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Abstract

This paper presents a two step hybrid numerical scheme with one off-grid point for numerical solution

of general second order initial value problems without reducing to two systems of first order. The scheme

is developed using collocation and interpolation technique invoked on Bernstein polynomial. The proposed

scheme is consistent, zero stable and is of order four(4). The developed scheme can estimate the approximate

solutions at both step and off step points simultaneously using variable step size. Numerical results obtained

in this paper shows the efficiency of the proposed scheme over some existing methods of same and higher

orders.
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1. Introduction

Differential equations are important tools in solving real world problems and many

physical phenomena are model into second order differential equations, such models may

or may not have exact solutions, thus a need for a numerical solution.

In this paper, we consider a second order initial value problem of the form

y ′′ = f(x,y(x),y ′(x)), (1.1)

In order to solve equation (1.1), the conditions stated below need to be imposed

y(x0) = y0, y ′(x0) = y ′

0 (1.2)

where a 6 x 6 b, a = x0 < x1 < x2 < · · · ,< xN−1, N = b−a
h

, N = 0, 1, · · · ,N− 1 and

h = xn+1 − xn is called the step length. where y0 is the solution at x0 and x0 is the initial
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point , f is a continuous function within the interval of integration, the condition on the

function f are such that existence and uniqueness of solution is guaranteed( Wend[1]),

and prime indicates differentiation with respect to x, while y(x) is the unknown function

to be determined.

The numerical solution of equation (1.1) coupled with equation (1.2) is still receiving

a lot of attention due to the fact that many physical sciences and engineering problems

formulated into mathematical equation result to equation of such type.

In most applications, equation (1.1&1.2) are solved by reducing it to a system of first

order ordinary differential equations and appropriate numerical method(such as Runge

Kutta mehod, Modified Euler method, e.t.c) could be used to solve the resultant sys-

tem, this approach has setbacks which had been reported by scholars, among them are

Awoyemi et al[2] and Bun and Vasil’yer[3].

Direct method of solving equation (1.1) has been shown to be more efficient and saves

computational time rather than method of reduction to system of first order ordinary

differential equation (Brown [4]) and this has led to many scholars to attempt to solve

equation (1.1) directly without reduction to system of first order equation. Brown [4]

proposed a multi-derivative method to solve equation (1.1&1.2) directly. Adeniran and

Ogundare [5] propose a one step hybrid numerical scheme with two off grid points for

solving directly second over order initial value problems, the scheme can estimate the

approximate solution at both step and off step points simultaneously by using variable

step size.

Adeniran, Odejide and Ogundare [6] developed a one step hybrid numerical scheme

for the direct solution of general second order ordinary differential equations, the scheme

was developed using the collocation and interpolation techniques on the power series

approximate solution and augmented by the introduction of one offstep point, in order

to circumvent Dahlquist zero stability barrier and upgrade the order of consistency of the

method. Accuracy of the scheme was tested with numerical examples and the result shows

a better performance over the existing schemes.

In recent years, the Bernstein polynomials have gained the attention of many re-

searchers. It has been used to obtained approximate solutions of different differential

equations, for example, a method for approximating solutions to differential equations,

proposed by Bhatti used Bernstein [7] operational matrix of differentiation. Ojo and

Okoro [8] use a Bernstein polynomial to develop one step hybrid scheme with one off-

grid point via collocation and interpolation techniques for the direct solution of general

second order ordinary differential equations. The paper extend the work of Ojo and Okoro

[8] by developing a two step hybrid method for solution of equation 1.1&1.2.

2. Berstein Polynomial

Aysegul and Nese [9] define Berstein Polynomial of degree m on interval [0, 1] as

Bi,m(x) = (mi )xi(1 − x)m−i

where the binomial coefficient is

(mi ) =
m!

i!(m− i)!
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there are (m+ 1)nth degree of Berstein Polynomial, for mathematically convenience, we

usually set Bi,m = 0, if i < 0 or i > 0. In general, the approximation of any function y(x)

with the first (m+ 1) Berstein Polynomial as

y(x) =

m∑

i=0

ciBi,m(x)

3. Development of the method

We seek numerical approximation of the analytic solution y(x) by assuming an approx-

imate solution of the form

y(x) =

c+i−1∑

k=0

akBk,n(x) (3.1)

where c and i are number of distinct collocation and interpolation points respectively and

