How to Cite:

Adverse effects of aspirin on hormonal and histopathological changes in male rats

Ibrahim Qahtan Naji
Dept. of Pharmacology, Collage of Veterinary Medicine, Tikrit University

Siham Agmee Wadee
Dept. of Pharmacology, Collage of Veterinary Medicine, Tikrit University

Bader Katlan Hameed
Dept. of Pharmacology, Collage of Veterinary Medicine, Tikrit University

Abstract---Aspirin (Acetylsalicylic acid) is widely used in human and veterinary as anti-inflammatory cardiovascular prophylaxis, anti-clotting agent and to decrease cancer risk. However, it is frequently mis- or over-consumed to prevent pain. Many hazards linked with its use have been recorded, but there is a lack of data on its effects on androgenic studies, testicular histology, kidney histology, liver histology, and reproductions. We tried to gather information on its adverse toxicity effects on male rat reproductive in this research. According to research, aspirin has a fatal effect on sperm production and reproductive hormones, as well as lowering testicular weight and altering blood profile. Because aspirin is a prostaglandin inhibitor, it may have an effect on the male reproductive system. Aspirin’s detrimental toxic character is further revealed by liver damage.

Keywords---aspirin, hormonal, histopathological, male rats.

Introduction

Over 50 years ago, inflammation is treated by non steroidal anti-inflammatory drugs (NSAIDs) Which are the most widely and extensively used for their analgesic, antipyretic, and anti-inflammatory properties. Aspirin (acetylsalicylic acid) was introduced to treatment more than 100 years ago (1). Due to its anti-inflammatory and anti-pyretic advantages, it is widely used in clinical environments. First, it was reported by this aspirin and non-steroidal anti-inflammatory drugs inhibit Pro-inflammatory prostaglandin E2 synthesis. It was late reports that aspirin has inhibitory effects on Cyclooxygenase-1 (COX-1) activity by serine acetylation and COX-2(3-6). Aspirin has been reported to produce a reaction to the risk of cancer and heart problems due to its anti-
thrombotic effect. This is due to its inhibition of the cyclooxygenase enzyme (Cox), the arachidonic metabolizes. Acid to a variety of prostanoids, including Thromboxan A₂⁷,⁸.

The anti-thrombocyte effects of aspirin were tested in various forms of coronary artery disease, pregnancy. Induced hypertension and preeclampsia in angiotensin- sensitive primigravida at low doses and showed positive. Results in most reports. The literature of the recent year creates a lot of awareness and realization of the genotoxic capacity of drugs⁹. Infertility has been defined as failure to conceive after frequent unprotected sexual intercourse for one or two years. Male factor infertility accounting for 50% of cases¹⁰. Increasing cases of infertility in men due to the frequent use of a series of therapeutic drugs, has made efforts to study their unfavorable side effects on man’s reproduction. Several medications used to treat disease will be informed to cause male infertility, infertility is an important problem for 15-20% of young couples and about 50%. Infertility refers to problems in men. one of very Aspirin’s worst effect is on male reproduction. sperm Production is the main reproductive activity of male fertility, and is influenced by many different factors such as therapy and non-therapeutic agents such as chemicals and radiation and environmental factors can regulate or affect sperm production. The testicular weight of aspirin-treated rats was observed to be significantly lower. Reduced sorbitol dehydrogenase and hyaluronidase activity fewer spermatids, and more spermatocyte nuclei were found. Androgen activity is required for spermatogenesis and the operation of the accessory reproductive organs¹¹-¹³.

The aim of the study was to assess the effect of aspirin on serum testosterone and FSH levels, and testicular histology in rats.

Material and Methods

The rats were randomly divided equally into three groups:

- Control group 1 (G1): It included 10 adult rats, the animals of this group received 1 ml normal saline 0.9% for 4 weeks.
- Treated group 2 (G2): It included 10 rats, each animal received 25 mg/kg/day of aspirin for 4 weeks.
- Treated group 3 (G3): It included 10 rats, each animal received 50 mg/kg/day of aspirin for 4 weeks.

Blood samples were collected through the heart puncture with the aid of a syringe. Samples were dispensed into plain tubes and allowed to clot. The serum was collected after centrifugation within 30 minutes of specimen collection and stored at −40°C for hormone and biochemical measurements. Testosterone and FSH levels were assessed using a commercial enzyme-linked immunosorbent assay kit (CUSABIO Biotech Co., USA).

