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Abstract

In regression modeling, first-order auto correlated errors are often a problem, when the data also suffers

from independent variables. Generalized Least Squares (GLS) estimation is no longer the best alternative to

Ordinary Least Squares (OLS). The Monte Carlo simulation illustrates that regression estimation using data

transformed according to the GLS method provides estimates of the regression coefficients which are superior

to OLS estimates. In GLS, we observe that in sample size 200 and σ=3 with correlation level 0.90 the bias of

GLS β0 is −0.1737, which is less than all bias estimates, and in sample size 200 and σ = 1 with correlation

level 0.90 the bias of GLS β0 is 8.6802, which is maximum in all levels. Similarly minimum and maximum

bias values of OLS and GLS of β1 are −0.0816, −7.6101 and 0.1371, 0.1383 respectively. The average values of

parameters of the OLS and GLS estimation with different size of sample and correlation levels are estimated.

It is found that for large samples both methods give similar results but for small sample size GLS is best fitted

as compared to OLS.
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1. Introduction

We introduce about the linear regression estimation and the effect of serial correlation

under first order autoregressive scheme by different scientists. The regression examina-

tion is a factual strategy broadly utilized in numerous fields, for example, financial aspects,

innovation, sociologies and account. A direct relapse model is built to depict the connec-

tion between the needy variable and one or a few indicator factors. This regression model

could be straightforward or different. Not with standing, in the direct relapse model, cer-

tain presumptions are made on how a dataset will be created by a hidden information

producing measure.
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As indicated by these suspicions incorporate linearity, homoscedasticity, ordinariness

and no autocorrelation between the blunder terms. Also, relapse model portrays the esti-

mation of the needy variable as the amount of two sections, a deterministic part (illustra-

tive factors) and the arbitrary part. The mistake term is basically an unsettling influence to

a generally steady relationship and can catch the excess data in the reliant variable which

couldn’t be clarified by the autonomous factors.

Identifying with the supposition on the blunder term, on the off chance that the pre-

sumption of no relationship in the mistake term is disregarded, at that point, the fun-

damental model would be ruined with the standard mistakes of the boundaries getting

one-sided. Besides, if the mistakes are related, the least squares assessors are wasteful

and the assessed fluctuations are not suitable. By definition, autocorrelation is the slack

connection of a given arrangement with itself, slacked by various time units. Hence, while

applying relapse models to financial or the board information within the sight of autocor-

relation, the normal least squares assessment technique stops to give productive assessors

and suitable fluctuations .

Objective of the Study

The main objectives are:

• To apply the Monte Carlo method on linear regression model with First Order Auto-

Regressive scheme.

• To compare the biases of OLS and GLS estimators in linear regression model with

First Order Auto-Regressive scheme.

2. Literature review

Yale and Forsythe (1976) in [1] assessed a basic straight relapse model and contrast

this strategy and OLS through relative productivity estimations got from Monte Carlo tests

and they likewise apply this technique to a genuine informational collection. This method

is likewise done by Rivest (1994) [2] for different slanted disseminations. Additionally, to

eliminate the high impact of peripheral perceptions, Hoo et. al., (2002) [3] built up this

methodology, examine the idea of powerful measurements and present the techniques for

strong multivariate exception separating.

Cheung (2007)[4] proposes an altered least-squares relapse approach un-weighted

least squares relapse with a Huber-White powerful standard blunder for assessment of

danger contrasts. Four adaptations of the powerful standard mistake are thought of. The

binomial, common least squares and adjusted least-squares assessors are thought about

diagnostically in a basic circumstance of one introduction variable. Multivariable relapse

examinations are recreated to exhibit the convenience of the methodology. For test sizes

of roughly 200 or less, a little example adaptation of the hearty standard mistake is sug-

gested. The strategy is represented with information from a patient review in which the

binomial relapse neglects to meet in the investigations of four out of five result factors.

Kiviet (2011) in [5] concentrated in econometric hypothesis are enhanced by Monte

Carlo reenactment examinations. These show the properties of elective derivation strate-

gies when applied to tests drawn from generally completely engineered information cre-

ating measures. They ought to give data on how strategies, which might be sound asymp-

totically, act in limited examples and afterward reveal the impacts of, model attributes
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too complex to even consider analyzing systematically. Additionally the understanding of

applied examinations ought to frequently profit when enhanced by a devoted recreation

study, in light of a plan motivated by the hypothesized real observational information

producing measure, which would verge on bootstrapping.

