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Abstract

This article deals with a nonlinear implicit fractional differential equation with nonlocal integral-multipoint

boundary conditions in the frame of Hilfer fractional derivative. The existence and uniqueness results are

obtained by using the fixed point theorems of Krasnoselskii and Banach. Further, to demonstrate the effec-

tiveness of the main results, suitable examples are granted.
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1. Introduction:

Fractional differential equations (FDEs) with initial/boundary conditions emerge from

a variety of applications inclusive in diverse fields of science and engineering, e.g., prac-

tical problems concerning mechanics, conservative systems, economy, control systems,

chemistry, physics, harmonic oscillator, biology, atomic energy, medicine, information the-

ory, nonlinear oscillations, the engineering technique fields, dynamics in Hamiltonian sys-

tems, stability and instability of geodesic on Riemannian manifolds, etc. This is because

FDEs characterize many real-world processes linked to memory and hereditary properties

of different materials more carefully as compared to classical order differential equations.

For further details [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

There are sundry definitions of fractional calculus (FC), from the most common of

them Riemann-Liouville (RL) (and Caputo) fractional derivatives (FDs) to other less-

known definitions such as Erdelyi-Kober (and Hadamard) FDs and so on. A generalization

∗Corresponding author: saleh.redhwan909@gmail.com c© 2020 SABA. All Rights
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of FDs of RL and Caputo was given by R. Hilfer in [13], which so-called the Hilfer FD of

order σ1 and a type σ2 ∈ [0, 1]. RL and Caputo FDs can get by giving σ2 = 0 and σ2 = 1
respectively in the formula of Hilfer FD. Such a derivative interpolates between the RL

and Caputo FDs. More details on this FD mentioned above can be found in [14, 15] and

references cited therein.

Besides the extensive development of FDs, several articles have been concerned with

the existence and uniqueness of solutions for FDEs [16, 17, 18, 19, 20, 21, 22] and the

references contained therein.

Hilfer FD of initial value problems (IVPs) were studied by different authors, see [23,

24]. However, there are some papers on boundary value problems (BVPs) of Hilfer FD.

In [25] the authors initiate the study of nonlinear BVPs of Hilfer FD. For some more new

works on BVPs with Hilfer FD can be seen in [26, 27, 28].

Motivated by the above works, in this article, we investigate the existence and unique-

ness of solutions for an implicit FDE with nonlocal integral-multipoint boundary condi-

tions in the frame of Hilfer FD of the form:
{

HD
σ1,σ2

κ(s) = g(s,κ(s),H D
σ1,σ2

κ(s)), s ∈ J : = [a,b],

κ(a) = 0,
∫b
a κ(τ)dτ+ λ =

∑m−2
j=1 ξjκ(ϑj),

(1.1)

where HD
σ1,σ2 is the Hilfer FD of order σ1 (1 < σ1 < 2), and parameter σ2 (0 6 σ2 6 1),

g : J× R × R → R is a continuous function, a < ϑ1 < ϑ2 < · · · < ϑm−2 < b, a > 0, and

ξj, ϑj ∈ R, j = 1, 2, · · ··,m− 2.

We give attention to the subject of nonlocal problems, because in many cases a non-

local condition in this type of problem reflects physical phenomena more exactly than

classical boundary conditions. We prove the existence and uniqueness results by applying

classical fixed point techniques. Here, we use Banach’s fixed point approach to get the

uniqueness result. Whereas Krasnosel’skii’s fixed point theorem [29] is used to get the ex-

istence results for the problem (1.1). The work completed in this article fresh and enriches

the literature on BVPs of Hilfer-type FDEs.

The present article orderly as follows: Sect. 2 some notations are presented and we

give some concepts of preliminaries about Hilfer FD. Our main results for the problem

(1.1) are given in Sect. 3. At the final, some examples are constructed to explain the

applicability of the proved results.

2. Preliminaries:

In this portion, we provide some preliminary facts of FC which will be used throughout

this article, see [11, 12].