Animals

Thirty adult males of rats weighing (220 - 225 g), it has been achieved in the animal house of the college of veterinary medicine at the Tikrit University. The animals were kept under controlled environmental circumstances. They were
provided a free access to standard pellet diet and tap water. The excised testicular specimens were immediately fixed in 10% formalin and processed for paraffin embedding according to standard procedure. Serial sections of five µm thickness were cut and stained with hematoxylin and eosin (H&E). Statistical analyses were performed using SPSS 11.5 (SPSS Inc., Chicago, IL). Data are presented as mean SD, with P < 0.05 being considered statistically significant.

Results & Discussion

The effect of Aspirin on sex hormones

Testosterone hormone

Table 4-5
Effect of Aspirin on Testosterone hormone in studied groups

<table>
<thead>
<tr>
<th>Groups</th>
<th>Testosterone hormones</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 Control</td>
<td>0.630 ± 0.006</td>
<td>A</td>
</tr>
<tr>
<td>Group 2</td>
<td>0.485 ± 0.022</td>
<td>B</td>
</tr>
<tr>
<td>Group 3</td>
<td>0.192 ± 0.009</td>
<td>C</td>
</tr>
</tbody>
</table>

Figure 4-5. Testosterone changes associated with aspirin administration to rat at concentration (25 mg/kg body weight twice/day) and (50 mg/kg body weight twice/day). Significant differences (p ≤ 0.05)

The using of aspirin in dose of 25 mg/kg body weight and 50 mg/Kg body weight for 30 days lead to significant decrease (p ≤ 0.05), in the level of Testosterone hormone compare with group 1 (control group). In experimental group 1 the level of testosterone hormone (0.630 ± 0.006) (ng) compare with group 2 and group 3 (0.485 ± 0.022) (0.192 ± 0.009) respectively. Several researchers recently discovered that taking aspirin reduced testosterone production significantly (17). Aspirin treatment resulted in a drop in Sertoli cell quantity and a
change in microscopic morphology, with Sertoli cells showing pyknosis and nuclear shrinkage \(^{(18)}\). Interestingly, testosterone receptors (androgen receptors) are found on Leydig cells, Peritubular cells, and Sertoli cells, but not on germ cells in the mature testis \(^{(19)}\). This is why testosterone does not directly target germ cells; instead, testosterone targets the Sertoli cell, which feeds the germ cell and allows it to differentiate into spermatozoa \(^{(20)}\). Aspirin's ability to interfere with testosterone production by lowering androgen receptor sites could be one of the reasons behind this. Adult mammalian spermatogenesis is a testosterone-dependent process, and many investigations have found that removing testosterone from the rat testis causes germ cell death \(^{(21)}\). As a result, the ability to reproduce is harmed because germ cell growth does not progress beyond the pachytene stage of meiosis if testosterone levels are unstable or low, testosterone levels in the adult testis of rats should be steady and high \(^{(22)}\). The blood-testis barrier, which provides a specific environment for germ cell growth and prevents immunogenic germ cell antigens from accessing the immune system, is maintained and repaired by testosterone \(^{(23)}\). Aspirin caused significant decrease in testosterone levels.

Hormonal changes associated with Aspirin Follicle-Stimulating hormone (FSH)

<table>
<thead>
<tr>
<th>Groups</th>
<th>FSH hormones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group1 Control</td>
<td>89.69 ± 1.02</td>
</tr>
<tr>
<td>Group 2</td>
<td>54.06 ± 1.15</td>
</tr>
<tr>
<td>Group 3</td>
<td>10.65 ± 0.71</td>
</tr>
</tbody>
</table>

Figure 4-6. FSH hormone changes associated with aspirin administration to rat at concentration (25 mg/kg body weight twice/day) and (50 mg/kg body weight twice/day). Significant differences (p ≤ 0.05)
In experimental group 1 a significant decrease ($p \leq 0.05$), decrease was seen in FSH level in experimental group 2 as compared to the control (Figure. 2). The using of aspirin in dose of 25 mg /kg /body weight and 50 mg/Kg/body weight for 30 day lead to significant decrease in the level of FSH hormone compare with group 1(control group) . In experimental control group (group 1) the level of FSH hormone (89.69 ± 1.02) (mIU) compare with group 2 and group 3 (54.06 ± 1.15) (10.65 ± 0.71). Aspirin therapy resulted in a considerable drop in both FSH and TSH, according to several publications (24). The inhibition of PGE2 in the hypothalamus by aspirin is thought to be the cause of this drop. When aspirin is given at a high dose (like we do), this effect appears to be produced through reduction of GnRH release (25).