Ayinde et al., (2012) in [6] saw the exhibitions of assessors of direct relapse model

with auto corresponded mistake term have been credited to the nature and particular of

the illustrative factors. The infringement of presumption of the autonomy of the informa-

tive factors isn’t remarkable particularly in business, monetary and sociologies, prompting

the improvement of numerous assessors. In addition, expectation is one of the principle

embodiments of relapse examination.

In [7] Suvarna and Ismail (2016) utilized the direct factual model, scientists face as-

sortment of issues because of non trial nature for example vulnerability about the idea of

the mistake cycle, model misspecifications, subordinate regressors and so on The marvel

of connected mistakes in direct relapse models including time arrangement information is

called autocorrelation. Infringement of the supposition of free regressors prompts multi-

collinearity. Henceforth, Ordinary edge gauges are loose to be very useful if there should

arise an occurrence of auto related relapse model with the multicollinearity issue.

3. Material And Methods

3.1. Monte Carlo Simulation

Estimation of parameters with different correlation levels in linear regression model

and constructed Monte Carlo (MC) Simulation with different sizes of sample. A Simula-

tion is the impersonation of the activity of a genuine cycle or framework over the long run.

Regardless of whether done by hand or on a PC, reenactment includes the age of a coun-

terfeit history of a framework and the perception of that fake history to draw derivations

concerning the working qualities of the genuine framework .

This simulation study is performed for sample sizes n=50, 100, 200, 300 and 500. The

values of the model parameters of betas (1, 1) and first order autoregressive coefficients

(ρ = −0.9,−0.5, 0.5, 0.9) with error variances (1, 3). All experimental results reported are

based on 5000 replications of sample sizes. For data generation and analysis, R program-

ming and Minitab have been used.

3.2. Ordinary Least Squares

Ordinary Least Squares (OLS) regression is a measurable technique for investigation

that appraises the connection between at least one free factors and a needy variable; the

strategy gauges the relationship by limiting the amount of the squares in the contrast

between the noticed and anticipated estimations of the reliant variable designed as a

straight line . The simple linear regression model is:

Y = β0 +β1X+ e.

In matrix form

Y = Xβ+ e.
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Estimated model is

Y = Xβ+ e.

Y −Xβ = eY = Y.

By minimizing the sum of squares of residuals that is

∑

e2
i = ete

ete = [Y −Xβ]t[Y −Xβ]

ete = [Yt −Xtβt][Y −Xβ]

ete = YtY − YtXβ−XtβtY +XtβtβX

Since βtXtY is scalar, therefore it is equal its transpose i.e. βtXtY = βXYt

ete = YtY −βtXtY −βtXtY +XtβtβX

ete = YtY − 2βXtY +XtββXβ = βt.

Minimize with respect to β and equating zero.

∂ete

∂β
= −2XtY + 2βXtX

0 = −2XtY + 2βXtX

2XtY = 2βXtX

2XtY

2XtX
= β

βOLS = (XtX)−1XtY

Bias(βOLS) = βOLS −β.
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3.3. Generalized Least Squares

Generalized Least Squares (GLS) is a technique for fitting coefficients of illustrative

factors that help to foresee the results of a reliant arbitrary variable. As its name recom-

mends, GLS incorporates Ordinary Least Squares (OLS) as an uncommon case. GLS is

likewise called "Aitken’s assessor," after Aitken (1935) [8]. The simple linear regression

model is:

Y = β0 +β1X+ e.

In matrix form

Y = Xβ+ e.

Estimated model is

Y = Xβ+ e.

Y = Xβ+ eY = Y

with E(e) = 0, and var(e) = σ2Ω,where Ω is a known n×n matrix.Giventhat σ2Ω is

a covariance matrix, we know that Ω must be symmetric and non singular. Therefore we

can define:

Ω = KtK = KK

with K called the square root of Ω. Let we define:







Y
′

= K−1Y,

X
′

= K−1X,

e
′

= K−1e.

Note that:

E(e
′

) = E(K−1e) = K−1E(e) = K−1(0) = 0,

Var(e
′

) = Var(K−1e) = K−1Var(e)K−1 = K−1σ2ΩK−1 = σ2K−1KKK−1 = σ2.