Bk,n(x) is the Bernstein Polynomial derived from the recursive relation

Bk,n(x) = (1 − x)Bk,n−1(x) + xBk−1,n−1(x) (3.2)

Differentiating equation (3.1) twice and substituting into equation (1.1) gives:

f(x,y(x),y ′(x)) =

c+i−1∑

k=0

akB
′′

k,n(x) (3.3)

We consider a grid point of step length two(2) and off step point at x = xn+ 3
2
. Collocating

(5) at x = xn, xn+1, xn+ 3
2

and xn+2 and interpolating (3) at x = xn and xn+ 3
2

give a

system of six equations which are solved using Gaussian elimination method to obtained

the parameters a ′

js, j = 0, 1, · · · , 5. The parameter a ′

js obtained are then substituted back

into equation (3.3) to give a continuous two step hybrid method of the form

y(x) = α0yn +α1yn+ 3
2
+ h2

[

β0fn +β1fn+1 +β 3
2
fn+ 3

2
+β2fn+2

]

(3.4)

where α and β are continuous coefficients. The continuous method (3.4) is used to gen-

erate the main method. That is, we evaluate at x = xn+1 and x = xn+2

yn+1 =
1

3
yn +

2

3
yn+ 2

3
− h2

[

1

36
fn +

13

48
fn+1 −

5

72
fn+ 3

2
+

1

48
fn+2

]

(3.5)

yn+2 = −
1

3
yn +

4

3
yn+ 2

3
+ h2

[

1

36
fn +

7

24
fn+1 +

5

36
fn+ 3

2
+

1

24
fn+2

]

(3.6)

In order to incorporate the initial condition at (1.2) in the derived schemes, we differen-

tiate (6) with respect to x and evaluate at point x = xn, x = xn+1, x = xn+ 3
2

and xn+2 to

have:

hy ′

n = −
2

3
yn +

2

3
yn+ 2

3
− h2

[

11

40
fn +

60

80
fn+1 −

17

40
fn+ 3

2
+

9

80
fn+2

]

(3.7)
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hy ′

n+1 = −
2

3
yn +

2

3
yn+ 2

3
+ h2

[

7

120
fn +

90

240
fn+1 −

29

120
fn+ 3

2
+

13

240
fn+2

]

(3.8)

hy ′

n+ 3
2
= −

2

3
yn +

2

3
yn+ 2

3
+ h2

[

17

320
fn +

99

160
fn+1 +

1

20
fn+ 3

2
+

9

320
fn+2

]

(3.9)

hy ′

n+2 = −
2

3
yn +

2

3
yn+ 2

3
+ h2

[

7

120
fn +

131

240
fn+1 +

17

40
fn+ 3

2
+

53

240
fn+2

]

(3.10)

Combining the schemes derived in equation (3.5 − 3.10). The block method is em-

ployed to simultaneously obtain value for yn+1, yn+ 3
2
, yn+2, y ′

n+1, y ′

n+ 3
2

and y ′

n+2 needed

to implement equation (1.1&1.2).

Definition 3.1. Let Ym and Fm be defined by Ym = (yn, yn+1, · · · ,yn+r−1)
T , Fm = (fn,

fn+1,· · · , fn+r−1)
T . Then a general k block, r-point block method is a matrix of finite

difference equation of the form

Ym =

k∑

i=1

AiYm−i + h

k∑

i=0

BiFm−i (3.11)

where all the A ′

is and B ′

is are properly chosen r× r matrix coefficient and m = 0, 1, 2, · · ·
represent the block number, n = mr is the first step number of the mth block and r is the

proposed block size. (Chu and Hamilton [10]).