The effect of Aspirin on Histopathological examination

Testis is composed of seminiferous tubules and interstitial tissues. Male germ cells, Sertoli cells, and Myoid cells are found in seminiferous tubules, while Leydig cells are found between neighboring seminiferous tubules(26).

Group 1 Control Testis (A)

The parenchyma of the testis we occupied with many Seminiferous tubule, Each tubule we lined by basement membrane and delicate connective tissue, the cells which are resting on the basement membrane were spermatogonia, the first row and the second row new primary spermatocyte, then two rows of secondary spermatocyte, then the spermatide nearly the center of lumen of seminiferous tubule, and the center of each tubule we filled with spermatozoa. The interstitial connective tissue had group, and leydic cells. The testis we coated with dense connective tissue capsule and great blood vessels were present sub capsular location with blood congestion inside lumen and these blood vessels.

![Figure 4-12. A histological picture of the testis shows the seminiferous tubules of the Group 1 (control group). (Haematoxylin and Eosin X10)](image)

Seminiferous tubule with Different stage of Spermatogenic development (A) Basement membrane (B) Congested blood vessels (C) capsule (d).
Group 2 Testis (A)

The parenchyma of testis had disorganized Seminiferous tubule, with presence & thickening the basement membrane, the leydig cells in between S. N. T were mostly atrophied and present a way from the walls of S. N. T s. Blood congestion we demonstrated for the interstitial blood vessels.

Group 3 Testis (A)

The parenchyma of testis we occupied by many Seminiferous tubule, Certain number of these tubule were containing degenerated spermatogenic cells in the lumen os S. N. T s, and the interstitial connective tissue had many congested blood vessels, also the interstitial connective tissue had inflammatory edema, mostly around the leydig cells.

Degenerated spermatogenic cell (A) interstitial blood vessels congestion (B) Thickening of basement membrane (C).
Group 1 Control Epididymis (A)

The efferent ductile of epididymis were enriched with a masses of spermatozoa, the basement membrane of each ductile we lined by simple Cuboidal cells. The interstitial connective tissue we loose and continuous with capsule of epididymis which formed by dense connective tissue.

![Figure 4-23. A histological picture of the epididymis shows of the control group. (Haematoxylin and Eosin X10)](image)

Efferent ductuli (A) mass of spermatozoa (B) cuboidal epithelium (c) interstitial connective tissue (D) Capsule (E)

Group 2 Epididymis (A)

The epididymal Canal we Formed by many epididymal ductali, Each one we lined by Simple Columnar Pseudo stratified columnar epithelium . With presence masses of spermatozoa in the lumen of that ductali. the interstitial connective tissue we Formed by Fibrous Collagenous connective tissue which have the blood Vessels and Fibroblast.

![Figure 4-25. A histological picture of the epididymis treated aspirin (25 mg/kg of B.W) of the experimental group 2. (Haematoxylin and Eosin X 40).](image)

Epididymial Canal, epididymal ductale (A), epithelial lining (B). Spermatozoa masses (C). Interstitial Connective tissue (D).

Group 3 Epididymis (A)

The efferent ductile of epididymis were filled with masses of spermatozoa and the lining epithelium were containing degenerated cell, the dense connective tissue
below the epithelium we containing many vacuoles and the Collagen bundle, around the ductile were loose, surrounded by adipose tissue from outside.

![Image](image_url)

Figure 4-31. A histological picture of the epididymis treated aspirin (50 mg/kg of B.W) of the experimental group 3. (Haematoxylin and Eosin X 10)

Degenerated epithelium Cells (A). masses of spermatozoa (B). Loose connective tissue around the efferent ductile(C). Adipose tissue (D). around the Capsule (E).

Group 1 Control vas deference (A)

The tubular structure of vas deference was arranged in a thick wall, mostly formed by fibro muscular structure or coat, the lumen of difference is thrown in folded mucosa, lined with simple pseudo stratified columnar epithelium, surrounded with lamina propria of dense C.T around the epithelium, the lumen with containing a quantity of spermatozoa, the whole duct was covered with loose C.T.