By minimizing the sum of squares of residuals that is
∑

e2
i = e′te

e
′te = [Y

′

−X
′

β]t[Y
′

−X
′

β],

e
′te = [K−1Y −K−1Xβ]t[K−1Y −K−1Xβ],

e
′te = [K−1(Y −Xβ)]t[K−1(Y −Xβ)],

e
′te = (Y −Xβ)tK−1K−1(Y −Xβ),
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e
′te = (Y −Xβ)tΩ−1(Y −Xβ),

e
′te = (Yt −Xtβt)Ω−1(Y −Xβ),

e
′te = YtΩ−1Y − YtΩ−1Xβ−XtβtΩ−1Y +XtβtΩ−1Xβ,

e
′te = YtΩ−1Y −βtXtΩ−1Y −βtXtΩ−1Y +βtXtΩ−1Xβ,

e
′te = YtΩ−1Y − 2βtXtΩ−1Y +βtXtΩ−1Xβ.

Minimize with respect to β and equating zero.

∂e
′te

∂β
= −2XtΩ−1Y + 2XtΩ−1Xβ,

0 = −2XtΩ−1Y + 2βXtΩ−1X,

2XtΩ−1Y = 2βXtΩ−1X,

β =
XtΩ−1Y

XtΩ−1X
,

βGLS = (XtΩ−1X)−1XtΩ−1Y,

Bias(βGLS) = βGLS −β.

3.4. First Order Auto-Regressive (AR) Scheme

First order autocorrelation results from correlation between the error terms of adjacent

time periods. If first order autocorrelation is present, the error for one time period et is a

function of the error of the previous time period et−1 as follow:

et = ρet−1 + ut,

where E(ut) = 0,E(u2
t) = σ2

u and ρ is the parameter depicting the functional relationship

among observations of the error term, et and ut is stochastic error term which is iid.

4. Results and Discussion

We estimate the average values of parameters with different correlation structures for

linear regression technique. For the generation of data set we use Monte Carlo Simula-

tion method with linear regression model of OLS and GLS with first order autoregressive

scheme. The Monte Carlo Simulation results are given in Table 4.1.

Fig. 4.1:Bias OLS β0 when σ = 1

In Fig. 4.1 the Bias of OLS (β0), we observe that in different sample sizes (50,100,200,300,500)

and σ = 1 with different correlation levels (-0.90,-0.50, 0.50, 0.90). In sample size 500

with correlation level 0.90 the bias of OLS (β0) is -0.0642 which is less than all others,

and in sample size 200 with σ = 1the correlation level 0.90 have maximum value of bias

OLS ( β0) is 0.0917.
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Table 1: Monte Carlo Simulation Estimation Varying Sample Sizes and Correlations

n=50 n=100 n=200 n=300 n=500

βo β1 βo β1 βo β1 βo β1 βo β1

rho=-0.9, var=1

Bias OLS 0.0004 -0.0045 0.0006 -0.0197 0.0158 -0.0320 0.0098 0.0161 -0.0023 -0.0042

Bias GLS 0.0004 -0.0046 0.0006 -0.0199 0.0158 -0.0321 0.0099 0.0164 -0.0233 -0.0042

rho=-0.5, var=1

Bias OLS 0.0006 -0.0091 -0.0012 -0.0026 0.0200 -0.0199 -0.0006 -0.0236 -0.0090 -0.0045

Bias GLS 0.0006 -0.0091 -0.0012 -0.0026 0.0199 -0.0202 -0.0006 -0.0234 -0.0090 -0.0046

rho=0.5, var=1

Bias OLS -0.0043 -0.0022 0.0059 -0.0019 0.0226 0.0083 0.0178 0.0001 0.0116 -0.0581

Bias GLS -0.0044 -0.0011 0.0055 -0.0011 0.0218 0.0030 0.0179 -0.0001 0.0103 -0.0390

rho=0.9, var=1

Bias OLS 0.0022 0.0035 0.0313 0.0133 0.0917 0.0233 0.0127 0.0125 -0.064 -0.0105

Bias GLS 0.0085 -0.0029 0.0100 -0.0042 8.6802 -7.6101 0.0039 -0.0531 -0.1254 -0.0190

rho=-0.9, var=3

Bias OLS -0.0024 -0.0181 -0.0028 0.0030 -0.0218 -0.0633 0.0143 0.1373 -0.0069 0.0682

Bias GLS -0.0024 -0.0183 -0.0028 0.0029 -0.0218 -0.0640 0.0143 0.1383 -0.0070 0.0687

rho=-0.5, var=3

Bias OLS 0.0029 -0.0126 -0.0017 0.0077 0.0282 -0.0810 0.0374 0.0162 0.0128 0.0157