In order to implement equation (3.5) to (3.10), we use a modified block method defined

as follows:

hλ

q∑

j=1

aijy
λ
n+j = hλ

q∑

j=1

eijy
λ
n + hµ−λ





q∑

j=1

dijfn +

q∑

j=1

bijfn+j



 , (3.12)

where λ is the power of the derivative of the continuous method and µ is the order of the

problem to be solved; q=r+s. In vector notation, (3.12) can be written as:

hλaYm = hλeym + hµ−λ
[

df(ym) + bF(Ym)
]

, (3.13)

where the matrices a = (aij), e = (eij), d = (dij) are constant coefficient matri-

ces and Ym = (yn+vi
,yn+1y

′

n+vi
,y ′

n+1)
T , ym = (yn−(r−1),yn−(r−2), · · · ,yn), F(Ym =

(fn+vi
, fj)

T and F(ym = f(fn−i, · · · , fn), i = 1, · · · ,q. The normalized version of (3.13) is

given by

AYm = hλEym + hµ−λ
[

Df(ym) +BF(Ym)
]

. (3.14)

The modified block formulae (3.13) and (3.14) are employed to simultaneously obtain the

values of yn+1, yn+ 3
2
, yn+2, y ′

n+1, y ′

n+ 3
2

and y ′

n+2 needed to implement (1.1&1.2). we

obtain the block solution as:
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















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



































yn+1

yn+ 3
2

yn+2

y ′

n+1

y ′

n+ 3
2

y ′

n+2



















=

















1 h

1 3
2h

1 2h
0 1
0 1
0 1

















(

yn

y ′

n

)

+

















89
360h

2

33
80h

2

26
45h

2

1
3h

21
64h
1
3h

















(

fn
)

+



















31
60h

2 − 16
45h

2 11
120h

2

189
160h

2 − 51
80h

2 27
160h

2

28
15h

2 − 32
45h

2 4
15h

2

7
6h − 2

3h
1
6h

45
32h − 3

8h
9
64h

4
3h 0h 1

3h























fn+1

fn+ 3
2

fn+2



 .

4. Analysis of the method

we analyze the derived method which includes the order and error constant, Consis-

tency zero stability, and convergence of the method.

4.1. Order and error constant

We adopted the method proposed by Fatunla [11] and Lambert [12] to obtain the

order of our method as (4, 4, 4, 4, 4, 4)T and error constant as

( − 1
160 , − 1

60 , − 117
10240 , − 31

2880 , − 51
5120 , − 1

90)T

4.2. Consistency

According to Gurjinder et al.[13] A linear multistep method is said to be consistent if

it has an order of convergence, say p > 1. Thus, our derived methods are consistent, since

all are of order four.

4.3. Zero Stability

To obtain the zero stability of the method, we consider the following conditions:

1. The block (3.12) is said to be stable if as h → 0 the roots rj, j=1(1)k of the first

characteristics polynomial ρ(R) = 0, that is ρ(R) = det[
∑

A(i)Rk−1] = 0, satisfy

|R| 6 1 and for those roots with |R| 6 1, must have multiplicity equal to unity.( see

Fatunla[11] for details).

2. If (3.12) be an R× R matrix then, it is zero stable if as hµ
→ 0, |RA0 −Ai| = Rr−µ =

0. For those root with |Rj| 6 1, the multiplicity must not exceed the order of the

differential equation.

For our method

λA0 −Ai =

















λ 0 0 −1 0 −1

0 λ 0 −1 0 −3
2

0 0 λ 0 0 −2
0 0 0 λ 0 −1
0 0 0 0 λ −1
0 0 0 0 0 λ− 1

















(4.1)
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As h → 0, we have





λ 0 −1
0 λ −1
0 0 λ− 1





Taking the determinant of above, we have

λ4(λ− 1) = 0 (4.2)

solving equation (4.2) we obtain λ = 0,, 1.

Since all the two conditions above are satisfied, we conclude that the block method con-

verges.

5. Numerical implementation of the scheme

The effectiveness and validity of our newly derived method was tested by applying it

to some second order differential equations. All calculations and programs are carried out

with the aid of Maple 2016 software.

Example 1

Considering a moderately stiff problem

y ′′ = y ′,y(0) = 0,y ′(0) = −1

Whose exact solution is y(x) = 1 − exp(x).