![Image](image_url)

Figure 4-35. A histological picture of the Vas deference shows of the Group 1 (control group). (Haematoxylin and Eosin X10)

Mucosal epithelium fold (A). lamina propria (B). thick Fibro muscular Coat(C). Mass of spermatozoa (D)

Group 2 Vas deference (A)

The duct we filled with masses of spermatozoa in its lumen, and the epithelium we lining the lumen we arranged without enfolding. The Fibro muscular Coat we containing many space, the Capsule of duct we contracted from the Fibro muscular Coat.
Figure 4-37. A histological picture of the Vas deference treated aspirin (25 mg/kg of B.W) of the experimental group 2. (Haematoxylin and Eosin X 10)

Mass of Spermatozoa (A). Epithelial Lining (B). Space between Fibro Muscular coat (C).

Group 3 Vas deference (A)

The mucosal fold of vas deference had degenerated epithelium and the basal surfaces of these cells were desquarated from its basement membrane; the fibro muscular coat around the lumen was thick and few vacillation were seen in between the collagen bundle.

Figure 4–40. A histological picture of the Vas deference treated aspirin (50 mg/kg of B.W) of the experimental group 3. (Haematoxylin and Eosin X 10)

Degeneration of mucosal epithelium (A). Vacuolation of fibro muscular coat (B)

Group 1 Control Seminal vesicle (A)

The lobule of the gland were formed by great follicle these follicle filled its cavities with seminal fluid which appeared homogenized esinophilic texture, the follicle were lined with folded epithelium the interstitial connective tissue were formed by collagen fibers of smooth muscle fibers.
Mucosal epithelial Fold (A) Seminal homogenized esinophilic Fluid (B) interstitial Connective tissue (C).

Group 2 Seminal vesicle (A)

The lobule of the Seminal vesicle were great in its lumen, filled with homogenized secretion of Seminal, esinophic fluid, the epithelium lining the lobule were discontinuous and broken down, Aggregation and WBC. we demonstrated and focal aggregation, the small blood vessels around the gland were congested with blood.

Group 3 Seminal Vesicle (A)

The follicles and seminal vesicle were filled with seminal secretion which we appeared homogenized esinophilic fluid, the mucosal fold had epithelial cells projected to the lumen of follicle, loose Connective tissue we investing the gland from outside which we containing blood vessel.
Figure 4-50. A histological picture of the Vas deference treated aspirin (50 mg/kg of B.W) of the experimental group 3. (Haematoxylin and Eosin X 10).

Follicle of Seminal vesicle filled with Seminal secretion (A). Mucosal fold (B). Blood vessels (C). Aspirin-treated Group 3 rats had cytological and nuclear degenerative alterations in their seminiferous tubules, resulting in tubule shrinkage. Sertoli cells, Leydig cells, primary spermatogonia, secondary spermatogonia, and spermatocytes were all reduced. These findings point to aspirin’s degenerative and retrogressive effects on the testes in rats. Sertoli cells are the most critical cells in seminiferous tubules because germ cell proliferation is dependent on them, and they provide sustenance to proliferating germ cells, including them. Sertoli cells play a role in spermatid discharge into the lumen of seminiferous tubules. The testicular vasculature is regulated by the blood testes barrier. Sertoli cells play a critical function in the nutrition of germ cells and the maintenance of a microenvironment that is necessary for optimal growth. Sertoli cells, germ cells, seminiferous tubules, and Leydig cells were ablated, resulting in a reduction in testicular size. In vitro and in vivo experiments revealed that a high dose of aspirin killed blood vessel tissue. Aspirin inhibits continuous prostaglandin synthesis, which causes unopposed arteriole constriction, ischemia of tubules, and epithelial cell death.

Conclusion

Aspirin is a widely used drug in both human and veterinary medicine around the world. However, aspirin toxicity has a negative impact on male blood chemistry and reproductive effectiveness. As a result, it is recommended that aspirin be used with caution.

References

4. Entedhar Rifaat Sarhat, Siham Ajmee Wadee, Ban Ismael Sedeeq, Thuraia Rifaat Sarhat, , Kasim Sakran Abass. Biochemical and Histological

