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Abstract

The Sushila distribution is generalized in this article using the quadratic rank transmutation map as

developed by Shaw and Buckley (2007). The newly developed distribution is called the Transmuted Sushila

distribution (TSD). Various mathematical properties of the distribution are obtained. Real lifetime data is

used to compare the performance of the new distribution with other related distributions. The results shown

by the new distribution perform creditably well.
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1. Introduction

Last few years have witnessed generalizations of various lifetime distributions. This

is achieved by compounding the distribution with any of new families of distributions.

The process involves introduction of new shape parameter(s) to improve flexibility of

the baseline distribution. Among well-known generalized families of distributions are:

Marshall-Olkin family of distributions [1]; Beta G distributions [2]; Quadratic Transmuted

family of distributions [3]; Kumaraswamy G distributions [4]; Gamma G distributions [5];

Exponentiated generalized G distributions [6]; Weibull G distributions [7]; and Alpha

Power Transformation [8]. Researchers in sciences and engineering have applied these

families of distribution to improve modelling of various lifetime data.

In this article, we generalize the Sushila distribution [9] using the Quadratic Trans-

muted family of distributions [3] and the new generalization is called the Transmuted

Sushila Distribution (TSD). A random variable X is said to have the Sushila distribution if

its distribution function (CDF) is given as:

G(x) = 1 −
λ (1 + θ) + θ x

λ (1 + θ)
e−

θx
λ . (1.1)

∗Corresponding author: adeadetunji@fedpolel.edu.ng c© 2020 SABA. All Rights Reserved.
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It is observed that is a special case of the Lindley distribution [10] when λ = 1.

Given a baseline distribution with the CDF G(x), the Quadratic Transmuted (QT) fam-

ily of distributions has the cdf :

F(x) = (1 + a)G(x) − a

(

G(x)

)2

. (1.2)

QT was applied to some probability distributions by [11, 12] with the resulting dis-

tributions offering more flexibility. [13] also discussed some mathematical properties for

the QT family of distributions. With generally acceptability, researchers have applied (1.2)

and introduced different new members of the QT family for diverse lifetime distributions.

List of some QT distributions was provided by [14].

2. Transmuted Sushila Distribution

The Transmuted Sushila Distribution (TSD) is obtained by putting (1.1) into (1.2).

Hence, a random variable X is said to have the TSD, i.e. X ∼ TSD(θ, λ, a) if its CDF is

given as:

F(x) = (1 + a)

(

1 −
λ (1 + θ) + θ x

λ (1 + θ)
e−

θx
λ

)

− a

(

1 −
λ (1 + θ) + θ x

λ (1 + θ)
e−

θx
λ

)2

. (2.1)

Figures 1 illustrates the cdf of the TSD for some selected values of scale and shapes pa-

rameters. The probability distribution function (PDF) of TSD is obtained by differentiating

(2.1) once. Hence, the PDF of X ∼ TSD(θ, λ, a) is:

f(x) =
θ2

λ3(1 + θ)2
(λ+ x)

(

2ae−
θx
λ (λθ+ θx+ λ) − λ(1 + θ)(a− 1)

)

e−
θx
λ . (2.2)

Note:

(i) The TSD becomes the Sushila Distribution due to [9] if a = 0.

(ii) The TSD becomes the Lindley Distribution due to [10] if a = 0 and λ = 1.

The pdf of the TSD for some selected values of scale and shapes parameters is shown in

figure 2.
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Figure 1: CDF of Transmuted Sushila Distribution

Figure 2: PDF of Transmuted Sushila Distribution

3. Reliability Analysis

Survival Function: The probability of an item not failing prior to a particular time is

defined by its reliability or survival function S(x). This is defined by S(x) = 1 − F(x).