Table 1: Showing the exact solutions, computed results and error from the proposed methods. h = 0.1.

x Exact Numerical Error

0.1 −0.1051709180756476248 −0.10517092531230067983 7.237 × 10−9

0.2 −0.22140277842597346028 −0.22140277842597346028 2.027 × 10−9

0.3 −0.3498588075760031040 −0.34985885190094527583 4.432 × 10−8

0.4 −0.4918246976412703178 −0.49182477470105403287 7.706 × 10−8

0.5 −0.6487212707001281468 −0.64872139573589266565 1.250 × 10−7

0.6 −0.8221188003905089749 −0.82211898595391881399 1.856 × 10−7

0.7 −1.0137527074704765216 −1.0137529743378625233 2.669 × 10−7

0.8 −1.2255409284924676046 −1.2255412943824773703 3.659 × 10−7

0.9 −1.4596031111569496638 −1.4596036040850111275 4.929 × 10−7

0.10 −1.7182818284590452354 −1.7182824729834857232 6.445 × 10−7

Example 2

We consider a highly oscillatory test problem

y ′′ + λ2y = 0,y(0) = 1,y ′(0) = 2,
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Table 2: Comparison of error for proposed scheme with existing literature for Example 1. (Anake et al.

[14],Yahaya and Badmus [15], Kayode and Adeyeye[16],Adeniran and Ogundare [5], New Proposed Method

(NPM)

x [14] [15] [16] [5] NPM

0.1 0.84 × 10−07 0.87 × 10−04 0.817 × 10−06 2.22 × 10−08 7.237 × 10−9

0.2 0.53 × 10−05 0.32 × 10−03 0.31 × 10−5 1.25 × 10−07 2.027 × 10−9

0.3 0.62 × 10−05 0.22 × 10−02 0.65 × 10−05 3.250 × 10−07 4.432 × 10−8

0.4 0.16 × 10−05 0.49 × 10−02 0.66 × 10−05 6.424 × 10−07 7.706 × 10−8

0.5 0.10 × 10−04 0.91 × 10−02 0.11 × 10−07 1.099 × 10−06 1.250 × 10−7

0.6 0.29 × 10−04 0.14 × 10−01 1.80 × 10−04 1.7213 × 10−06 1.856 × 10−7

0.7 0.59 × 10−04 0.21 × 10−01 0.26 × 10−04 2.538 × 10−06 2.669 × 10−7

0.8 0.10 × 10−03 0.29 × 10−01 0.37 × 10−04 3.583 × 10−06 3.659 × 10−7

0.9 0.15 × 10−03 0.4 × 10−01 0.51 × 10−04 4.896 × 10−06 4.929 × 10−7

1.0 0.23 × 10−03 0.52 × 10−01 0.67 × 10−04 6.522 × 10−06 6.445 × 10−7

Table 3: Numerical result for Example 2 with h=0.01

x Exact Numerical Error

0.01 1.0197986733599108578 1.0197986733595032128 4.076 × 10−13

0.02 1.0391894408476120998 1.0391894408465250404 1.087 × 10−12

0.03 1.0581645464146487647 1.0581645464124141562 2.235 × 10−12

0.04 1.0767164002717920723 1.0767164002681286455 3.663 × 10−12

0.05 1.0948375819248539184 1.0948375819192781955 5.576 × 10−12

0.06 1.1125208431427856122 1.1125208431350078814 7.778 × 10−12

0.07 1.1297591108568736536 1.1297591108463964849 1.048 × 10−11

0.08 1.1465454899898729124 1.1465454899763992427 1.347 × 10−11

0.09 1.1628732662139455929 1.1628732661969654734 1.698 × 10−11

0.10 1.1787359086363028466 1.1787359086155129853 2.079 × 10−11
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Table 4: Comparison of error for Example 2 with existing literature.

x [17] [5] NPM

0.01 − 0.00 4.076 × 10−13

0.02 0.26 × 10−05 0.00 1.087 × 10−12

0.03 0.40 × 10−05 0.00 2.235 × 10−12

0.04 0.53 × 10−05 0.00 3.663 × 10−12

0.05 0.66 × 10−05 0.00 5.576 × 10−12

0.06 0.79 × 10−05 0.00 7.778 × 10−12

0.07 0.93 × 10−05 0.00 1.048 × 10−11

0.08 0.11 × 10−04 0.00 1.347 × 10−11

0.09 0.12 × 10−04 0.00 1.698 × 10−11

0.10 0.13 × 10−04 0.00 2.079 × 10−11

with λ = 2 whose exact solution y(x) = cos 2x+ sin 2x.