Definition 2.1. The left sided RL fractional integral of order σ1 is given by

I
σ1v(s) =

1

Γ(σ1)

∫s

a

(s− τ)σ1−1v(τ)dτ,

where Γ(·) denotes the Gamma function, σ1 > 0 and v be a locally integrable function on

(a,+∞).
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Definition 2.2. The left sided RL FD of order σ1 is defined by

RL
D

σ1v(s) := D
n

I
n−σ1v(s),

where n = [σ1] + 1, [σ1] symbolize the integer part of the real number σ1, v is a continuous

function, and D
n =

(

d
ds

)n
.

Definition 2.3. The Caputo FD of order σ1 > 0 of a continuous function v is defined as

C
D

σ1v(s) := I
n−σ1D

nv(s).

where n = [σ1] + 1.

Definition 2.4. The Hilfer FD of order σ1 and parameter σ2 is defined by

HD
σ1,σ2v(s) = I

σ2(n−σ1)D
n

I
(1−σ2)(n−σ1)v(s),

where n− 1 < σ1 < n, 0 6 σ2 6 1, s > a.

Remark 2.5. In Definition 2.4, type σ2 allows D
σ1,σ2 to interpolate continuously between

the classical RL FD and Caputo FD. When σ2 = 0 the Hilfer FD corresponds to the RL FD,

i.e. HD
σ1,0v(s) = D

n
I
n−σ1v(s), whereas when σ2 = 1 the Hilfer FD corresponds to the

Caputo FD, i.e.,HD
σ1,1v(s) = I

n−σ1D
nv(s).

Lemma 2.6. [15] Let g ∈ L(a,b), σ1 ∈ (n− 1,n] (n ∈ N), σ2 ∈ [0, 1]. If I
(1−σ2)(n−σ1)g ∈

ACk(J), then

(Iσ1
HD

σ1,σ2g) (s) = g(s) −

n∑

k=0

(s− a)k−(n−σ1)(1−σ2)

Γ(k− (n− σ1)(1 − σ2) + 1)
lim

s→a+

(

I
(1−σ2)(n−σ1)g

)

(s).

Let C(J, R) and L(J, R) are the Banach space of continuous functions and Lebesgue

integrable functions from J into R with the norms

‖g‖ = sup{|g| : s ∈ J}, and

‖g‖L =

∫b

a

|g(s)|ds,

respectively.

Here we can suffice to refer to Banach’s fixed point theorem [30] and Krasnoselskii’s

fixed point theorem [30].

3. Main results:

The next lemma deals with a linear variant of the BVP (1.1).

Lemma 3.1. [26] Let 1 < σ1 < 2, and 0 6 σ2 6 1, where γ = σ1 +2σ2 −σ1σ2,w ∈ C(J, R).
If

Υ =
(b− a)γ

γ
−

m−2∑

j=1

ξj(ϑj − a)
γ−1 6= 0, (3.1)
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then the function κ ∈ C(J, R) is a solution of the FDE

HD
σ1,σ2

κ(s) = w(s), s ∈ J, (3.2)

with nonlocal integro-multipoint boundary conditions

κ(a) = 0,

∫b

a

κ(τ)dτ+ λ =

m−2∑

j=1

ξjκ(ϑj), (3.3)

if and only if

κ(s) = I
σ1w(s) +

(s− a)γ−1

Υ





m−2∑

j=1

ξjI
σ1w(ϑj) −

∫b

a

I
σ1w(τ)dτ− λ



 .

In light of Lemma 3.1, we consider the operator Π : C(J, R) → C(J, R) defined by

(Πκ)(s) = I
σ1g(τ,κ(τ),H D

σ1,σ2
κ(τ))(s) +

(s− a)γ−1

Υ

×





m−2∑

j=1

ξjI
σ1g(τ,κ(τ),H D

σ1,σ2
κ(τ))(ϑj)

−I
σ1+1g(τ,κ(τ),H D

σ1,σ2
κ(τ))(b) − λ

]

. (3.4)

It must be noted that problem (1.1) has solution if and only if Π has fixed points. Next ,

for the aim of suitability, we put a constant

Ψ :=





(b− a)γ−1

|Υ|





m−2∑

j=1

∣

∣ξj
∣

∣

(ϑj − a)
σ1

Γ(σ1 + 1)
+

(b− a)σ1+1

Γ(σ1 + 2)



+
(b− a)σ1

Γ(σ1 + 1)



 . (3.5)

In the following subsections, we prove the existence and uniqueness results for the BVP

(1.1) by employing the standard fixed point theorems due to Banach and Krasnoselskii.