Therefore, if a random variable X ∼ TSD(θ, λ, a), then its survival function is given by:

S(x) = 1 − (1 + a)

(

1 −
λ (1 + θ) + θ x

λ (1 + θ)
e−

θx
λ

)

+ a

(

1 −
λ (1 + θ) + θ x

λ (1 + θ)
e−

θx
λ

)2

. (3.1)

Hazard Rate Function (HRF): This is the risk a system has in experiencing and event in

an instantaneous time provided it has not experienced it at present time. It is a measure

of proneness to an event and it is obtained as: h(x) =
f(x)
S(x)

. For a random variable that

has the TSD, the hrf is given as:
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h(x) =

θ2(x+ λ)

(

2a exp−θx
λ (λθ+ θx+ λ) − λ(1 + θ)(a− 1)

)

λ(λθ+ θx+ λ)

(

(λθ+ θx)a exp−θx
λ

)

− λ(1 + θ)(a− 1)

. (3.2)

Figure 4 shows the HRF of the TSD for some values of scale and shapes parameters.

Figure 3: The Survival function of Transmuted Sushila Distribution

Figure 4: HRF of Transmuted Sushila Distribution
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Figure 5: Cumulative HRF of Transmuted Sushila Distribution

Cumulative Hazard Rate Function, H(x): This is the overall risk rate from the onset up

to a given time. The measure is obtained as H(x) = −ln(S(x)).

H(x) = −ln

(

(λθ+ θx+ λ)

(

a exp−θx
λ (λθ+ θx+ λ) − aθλ+ θλ+ λ

λ2(1 + θ)2

)

exp−θx
λ

)

. (3.3)

The trend depicting the cumulative HRF of the TSD for some values of scale and shapes

parameters is shown in figure 5.

4. Mathematical Properties

4.1. Order Statistics

Given that X1,n < X2,n < ... < Xn,n is a set of ordered random variable of size n, if

X ∼ TSD(θ, λ, a), then, the PDF of the rth order statistics is given as:

fr,n(x) =
n!

(r− 1)!(n− r)!
f(x)[F(x)]r−1[1 − F(x)]n−r.

Therefore, the rth order statistics of X is given as:

fr,n(x) =
n!θ2(λ+ x)

(r− 1)!(n− r)!

[

(

2ae−
θ
λx(λθ+ θx+ λ) − aθλ− aλ+ θλ− λ

)

e−
θ
λx

λ3(1 + θ)2

]

[

(1 + a)

(

1 −
λ(1 + θ) + θx

λ(1 + θ)
e−

θ
λx

)

− a

(

1 −
λ(1 + θ) + θx

λ(1 + θ)
e−

θ
λx

)2]r−1

[

1 − (1 + a)

(

1 −
λ(1 + θ) + θx

λ(1 + θ)
e−

θ
λx

)

+ a

(

1 −
λ(1 + θ) + θx

λ(1 + θ)
e−

θ
λx

)2]n−r

.

(4.1)
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If r = 1 and r = n, the 1st and nth order statistic for X are respectively given in (4.2)

and (4.3).

f1,n(x) =
n!θ2(λ+ x)

(n− 1)!

[

(

2ae−
θ
λx(λθ+ θx+ λ) − aθλ− aλ+ θλ− λ

)

e−
θ
λx

λ3(1 + θ)2

]

[

1 − (1 + a)

(

1 −
λ(1 + θ) + θx

λ(1 + θ)
e−

θ
λx

)

+ a

(

1 −
λ(1 + θ) + θx

λ(1 + θ)
e−

θ
λx

)2]n−r

.

(4.2)

fn,n(x) =
n!θ2(λ+ x)

(n− 1)!

[

(

2ae−
θ
λx(λθ+ θx+ λ) − aθλ− aλ+ θλ− λ

)

e−
θ
λx

λ3(1 + θ)2

]

[

(1 + a)

(

1 −
λ(1 + θ) + θx

λ(1 + θ)
e−

θ
λx

)

− a

(

1 −
λ(1 + θ) + θx

λ(1 + θ)
e−

θ
λx

)2]n−1

.