Example 3
We consider a highly stiff problem

y ′′ + 1001y ′ + 1000y = 0,y(0) = 1,y ′(0) = −1,

whose exact solution is y(x) = exp(−x).

Table 5: Numerical result for Example 3 with h = 0.05

x Exact Numerical Error

0.1 .90483741803595957316 .90483741805285210796 1.689 × 10−11

0.2 .81873075307798185867 .81873075309216300049 1.418 × 10−11

0.3 .74081822068171786607 .74081822069798894102 1.627 × 10−11

0.4 .67032004603563930074 .67032004605227219651 1.663 × 10−11

0.5 .60653065971263342360 .60653065972973741902 1.710 × 10−11

0.6 .54881163609402643263 .54881163611127309314 1.725 × 10−11

0.7 .49658530379140951470 .49658530380864066605 1.723 × 10−11

0.8 .44932896411722159143 .44932896413427753661 1.706 × 10−11

0.9 .40656965974059911188 .40656965975735890380 1.676 × 10−11

1.0 .36787944117144232160 .36787944118780739436 1.637 × 10−11

Example 4
We consider the non-linear initial value problem:

y ′′ − x(y ′)2 = 0, y(0) = 1,y ′(0) =
1

2
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Table 6: Comparison of error for Example 3 with existing literature..

x [17] [5] NPM

0.1 − 2.05 × 1011 1.689 × 10−11

0.2 0.26 × 10−05 4.39 × 1011 1.418 × 10−11

0.3 0.40 × 10−05 6.55 × 1011 1.627 × 10−11

0.4 0.53 × 10−05 8.38 × 1011 1.663 × 10−11

0.5 0.66 × 10−05 9.86 × 1011 1.710 × 10−11

0.6 0.79 × 10−05 1.10 × 1010 1.725 × 10−11

0.7 0.93 × 10−05 1.19 × 1010 1.723 × 10−11

0.8 0.11 × 10−04 1.24 × 1010 1.706 × 10−11

0.9 0.12 × 10−04 1.28 × 1010 1.676 × 10−11

1.0 0.13 × 10−04 1.30 × 1010 1.637 × 10−11

whose exact solution is given by y(x) = 1 + 1
2 ln

(

2+x
2−x

)

.

Table 7: Showing the exact solutions and the computed results from the proposed methods for Example 4,

h = 0.1.

x exact Numerical error

0.1 1.0500417292784912682 1.0500417198073274141 1.041 × 10−9

0.2 1.1003353477310755806 1.1003353275055234711 1.541 × 10−9

0.3 1.1511404359364668053 1.1511404029243392812 1.613 × 10−9

0.4 1.2027325540540821910 1.2027325054111612616 1.578 × 10−9

0.5 1.2554128118829953416 1.2554127435116525126 1.812 × 10−9

0.6 1.3095196042031117155 1.3095195086259392942 1.352 × 10−8

0.7 1.3654437542713961691 1.3654436330677690756 1.351 × 10−8

0.8 1.4236489301936018068 1.4236487513499449584 1.121 × 10−8

0.9 1.4847002785940517416 1.4847000151409032852 1.146 × 10−8

1.0 1.5493061443340548457 1.5493057445240738187 1.138 × 10−8
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Table 8: Comparison of error for Example 4 with existing literature.

x [18] NPM

0.1 1.051251 × 10−8 1.041 × 10−9

0.2 2.176690 × 10−8 1.541 × 10−9

0.3 3.462528 × 10−8 1.613 × 10−9

0.4 5.022104 × 10−8 1.578 × 10−9

0.5 7.018369 × 10−8 1.812 × 10−9

0.6 9.700952 × 10−8 1.352 × 10−8

0.7 1.3471588 × 10−7 1.351 × 10−8

0.8 1.9005788 × 10−7 1.121 × 10−8

0.9 2.749090 × 10−7 1.146 × 10−8

1.0 4.1118559 × 10−7 1.138 × 10−8

6. Conclusion

We have proposed a two-step Bernstein polynomial fitted methods for the direct solu-

tion of general second order initial value problems. The method process a good accuracy

with order 4, consistent and zero stable. The methods are implemented without the need

for the development of predictors nor requiring any other method to generate starting

values. Implementation of the method with numerical examples showed that the methods

can compete favorably most of the existing multistep methods available for approximating

similar class of problems.
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