Bias GLS 0.0029 -0.0128 -0.0017 0.0077 0.0282 -0.0814 0.0374 0.0164 0.0128 0.0156

rho=0.5, var=3

Bias OLS 0.0062 0.0093 0.0265 0.0148 -0.0152 0.0078 0.0621 -0.0816 -0.0747 -0.0314

Bias GLS 0.0066 0.0047 0.0265 0.0121 -0.0150 0.0174 0.0600 -0.0177 -0.0732 -0.0148

rho=0.9, var=3

Bias OLS 0.0315 -0.0089 -0.0388 -0.0027 -0.1625 0.0475 0.2006 -0.0251 0.5300 0.0794

Bias GLS 0.3205 -0.0028 -0.053 -0.0086 -0.1737 -0.0123 0.1447 -0.0488 0.5223 0.0037

Table 2: Bias OLS β0 when σ =1

Sample Size Rho

-0.90 -0.50 0.50 0.90

50 0.0004 0.0006 -0.0043 0.0022

100 0.0006 -0.0012 0.0059 0.0313

200 0.0158 0.0200 0.0226 0.0917

300 0.0098 -0.0006 0.0178 0.0127

500 -0.0023 0.0090 0.0116 -0.0641
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Table 3: Bias OLS β1 when σ =1

Sample Size Rho

-0.90 -0.50 0.50 0.90

50 -0.0045 -0.0091 -0.0022 0.0035

100 -0.0197 -0.0026 -0.0019 0.0133

200 -0.0320 -0.0199 0.0083 0.0233

300 0.0161 -0.0236 0.0001 0.0125

500 -0.0042 -0.0045 -0.0581 -0.0105

Fig. 4.2: Bias OLS β1 when σ =1

In Fig. 4.2 the bias of OLS (β1), we observe that in different sample sizes (50,100,200,300,500)

and σ = 1 with different correlation levels (-0.90,-0.50, 0.50, 0.90). In sample size 500

with correlation level 0.50 the bias of OLS (β1) is -0.0581 which is less than all others,

and in sample size 200 with σ = 1 the correlation level 0.90 have maximum value of bias

OLS ( β1) is 0.0233.
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Table 4: Bias OLS β0 when σ =3

Sample Size Rho

-0.90 -0.50 0.50 0.90

50 -0.0024 0.0029 0.0062 0.0315

100 -0.0028 -0.0017 0.0265 -0.0388

200 -0.0218 0.0282 -0.0152 -0.1625

300 0.0143 0.0374 0.0621 0.2006

500 -0.0069 0.0128 -0.0747 0.5300

Fig. 4.3:Bias OLS β0 when σ =3

In Fig. 4.3 the bias of OLS (β0), we observe that in different sample sizes (50,100,200,300,500)

and σ = 3 with different correlation levels (-0.90,-0.50, 0.50, 0.90). In sample size 200

with correlation level 0.90 the bias of OLS (β0) is -0.1625, which is less than all others,

and in sample size 500 withσ = 3, the correlation level 0.90 have maximum value of bias

OLS (β0) is 0.5300.

Fig. 4.4:Bias OLS β1 when σ =3

In Fig. 4.4 the bias of OLS (β1), we observe that in different sizes (50,100,200,300,500)

and σ = 3 with different correlation levels (-0.90,-0.50, 0.50, 0.90). In sample size 300

with correlation level 0.50 the bias of OLS (β1) is -0.0816, which is less than all others,

and in sample size 300 with σ = 3 the correlation level -0.90 have maximum value of bias

OLS (β1) is 0.1373.

Fig. 4.5: Bias GLS β0 when σ =1
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Table 5: Bias OLS β1 when σ =3

Sample Size Rho

-0.90 -0.50 0.50 0.90

50 -0.0181 -0.0126 0.0093 -0.0089

100 0.0030 0.0077 0.0148 -0.0027

200 -0.0633 -0.0810 0.0078 0.0475

300 0.1373 0.0162 -0.0816 -0.0251

500 0.0682 0.0157 -0.0314 0.0794

Table 6: Bias GLS β0 when σ =1

Sample Size Rho

-0.90 -0.50 0.50 0.90

50 0.0004 0.0006 -0.0044 0.0085

100 0.0006 -0.0012 0.0055 0.0100

200 0.0158 0.0199 0.0218 8.6802

300 0.0099 -0.0006 0.0179 0.0039

500 -0.0233 -0.0090 0.0103 -0.1254

In Fig. 4.5 the bias of GLS (β0), we observe that in different sample sizes (50,100,200,300,500)

and σ = 1 with different correlation levels (-0.90,-0.50, 0.50, 0.90). In sample size 500

with correlation level 0.90 the bias of GLS (β0) is -0.1254, which is less than all others,

and in sample size 200 with σ = 1 the correlation level 0.90 have maximum value of bias

GLS ( β0) is 8.6802.