(4.3)

4.2. Quantiles Function

The quantile function of a random variable X ∼ TSD(θ, λ, a), is given as:

Q(u) = −

(

λ

θ

)[

W

(

−
e−(1+θ)(1 + θ)(a− 1 +

√
1 + 2a+ a2 − 4ua)

2a

)

+ 1 + θ

]

. (4.4)

Therefore, the first, the second, and the third quartiles for the random variable are ob-

tained by respectively setting u to 0.25, 0.50, and 0.75. These are given by:

Q( 1
4 )

= −

(

λ

θ

)[

W

(

−
e−(1+θ)(1 + θ)(a− 1 +

√
1 + a2 + a)

2a

)

+ 1 + θ

]

,

Q( 1
2 )

= −

(

λ

θ

)[

W

(

−
e−(1+θ)(1 + θ)(a− 1 +

√
1 + a2)

2a

)

+ 1 + θ

]

,

Q( 3
4 )

= −

(

λ

θ

)[

W

(

−
e−(1+θ)(1 + θ)(a− 1 +

√
1 + a2 − a)

2a

)

+ 1 + θ

]

,

where the Lambert function W is a complex function with multiple values which is defined

as the solution for the equation W(u)e
W(u) = u.

Equation (4.4) is obtained using Maple 2016 [15].
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4.3. Skewness and Kurtosis

Variability in a data set can be investigated using skewness and kurtosis, and classical

measures can be susceptible to outliers. Given the quantile function as in (4.4), the Moor’s

Kurtosis [16] based on octiles is given as:

KM =
Q 7

8
−Q 5

8
+Q 3

8
−Q 1

8

Q 6
8
−Q 2

8

. (4.5)

Also, the Bowley’s measure of skewness [17] based on quartiles is given as:

SKB =
Q 3

4
− 2Q 2

4
+Q 1

4

Q 3
4
−Q 1

4

. (4.6)

4.4. Moments

Proposition 4.1. If a random variable X follows TSD with pdf as given in (2.2), then the

kth raw moment is given by:

E(xk) =
λkk!

θk(1 + θ)2

(

aθ(1 + θ)

2k
+

a(1 + 2θ)(k+ 1)

2k+1

− (aθ+ a− θ− 1)(θ+ k+ 1) +
a(k+ 1)(k+ 2)

2k+2

). (4.7)

Proof.

µ1
k = E(xk) =

∫∞

0
xkf(x)dx

=

∫∞

0
xk

θ2

λ3(1 + θ)2
(λ+ x)

(

2ae−
θx
λ (λθ+ θx+ λ) − λ(1 + θ)(a− 1)

)

e−
θx
λ dx

=

(

θ2

λ3(1 + θ)2

) ∫∞

0

(

λxke−
θx
λ + xk+1e−

θx
λ

)

(

2ae−
θx
λ (λθ+ θx+ λ) − λ(1 + θ)(a− 1)

)

dx

=

(

θ2

λ3(1 + θ)2

) ∫∞

0

(

λxke−
θx
λ + xk+1e−

θx
λ

)(

λθ2ae−
θx
λ

+θx2ae−
θx
λ + λ2ae−

θx
λ − aθλ− aλ+ θλ+ λ

)

dx

=

(

θ2

λ3(1 + θ)2

)(

2aθλ2 + 2aλ2

)

P1 +

(

4aθλ+ 2aλ

)

P2

−λ2

(

aθ+ a− θ− 1

)

P3 + 2aθP4 − λ

(

aθ+ a− θ− 1

)

P5,

where

P1 =

∫∞

0
xke−

2θx
λ dx =

λk+1k!

2k+1θk+1
; P2 =

∫∞

0
xk+1e−

2θx
λ dx =

λk+2(k+ 1)!

2k+2θk+2
;
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P3 =

∫∞

0
xke−

θx
λ dx =

λk+1k!

θk+1
; P4 =

∫∞

0
xk+2e−

2θx
λ dx =

λk+3k!

2k+3θk+2
;

P5 =

∫∞

0
xk+1e−

θx
λ dx =

λk+2(k+ 1)!

θk+2
.

Therefore,

E(xk) =

(

θ2

λ3(1 + θ)2

)(

2aθλ2 + 2aλ2

)(

λk+1k!

2k+1θk+1

)

+

(

4aθλ+ 2aλ

)(

λk+2(k+ 1)!

2k+2θk+2

)

−λ2

(

aθ+ a− θ− 1

)(

λk+1k!

θk+1

)

+ 2aθ

(

λk+3k!

2k+3θk+2

)

−λ

(

aθ+ a− θ− 1

)(

λk+2(k+ 1)!

θk+2

)

.

Hence,

E(xk) =
λkk!

