xn, xn+1, xn+2, xn+2)ζ(xn+2, xn+3, xn+4, xn+2p)dζ(xn+3, xn+4)

+ ζ(xn, xn+1, xn+2, xn+2p)ζ(xn+2, xn+3, xn+4, xn+2p)dζ(xn+4, xn+2p)

6 ζ(xn, xn+1, xn+2, xn+2p)dζ(xn, xn+1)

+ ζ(xn, xn+1, xn+2, xn+2p)dζ(xn+1, xn+2)

+ ζ(xn, xn+1, xn+2, xn+2p)ζ(xn+2, xn+3, xn+4, xn+2p)dζ(xn+2, xn+3)

+ ζ(xn, xn+1, xn+2, xn+2p)ζ(xn+2, xn+3, xn+4, xn+2p)dζ(xn+3, xn+4)

+ · · ·

+ ζ(xn, xn+1, xn+2, xn+2p)ζ(xn+2, xn+3, xn+4, xn+2p)× · · ·

× · · · ζ(xn+2p−3, xn+2p−2, xn+2p−1, xn+2p)dζ(xn+2p−3, xn+2p−2)

+

2p−2∏

i=0

ζ(xn+2i, xn+2i+1, xn+2i+1, xn+2p)dζ(xn+2p−2, xn+2p)

Now, using the fact that

d(xn−1, xn) → 0 as n→ +∞; d(xn−2, xn) → 0 as n→ +∞

and sup
m>1

lim
n→∞

ζ(xn, xn+1, xn+2, xm) 6
1

q

we deduce,

lim
n,p→∞

dζ(xn, xn+2p) = 0.

Therefore, by subcase 1 and subcase 2, we deduce that the sequence {xn} is a dζ−Cauchy

sequence. Since (X,dζ) is complete controlled rectangular metric , then {xn} converges to

a limit,there exists x ∈ X such that xn → x . Applying inequality (3.1) with x = xn and

y = x, we obtain

ψ(dζ(Txn, Tx)) 6 ψ(M(xn, x)) −φ(M(xn, x)) + Lm(xn, x)
= ψ(M(xn, x)) −φ(M(xn, x)) 6 ψ(dζ(xn, x))
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which implies that dζ(Txn, Tx) 6 dζ(xn, x)
Sincexn → x, letting n→ +∞ in the above inequality, we obtain that xn+1 = Txn → Tx.

As (X,dζ) is Hausdorff, we have x = Tx, a contradiction with the assumption that T has

no periodic point. Consequently T admits a periodic point, that is, there exists a ∈ X such

that a = Tpa for some p > 1.

we prove the Existence of a fixed point. If p = 1, then a = Ta, that is, a is a fixed point

of T . Suppose now that p > 1. We will prove that u = Tp−1a is a fixed point of T .

Suppose that this is not the case, that is, Tp−1a 6= Tpa . Then dζ(T
p−1a, Tpa) > 0 and

φ(dζ(T
p−1a, Tpa)) > 0. Now, using inequality (3.1), we obtain

ψ(dζ(a, Ta)) = ψ(dζ(T
pa, Tp+1a))

= ψ(dζ(T(T
p−1a), T(Tpa)))

6 ψ(M(Tp−1a, Tpa)) −φ(M(Tp−1a, Tpa)) + Lm((Tp−1a, Tpa))

< ψ(dζ(T
p−1a, Tpa)).

Since,

M(Tp−1a, Tpa) = max{dζ(T
p−1a, Tpa),dζ(T

p−1a, Tpa),dζ(T
pa, Tp+1a)},

m(Tp−1a, Tpa)

= min{dζ(T
p−1a, Tpa),dζ(T

pa, Tp+1a),dζ(T
p−1a, Tp+1a),dζ(T

pa, Tpa)}

= 0

For M(Tp−1a, Tpa) = dζ(T
pa, Tp+1a),

ψ(a, Ta) = ψ(dζ(T
pa, Tp+1a)) 6ψ(dζ(T

p−1a, Tpa)) −φ(dζ(T
p−1a, Tpa)) (3.4)

<ψ(dζ(T
p−1a, Tpa)), (3.5)

and taking into account the fact that ψ is nondecreasing, we deduce

dζ(a, Ta) < dζ(T
p−1a, Tpa).

Again, using inequality (3.1), x = Tp−2a and y = Tp−1a we have

ψ(dζ(a, Ta)) =ψ(dζ(T
p−1a, Tpa))

6ψ(M(Tp−2a, Tp−1a)) −φ(M(Tp−2a, Tp−1a)) + Lm((Tp−2a, Tp−1a)).

where

M(Tp−2a, Tp−1a) = max{dζ(T
p−2a, Tp−1a),dζ(T

p−2a, Tp−1a),dζ(T
p−1a, Tpa)},

m(Tp−2a, Tp−1a)

= min{dζ(T
p−2a, Tp−1a),dζ(T

p−1a, Tpa),dζ(T
p−2a, Tpa),dζ(T

p−1a, Tp−1a)}

= 0.
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Since, φ(dζ(T
p−2a, Tp−1a)) = 0 and dζ(T

p−2a, Tp−1a) = 0,

M(Tp−2a, Tp−1a) = dζ(T
p−2a, Tp−1a)

.