3.1. Existence and uniqueness results for (1.1)

First, we consider the following assumptions:

(H1) There exist constant 0 < ℓ < 1 such that

|g(s,κ1,κ∗

1 ) − g(s,κ2,κ∗

2 )| 6 ℓ (|κ1 −κ2|+ |κ∗

1 −κ
∗

2 |) ,

for any κ1,κ∗

1 ,κ2,κ∗

2 ∈ R and s ∈ J.

(H2) Let g ∈ C(J× R
2, R) and � ∈ C(J, R

+) such that

|g(s,κ,κ∗)| 6 �(s), ∀(s,κ,κ∗) ∈ J× R
2.
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Theorem 3.2. Assume that (H1) holds. If

ℓ

1 − ℓ
Ψ < 1, (3.6)

then the BVP (1.1) has a unique solution on J.

Proof. We transform the BVP (1.1) into a fixed point problem, i.e., κ = Πκ, where Π

is defined by (3.4). Note that the fixed points of Π are solutions of the problem (1.1).

Using Banach theorem [30], we will show that Π has a unique fixed point. Indeed, we set

sups∈J |g(s, 0, 0)| = N <∞ and select

ǫ >
NΨ+

(1−ℓ)(b−a)γ−1|λ|

|Υ|

1 − ℓ− ℓΨ
.

First, we prove that ΠBǫ ∈ Bǫ, where Bǫ = {κ ∈ C(J, R) : ‖κ‖ 6 ǫ}. By applying (H1),
we get

|g(s,κ(s),H D
σ1,σ2

κ(s))| 6 |g(s,κ(s),H D
σ1,σ2

κ(s)) − g(s, 0, 0)|+ |g(s, 0, 0)|

6 ℓ |κ(s)|+ ℓ |HD
σ1,σ2

κ(s)|+N

= ℓ |κ(s)|+ ℓ |g(s,κ(s),H D
σ1,σ2

κ(s))|+N,

which implies

|g(s,κ(s),H D
σ1,σ2

κ(s))| 6
ℓ

1 − ℓ
|κ(s)|+

N

1 − ℓ
.

For any κ ∈ Bǫ, we have

|(Πκ)(s)| 6 sup
s∈J

{

I
σ1 |g(τ,κ(τ),H D

σ1,σ2
κ(τ))(s)|+

(s− a)γ−1

|Υ|

×





m−2∑

j=1

∣

∣ξj
∣

∣ I
σ1

∣

∣g(τ,κ(τ),H D
σ1,σ2

κ(τ)(ϑj))
∣

∣

+I
σ1+1 |g(τ,κ(τ),H D

σ1,σ2
κ(τ))(b)|+ |λ| .

]}

6
ℓ

1 − ℓ
I
σ1 ‖κ‖+

N

1 − ℓ
I
σ1 +

(b− a)γ−1

|Υ|

×





m−2∑

j=1

[

∣

∣ξj
∣

∣

ℓ

1 − ℓ
I
σ1 ‖κ‖+

N

1 − ℓ
I
σ1

]

+
ℓ

1 − ℓ
I
σ1+1 ‖κ‖+

N

1 − ℓ
I
σ1+1 + |λ|





6
ℓ

1 − ℓ
‖κ‖

(b− a)σ1

Γ(σ1 + 1)
+

N

1 − ℓ

(b− a)σ1

Γ(σ1 + 1)
+

(b− a)γ−1

|Υ|

×





m−2∑

j=1

[

∣

∣ξj
∣

∣

ℓ

1 − ℓ
‖κ‖

(ϑj − a)
σ1

Γ(σ1 + 1)
+

N

1 − ℓ

(ϑj − a)
σ1

Γ(σ1 + 1)