θk(1 + θ)2

(

aθ(1 + θ)

2k
+

a(1 + 2θ)(k+ 1)

2k+1
−(aθ+a−θ−1)(θ+k+1)+

a(k+ 1)(k+ 2)

2k+2

)

.

Mean and Variance of TSD: The mean of a random variable X follows TSD is obtained

by putting k = 1 in (4.7) above. Hence the mean is given as:

E(x) =
λ

4θ(1 + θ)2

(

2aθ2 + 6aθ− 4θ2 + 3a− 12θ− 8

)

Also, the variance of X is obtained as var(x) = E(x2) − (E(x))2, where E(x2) is obtained by

equating k = 2 in (4.7).

E(x2) =
λ2

4θ2(1 + θ)2

(

6aθ2 + 24aθ− 8θ2 + 15a− 32θ− 24

)

Hence, the variance of X is given by:

var(x) =
λ2

4θ2(1 + θ)2

[

(2aθ2 + 6aθ− 4θ2 + 3a− 12θ− 8)2

4(1 + θ)2

+ (6aθ2 + 24aθ− 8θ2 + 15a− 32θ− 24)

]

.



Adetunji, A.A. / Transmuted Sushila Distribution ... 9

4.5. Moment Generating Function

Proposition 4.2. The moment generating function of a random variable X that follows

the TSD is given as:

E(etx) =

(

θ2

(1 + θ)2

)(

2a(1 + θ)

2θ− λt
+

2a(1 + 2θ)

(2θ− λt)2
+

4aθ

(2θ− λt)3

−
(aθ+ a− θ− 1)(θ− λt+ 1)

(θ− λt)2

)

.

(4.8)

Proof.

Mx(t) = E(etx) =

∫∞

0
etxf(x)dx

=

∫∞

0
etx

θ2

λ3(1 + θ)2
(λ+ x)

(

2ae−
θx
λ (λθ+ θx+ λ) − λ(1 + θ)(a− 1)

)

e−
θx
λ dx

=

(

θ2

λ3(1 + θ)2

) ∫∞

0
(λ+ x)e−

θ−λt
λ x

(

2aθλe−
θx
λ + 2aθxe−

θx
λ + 2aλe−

θx
λ

−λ(aθ+ a− θ− 1)

)

dx

=

(

θ2

λ3(1 + θ)2

)(

2aθλ2 + 2aλ2

)

P1 +

(

4aθλ

+2aλ

)

P2 − λ2

(

aθ+ a− θ− 1

)

P3 + 2aθP4 − λ

(

aθ+ a− θ− 1

)

P5,

where

P1 =

∫∞

0
e−

2θ−λt
λ x dx =

λ

2θ− λt
; P2 =

∫∞

0
xe−

2θ−λt
λ x dx =

λ2

(2θ− λt)2
;

P3 =

∫∞

0
e−

θ−λt
λ x dx =

λ

(θ− λt)
; P4 =

∫∞

0
x2e−

2θ−λt
λ x dx =

2λ3

(2θ− λt)3
;

P5 =

∫∞

0
xe−

θ−λt
λ x dx =

λ2

(θ− λt)2
.
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Therefore,

E(etx) =

(

θ2

λ3(1 + θ)2

)

(2aθλ2 + 2aλ2)

(

λ

2θ− λt

)

+ (4aθλ+ 2aλ)

(

λ

(2θ− λt)

)2

−λ2(aθ+ a− θ− 1)

(

λ

θ− λt

)

+ 4aθ

(

2λ

(2θ− λt)

)3

− λ(aθ+ a− θ− 1)

(

λ

(θ− λt)

=

(

θ2

λ3(1 + θ)2

)[

2aλ2(1 + θ)

(

λ

2θ− λt

)

+2aλ(1 + 2θ)

(

λ

2θ− λt

)2

+ 4aθ

(

λ

2θ− λt

)3

−(aθ+ a− θ− 1)λ3

(

1 +
1

θ− λt

)]

=

(

θ2

λ3(1 + θ)2

)[

2a(1 + θ)

(

1

2θ− λt

)

+2a(1 + 2θ)

(

1

2θ− λt

)2

+ 4aθ

(

1

2θ− λt

)2

−(aθ+ a− θ− 1)λ3

(

θ− λt+ 1

θ− λt

)]

.