Fig. 4.6: Bias GLS β1 when σ =1
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Table 7: Bias GLS β1 when σ =1

Sample Size Rho

-0.90 -0.50 0.50 0.90

50 -0.0046 -0.0091 -0.0011 -0.0029

100 -0.0199 -0.0026 -0.0011 -0.0042

200 -0.0321 -0.0202 0.0030 -7.6101

300 0.0164 -0.0234 -0.0001 -0.0531

500 -0.0042 -0.0046 -0.0390 -0.0190

In Fig. 4.6 the bias of GLS (β1), we observe that in different sample sizes (50,100,200,300,500)

and σ = 1 with different correlation levels (-0.9,-0.50, 0.50, 0.90). In sample size 200 with

correlation level 0.90 the bias of GLS (β1) is -7.6101, which is less than all others, and in

sample size 300 with σ = 1 the correlation level -0.90 have maximum value of bias GLS (

β1) is 0.0164.

Table 8: Bias GLS β0 when σ =3

Sample Size Rho

-0.90 -0.50 0.50 0.90

50 -0.0024 0.0029 0.0066 0.3205

100 -0.0028 -0.0017 0.0265 -0.0534

200 -0.0218 0.0282 -0.0150 -0.1737

300 0.0143 0.0374 0.0600 0.1447

500 -0.0070 0.0128 -0.0732 0.5223

Fig. 4.7: Bias GLS β0 when σ =3

In Fig. 4.7 the bias of GLS (β0), we observe that in different sample sizes (50,100,200,300,500)

and σ = 3 with different correlation (-0.90,-0.50, 0.50, 0.90). In sample size 200 with
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correlation level 0.90 the bias of GLS (β0) is -0.1737, which is less than all others, and in

sample size 500 with σ = 3 the correlation level 0.90 have maximum value of bias GLS

(β0) is 0.5223.

Table 9: Bias GLS β1 when σ =3

Sample Size Rho

-0.90 -0.50 0.50 -0.50

50 -0.0183 -0.0128 0.0047 -0.0028

100 0.0029 0.0077 0.0121 -0.0086

200 -0.0640 -0.0814 0.0174 -0.0123

300 0.1383 0.0164 -0.0177 -0.0488

500 0.0687 0.0156 -0.0148 0.0037
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Fig. 4.8: Bias GLS β1 when σ =3

In Fig. 4.8 the bias of GLS (β1), we observe that in different sample sizes (50,100,200,300,500)

and σ = 3 with different correlation levels (-0.9-,-0.50, 0.50, 0.90). In sample size 200

with correlation level -0.50 the bias of GLS (β1) is -0.0814, which is less than all others,

and in sample size 300 with σ = 3 the correlation level -0.90 have maximum value of bias

GLS ( β1) is 0.1383.

5. conclusion

We have discussed the Ordinary Least Squares and Generalized Least Squares tech-

niques and estimate with First Order Auto-Regressive (AR1) scheme from different corre-

lation levels by using simple linear regression model. For this purpose, we use simulation

of Monte Carlo study and the experiment is repeated 5000 times and performed for dif-

ferent sample sizes.

The average values of parameters of the Ordinary Least Squares and Generalized Least

Squares estimation with different size of sample and correlation levels are estimated.

When the bias values of Ordinary Least Squares and Generalized Least Squares is not

normal with haphazard manner of average values.

Comparing the bias of OLS and GLS of (β0), we observe that in different sample sizes

(50,100,200,300,500) and σ = 1, 3 with different correlation levels (-0.90,-0.50, 0.50,

0.90). In sample size 200 with correlation level 0.90 the bias of OLS (β0) is -0.1625,

which is less than all other estimates, and in sample size 500 with the correlation level

0.90 have maximum value of bias OLS (β0) is 0.5300.

In GLS, we observe that in sample size 200 and σ = 3with correlation level 0.90

the bias of GLS (β0) is -0.1737, which is less than all bias estimates, and in sample size

200 and σ = 1 with correlation level 0.90 the bias of GLS (β0 ) is 8.6802, which is

maximum in all levels. Similarly minimum and maximum bias values of OLS and GLS of

(β1) are -0.0816, -7.6101 and 0.1371, 0.1383 respectively. These result shows GLS is best

in different sample sizes and correlation situations.
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