]

+
ℓ

1 − ℓ
‖κ‖

(b− a)σ1+1

Γ(σ1 + 2)
+

N

1 − ℓ

(b− a)σ1+1

Γ(σ1 + 2)
+ |λ|

]
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6





(b− a)γ−1

|Υ|





m−2∑

j=1

∣

∣ξj
∣

∣

(ϑj − a)
σ1

Γ(σ1 + 1)
+

(b− a)σ1+1

Γ(σ1 + 2)



+
(b− a)σ1

Γ(σ1 + 1)





ℓ

1 − ℓ
‖κ‖

+





(b− a)γ−1

|Υ|





m−2∑

j=1

(ϑj − a)
σ1

Γ(σ1 + 1)
+

(b− a)σ1+1

Γ(σ1 + 2)



+
(b− a)σ1

Γ(σ1 + 1)





N

1 − ℓ

+
(b− a)γ−1

|Υ|
|λ|

6
ℓ

1 − ℓ
Ψǫ+

N

1 − ℓ
Ψ+

(b− a)γ−1

|Υ|
|λ| 6 ǫ,

which means that ΠBǫ ∈ Bǫ.

Next, we take κ,κ∗ ∈ R. Then for s ∈ J, we obtain

|(Πκ)(s) − (Πκ∗)(s)|

6 I
σ1 |g(τ,κ(τ),H D

σ1,σ2
κ(τ))(s) − g(τ,κ∗(τ),H D

σ1,σ2
κ
∗(τ))(s)|+

(b− a)γ−1

|Υ|

×

m−2∑

j=1

∣

∣ξj
∣

∣ I
σ1

∣

∣g(τ,κ(τ),H D
σ1,σ2

κ(τ)(ϑj)) − g(τ,κ∗(τ),H D
σ1,σ2

κ
∗(τ)(ϑj))

∣

∣

+
(b− a)γ−1

|Υ|
I
σ1+1 |g(τ,κ(τ),H D

σ1,σ2
κ(τ))(b) − g(τ,κ∗(τ),H D

σ1,σ2
κ
∗(τ))(b)| .

Here, by (H1) we have

|g(τ,κ(τ),H D
σ1,σ2

κ(τ))(s) − g(τ,κ∗(τ),H D
σ1,σ2

κ
∗(τ))(s)|

6 ℓ |κ −κ
∗|+ ℓ |HD

σ1,σ2
κ −H D

σ1,σ2
κ
∗| ,

which gives

|g(τ,κ(τ),H D
σ1,σ2

κ(τ))(s) − g(τ,κ∗(τ),H D
σ1,σ2

κ
∗(τ))(s)|

6
ℓ

1 − ℓ
|κ −κ

∗| .

Consequently,

|(Πκ)(s) − (Πκ∗)(s)|

6
ℓ

1 − ℓ
I
σ1 ‖κ −κ

∗‖+
(b− a)γ−1

|Υ|

m−2∑

j=1

∣

∣ξj
∣

∣

ℓ

1 − ℓ
I
σ1 ‖κ −κ

∗‖

+
(b− a)γ−1

|Υ|

ℓ

1 − ℓ
I
σ1+1 ‖κ −κ

∗‖

6





(b− a)γ−1

|Υ|





m−2∑

j=1

∣

∣ξj
∣

∣

(ϑj − a)
σ1

Γ(σ1 + 1)
+

(b− a)σ1+1

Γ(σ1 + 2)



+
(b− a)σ1

Γ(σ1 + 1)





ℓ

1 − ℓ
‖κ −κ

∗‖

6
ℓ

1 − ℓ
Ψ ‖κ −κ

∗‖ ,
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which means that ‖Πκ −Πκ∗‖ 6
ℓ

1−ℓ
Ψ ‖κ −κ

∗‖ . As (3.6) Π is a contraction. Therefore,

Banach theorem [30] shows that Π has a fixed point which is the unique solution of the

(BVP) (1.1).