Hence

E(etx) =

(

θ2

(1 + θ)2

)(

2a(1 + θ)

2θ− λt
+

2a(1 + 2θ)

(2θ− λt)2
+

4aθ

(2θ− λt)3
−

(aθ+ a− θ− 1)(θ− λt+ 1)

(θ− λt)2

)

.

5. Parameter Estimation

Proposition 5.1. Given that Xi, i = 1, 2, ...,n are iid random variables from TSD, then the

log-likelihood function of X is defined as:

logL = 2n

(

log(θ) − log(1 + θ)

)

− 3nlog(λ) +

n∑

i=1

log(λ+ xi)

+

n∑

i=1

log

(

2ae−
θ
λxi(λθ+ θxi + λ) − aθλ+ θλ+ λ

)

−
λ

θ

n∑

i=1

xi.

(5.1)
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Proof. The likelihood function of a random variable X that follows TSD is:

L =

i=n∏

i=1

(

θ2

λ3(1 + θ)2

)

(λ+ xi)

(

2ae−
θ
λxi(λθ+ θxi + λ) − aθλ− aθλ− aλ+ θλ+ λ

)

e−
θ
λxi

=

(

θ2n

λ3n(1 + θ)2n

) i=n∏

i=1

(λ+ xi)

i=n∏

i=1

(

2ae−
θ
λxi(λθ+ θxi + λ) − aθλ− aθλ− aλ+ θλ+ λ

)

e−
θ
λ

∑n
i=1 xi

=

(

θ

1 + θ

)2n

λ−3n
i=n∏

i=1

(λ+ xi)

i=n∏

i=1

(

2ae−
θ
λxi(λθ+ θxi + λ) − aθλ− aθλ− aλ+ θλ+ λ

)

e−
θ
λ

∑n
i=1 xi .

Hence, the log-likelihood function of a random variable X that follows TSD is:

logL = 2n

(

log(θ) − log(1 + θ)

)

− 3nlog(λ) +

n∑

i=1

log(λ+ xi)

+

n∑

i=1

log

(

2ae−
θ
λxi(λθ+ θxi + λ) − aθλ+ θλ+ λ

)

−
λ

θ

n∑

i=1

xi.

The MLE of (θ, λ,a) can be obtained by maximizing (5.1). This gives the set of normal

equations below:

∂logL

∂θ
=

2n

θ
−

2n

1 + θ
−

1

λ

n∑

i=1

xi

+

n∑

i=1

− 1
λ

2ae−
θ
λxi(λθ+ θxi + λ) + 2ae−

θ
λxi(λ+ xi + λ) − aλ+ λ

2ae−
θ
λxi(λθ+ θxi + λ) − aθλ− aλ+ θλ+ λ

= 0.

∂logL

∂λ
=

−3n

θ
+

n∑

i=1

1

λ+ xi
+

θ

λ2

n∑

i=1

xi

+

n∑

i=1

− 1
λ2 2ae−

θ
λxi(λθ+ θxi + λ) + 2ae−

θ
λxi(1 + θ) − aθ− a+ θ+ 1

2ae−
θ
λxi(λθ+ θxi + λ) − aθλ− aλ+ θλ+ λ

= 0.
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∂logL

∂a
=

n∑

i=1

2ae−
θ
λxi(λθ+ θxi + λ) − θλ− λ

2ae−
θ
λxi(λθ+ θxi + λ) − aθλ− aλ+ θλ+ λ

= 0.

Obtaining solutions for the set of normal equations analytically is tedious. Using the

MaxLik function in R language [18], the solutions are obtained numerically using algo-

rithms like Newton-Raphson.