Using the monotone property of the ψ-function, we deduce that

ψ(dζ(T
p−1a, Tpa)) 6ψ(dζ(T

p−2a, Tp−1a)) −φ(dζ(T
p−2a, Tp−1a))

6ψ(dζ(T
p−2a, Tp−1a))

This leads to

0 6 dζ(a, Ta)) = dζ(T
p−1a, Tpa)

<ζ(Tp−1a, Tpa, xn, xn+1)[dζ(T
p−1a, xn) + dζ(xn, xn+1) + dζ(xn+1T

pa)]

6ζ(Tp−1a, Tpa, xn, xn+1)[dζ(T
p−1a, xn) + dζ(xn, xn+1) + dζ(TxnT

pa)]

6... 6 dζ(a, Ta)).

Then we obtain the following contradiction: dζ(a, Ta) < dζ(a, Ta). Hence, the assump-

tion of u is not a fixed point of T is not true and thus u = Tp−1a is a fixed point of T .

Thus we have proved the existence of a fixed point of T .

Finally, to prove the uniqueness, we assume that T has two distinct fixed points, say z and

w. Then letting x = z and y = w in (3.1), we have

ψ(dζ(a,w)) =ψ(dζ(Ta, Tw))

6ψ(M(a,w)) −φ(M(a,w)) + Lm((a,w)).

where

M(a,w) = max{dζ(a,w),dζ(a, Ta),dζ(w, Tw)} = dζ(a,w)

m(a,w) = min{dζ(a, Ta),dζ(w, Tw),dζ(w, Ta),dζ(a, Tw)} = 0

ψ(dζ(a,w)) 6 ψ(dζ(a,w)) −φ(dζ(a,w))

implying φ(dζ(z,w)) = 0, and hence dζ(z,w) = 0, which completes the proof of the

uniqueness.

Corollary 3.3. Assume (x,dζ) be a Hausdroff and complete controlled rectangular b−metric

space and let T : X→ X be a self-map satisfying

ψ(dζ(Tx, Ty)) 6 ψ(M(x,y))˘φ(M(x,y)) (3.6)

for all x,y ∈ X and ψ,φ ∈ Ψ, also, assume that

lim
n,m→∞

ζ(xn, xn+1, xn+2, xm) 6
1

q
, for some 0 < q < 1.

Then T has a unique fixed point in X.

Proof. For

ψ(d(Tx, Ty)) 6 ψ(M(x,y))˘φ(M(x,y))

6 ψ(M(x,y))˘φ(M(x,y)) + Lmin{dζ(x, Tx),dζ(y, Ty),dζ(x, Ty),d(y, Tx)}.

for some L > 0 and by Theorem (3.2), T has a unique fixed point in X.
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4. Fredholm type integral equation

Fixed point theory has many applications, such as fractional differential equations,

the importance of these types of equations is their use in modelling in many fields. In this

section, we use our results to prove the existence and uniqueness of Fredholm type integral

equation. Now, Consider the set Υ = C([0, 1], (−∞,∞)) and the following Fredholm type

integral equation:

p ′(t) =

∫ 1

0
S(t, s, p ′(t))ds, for t, s ∈ [0, 1] (4.1)

where S(t, s, p ′(t)) is a continuous function from [0, 1]2 into R. Now, define

dζ : Υ×Υ −→ C

(p, q) 7→ |p ′(t) − q(t)|

Note that (Υ,dζ) is a complete controlled rectangular b−metric space, where

ζ(p, q,u, v) = 2.

Theorem 4.1. Assume that for all p, q ∈ Υ

(1) |S(t, s, p ′(t)) − S(t, s, q(t))| 6 |p ′(t)−q(t)|
2 , for some ϑ ∈ B.

(2) |S(t, s,
∫1

0 S(t, s, p ′(t))ds) − S(t, s,
∫1

0 S(t, s, q(t))ds)| < |S(t, s, p ′(t)) − S(t, s, q(t))| for all

t, s.
Then the above integral equation has a unique solution.

Proof. Let : Υ −→ Υ defined by p ′(t) =
∫1

0 S(t, s, p ′(t))ds, then

dζ(p
′, q) = |p ′(t) − q(t)|. Now we have

dζ(p
′(t), q(t)) = |p ′(t) − q(t)|

= |

∫ 1

0
S(t, s, p ′(t))ds−

∫ 1

0
S(t, s, q(t))ds|

6 |S(t, s, p ′(t)) − S(t, s, q(t))|

6
|p ′(t) − q(t)|

2

6
1

2
dζ(p

′(t), q(t)) = ψ(M(p ′(t), q(t))) −φ(M(p ′(t), q(t))).

where ψ(t) = t and φ(t) = t
2 . Also, notice that,

ζ(p, q,u, v) < 3.

Therefore, all the hypothesis of Theorem 3.2, are satisfied and hence equation (4.1) has a

unique solution as desired.
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5. Conclusion

In this manuscript, we have proved the existence and uniqueness of a fixed point for

(ψ,φ)−contractions in controlled rectangular b−metric spaces, which generalizes many

results in the literature. Also, we presented an application to our results on integral equa-

tions. In closing, we would like to bring to the reader’s attention the following open

question;

Question 5.1. If we omit the completeness of the controlled rectangular b−metric space in

Theorem 3.2, Is there a weaker hypothesis that we can add to get a unique fixed point?
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