Our second existence result for the problem (1.1) depends on the Krasnoselskii theo-

rem [30].

Theorem 3.3. Assume that (H2) holds. If

Ψ∗ :=
(b− a)γ−1

|Υ|





m−2∑

j=1

∣

∣ξj
∣

∣

(ϑj − a)
σ1

Γ(σ1 + 1)
+

(b− a)σ1+1

Γ(σ1 + 2)
+

(b− a)σ1

Γ(σ1 + 1)
+ |λ|



 < 1, (3.7)

then the BVP (1.1) has at least one solution on J.

Proof. Putting sups∈J |�(s)| = ‖�‖ , and choosing

σ > Ψ ‖�‖+
(b− a)γ−1

|Υ|
|λ| , (3.8)

where Ψ is defined by (3.5). Consider the ball Bσ = {κ ∈ C(J, R) : ‖κ‖ 6 σ}. Then we

define the operators Π1, Π2 on Bσ by

(Π1κ)(s) = I
σ1g(τ,κ(τ),H D

σ1,σ2
κ(τ))(s), s ∈ J,

and

(Π2κ)(s) =
(s− a)γ−1

Υ





m−2∑

j=1

ξjI
σ1g(τ,κ(τ),H D

σ1,σ2
κ(τ)(ϑj))

−I
σ1+1g(τ,κ(τ),H D

σ1,σ2
κ(τ))(b) − |λ|

]

.

For any κ,κ∗ ∈ Bσ, we obtain

|(Π1κ)(s) + (Π2κ
∗)(s)|

6 sup
s∈J

{

I
σ1 |g(τ,κ(τ),H D

σ1,σ2
κ(τ))(s)|+

(s− a)γ−1

|Υ|

×





m−2∑

j=1

∣

∣ξj
∣

∣ I
σ1

∣

∣g(τ,κ(τ),H D
σ1,σ2

κ(τ)(ϑj))
∣

∣

+I
σ1+1 |g(τ,κ(τ),H D

σ1,σ2
κ(τ))(b)|+ |λ|

]}

6





(b− a)γ−1

|Υ|





m−2∑

j=1

∣

∣ξj
∣

∣

(ϑj − a)
σ1

Γ(σ1 + 1)
+

(b− a)σ1+1

Γ(σ1 + 2)



+
(b− a)σ1

Γ(σ1 + 1)



 ‖�‖

+
(b− a)γ−1

|Υ|
|λ|

= Ψ ‖�‖+
(b− a)γ−1

|Υ|
|λ| 6 σ.
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This proves that Π1κ+Π2κ
∗ ∈ Bσ. By using (3.7) one can observe that Π2 is a contraction

map.

The continuity of g gives that Π1 is continuous. Also, Π1 is uniformly bounded on Bσ

as

‖Π1κ‖ 6
(b− a)σ1

Γ(σ1 + 1)
‖�‖ .

Now, we show the compactness of the operator Π1.

We define sup(s,κ)∈(J,Bσ)
|g(s,κ,κ∗)| = g∗ < ∞, and let s1, s2 ∈ J such that s1 < s2.

Consequently,

|(Π1κ)(s2) − (Π1κ
∗)(s1)|

6
1

Γ(σ1)

∣

∣

∣

∣

∫s1

a

[(s2 − τ)
σ1−1 − (s1 − τ)

σ1−1]g(τ,κ(τ),H D
σ1,σ2

κ(τ))dτ

+

∫s2

s1

(s2 − τ)
σ1−1g(τ,κ(τ),H D

σ1,σ2
κ(τ))dτ

∣

∣

∣

∣

6
g∗

Γ(σ1 + 1)
[2(s2 − s1)

σ1 + |(s2 − a)
σ1 − (s1 − a)

σ1 |] .

The last inequality with s2 − s1 → 0, gives

|(Π1κ)(s2) − (Π1κ
∗)(s1)| → 0, ∀ |s2 − s1| → 0, κ ∈ Bσ.

So Π1 is relatively compact on Bσ. An application of the Arzel-Ascoli theorem, Π1 is

compact on Bσ. Hence, all the assumptions of Krasnoselskii theorem [30] are satisfied.