5.1. Asymptotic Confidence Bounds of TSD

Using the variance-covariance matrix I−1
o , a (100 − α)% confidence intervals of the

parameters θ, λ,a can be obtained. I−1
n [Ψ] is the inverse of the observed information

matrix [19] given by:

I−1
n [Ψ] =

[

Iθθ Iθλ Iθa
Iλθ Iλλ Iλa
Iaθ Iaλ Iaa

]

=

[

var(θ̂) covar(θ̂, λ̂) covar(θ̂, â)

covar(θ̂, λ̂) var(λ̂) covar(λ̂, â)

covar(θ̂, â) covar(λ̂, â) var(â)

]

Iθθ = ∂2logL
∂θ2 ; Iλλ = ∂2logL

∂λ2 ; Iaa = ∂2logL
∂a2 ; Iθλ = ∂2logL

∂θ∂λ
; Iθa = ∂2logL

∂θ∂a
; Iaλ = ∂2logL

∂a∂λ

Therefore, at specified level of significance, (100−α)% confidence intervals of (θ, λ,a)

are respectively given as: θ̂±Zα
2

√

var(θ̂); λ̂±Zα
2

√

var(λ̂); â±Zα
2

√

var(â) .

6. Application

The QT technique has been applied to obtain new set of distributions by compound-

ing the Lindley distribution. The Transmuted Lindley distribution (TLD) was introduced

by [20]. [21] introduced Transmuted Quasi-Lindley distribution (TQLD) while [22] in-

troduced the Transmuted Two-Parameter Lindley distribution (TTPLD). The Transmuted

Generalized Quasi Lindley distribution (TGQLD) was introduced by [23]. All these newly

transmuted distributions have the Lindley distribution has special case. This attribute is

also shared by the TSD newly introduced in this research. The probability distribution

functions of all the models compared for data application are presented in table 1 below.

The data set used to observe the performance of TSD is the remission times (months)

of a sample of 128 bladder cancer patients. This data has been applied in various survival

analysis [19, 20].

0.08, 2.09, 3.48,4.87, 6.94 , 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57,5.06, 7.09,

9.22, 13.80, 25.74, 0.50, 2.46 , 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54,3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81,

2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64,3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66,

15.96, 36.66, 1.05,2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26,2.83, 4.33,

5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02,4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40,

5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25,8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76,

12.07, 21.73, 2.07,3.36, 6.93, 8.65, 12.63, 22.69
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Table 1: Probability distribution functions of compared models
Distribution PDF

TSD θ2

λ3(1+θ)2 (λ+ x)

(

2ae−
θx
λ (λθ+ θx+ λ) − λ(1 + θ)(a− 1)

)

e−
θx
λ

SD θ2

λ(1+θ)

(

1 + x
λ

)

e−
θ

λ
x

LD θ2

1+θ (1 + x)e−
θ

λ
x

TLD θ2

1+θ (1 + x)e−
θ

λ
x

(

1 − λ+ 2λ 1+θ+θx
1+θ

)

TQLD θ
1+α (α+ θx)e−θx

(

1 − λ+ 2λe−θx

(

θx
1+α

))

TTPLD θ2

θ+α (1 +αx)e−θx

(

1 + λ− 2λ

(

1 − θ+α+αθx
θ+α e−θx

))

TGQLD aθ
1+α (α+ θx)e−θx

(

1 − e−θx

(

1 + θx
1+α

))a−1(

1 + λ− 2λ

(

1 − θx
1+α e−θx

)α)

Table 2: Descriptive Statistics for remission times in months
Min. Q1 Median Q3 Max Mean Variance Skewness Kurtosis
0.080 3.348 6.395 11.838 79.050 9.366 110.425 3.287 15.483

The descriptive statistics for the data set is presented in table 2 while table 3 shows

the parameter estimates and model comparison criteria. To compare the models, -2LL

(negative 2 Log-Likelihood), AIC (Akaike Information Criterion), and CAIC (Corrected

Akaike Information Criterion), are used. Distribution with lowest criterion is the "best".

Results from table 3 shows that the newly proposed distribution (TSD) performs creditably

well for the lifetime dataset presented.

7. Conclusion

We introduced a three-parameter generalization of the Sushila distribution using the

Quadratic Transmuted technique championed by [3]. Shape of the distribution function

and hazard rate function are investigated and various mathematical properties of the new

distribution are presented. Since the Sushila distribution [9] is a special case of the Lindley

distribution, performance of the new distribution is compared with the Sushila distribution

and other transmuted Lindley distributions using data on cancer remission (in moths) of

patients. Results show that the Transmuted Sushila Distribution (TSD) givers a better fit

to the data set among the competing distributions.
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