So, we deduce that the problem (1.1) has at least one solution on J.

4. Examples:

Example 4.1. Consider the BVP of Hilfer-type implicit FDE

HD
5
3 , 2

3κ(s) =

{
8

3(87+8s)

(

κ
2(s)+2|κ(s)|

1+|κ(s)|
+ sin

(

HD
5
3 , 2

3κ(s)
))

+ 4
3 , s ∈ [0, 1],

κ(0) = 0,
∫1

0 κ(τ)dτ+
4
3 = 3

4κ(
4
9) +

4
5κ(

5
9),

(4.1)

Here σ1 = 5
3 , σ2 = 2

3 , ξ1 = 3
4 , ξ2 = 4

5 , ϑ1 = 4
9 , ϑ2 = 5

9 , λ = 3
2 , a = 0 and b = 1. From these

settings, we compute constants as γ = 1.888 9, Υ = −0.30979, Ψ = 1.7255. Let

g(s,κ,H D
5
3 , 2

3κ) =
8

3(87 + 8s)

(

κ
2(s) + 2 |κ(s)|

1 + |κ(s)|
+ sin

(

HD
5
3 , 2

3κ(s)
)

)

+
4

3
.

Then, for each s ∈ [0, 1], κ,κ∗ ∈ R

∣

∣

∣g(s,κ,H D
3
2 , 1

2κ) − g(s,κ∗,H D
3
2 , 1

2κ
∗)
∣

∣

∣ 6
1

11

(

|κ −κ
∗|+

∣

∣

∣HD
3
2 , 1

2κ −H D
3
2 , 1

2κ
∗

∣

∣

∣

)

.

Hence, (H1) holds with ℓ = 1
11 . Also, the condition (3.6) is fulfilled, i.e., ℓ

1−ℓ
Ψ ≈ 0.17255 <

1. Therefore, by the applying of Theorem 3.2, the problem (4.1) has a unique solution

κ(s) on [0, 1].
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Example 4.2. Consider the BVP of Hilfer-type implicit FDE

HD
7
2 , 1

3κ(s) =






3N
2(3s+2)

(

|κ(s)|

1+|κ(s)|
+ tan−1(HD

7
2 , 1

3κ(s))
)

+ 1
2 , s ∈ [0, 1

5 ],

κ(0) = 0,
∫ 1

5
0 κ(τ)dτ+ 1

5 = 1
3κ(

1
2) +

2
3κ(

1
3) +

3
4κ(

1
4).

(4.2)

Here σ1 = 7
2 , σ2 = 1

3 , ξ1 = 1
3 , ξ2 = 2

3 , ξ3 = 3
4 , ϑ1 = 1

2 , ϑ2 = 1
3 , ϑ3 = 1

4 , λ = 1
5 , a = 0, b = 1

5 ,
and N is a given constant. For all (s,κ,κ∗) ∈ J× R

2, we have

∣

∣

∣g(s,κ,H D
4
3 , 1

4κ)
∣

∣

∣ 6
3N

2(3s+ 2)

(

|κ(s)|

1 + |κ(s)|
+ tan−1(HD

7
2 , 1

3κ(s))

)

+
1

2

6
3N(2 + π)

4(3s+ 2)
+

1

2
.

Hence (H2) holds with �(s) ∈ C(J, R
+). Next, we can find that γ = 4.6667, Υ =

−0.004265 1 6= 0. Since Ψ∗ := 0.136 44 < 1, the condition (3.7) is fulfilled. Therefore, by

the applying of Theorem 3.3, the problem (4.2) has has at least one solution on [0, 1
5 ].

5. Conclusions

In this article, we have studied a kind of nonlinear implicit FDEs with nonlocal integral-

multipoint boundary conditions in the frame of Hilfer FD. The existence and uniqueness

results are proved by using some fixed point theorems of Banach and Krasnoselskii.

In future work, we are thinking about investigating the existence and stability of so-

lutions for the proposed problem (1.1) involving a generalized fractional derivative with

respect to another function.
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