Industrial monitoring and control using LoRa communication

Sindhu. D
Assistant Professor, Department of Electronics and Communication Engineering

Karthikeyan S
UG Students, Department of Electronics and Communication Engineering, Sri Eshwar College of Engineering, Coimbatore, 641202

Ajay K
UG Students, Department of Electronics and Communication Engineering, Sri Eshwar College of Engineering, Coimbatore, 641202

Gopi V
UG Students, Department of Electronics and Communication Engineering, Sri Eshwar College of Engineering, Coimbatore, 641202

Durairasu C
UG Students, Department of Electronics and Communication Engineering, Sri Eshwar College of Engineering, Coimbatore, 641202

Abstract---Monitoring and controlling industrial machinery is one of the best methods to prevent equipment breakdown. Industrial machines normally break down when the voltage or current goes low or high. With Industrial monitoring, we can ensure that the access is controlled, and the products are of higher quality. With this method, we can control access, improve productivity, and ensure high-quality results when manufacturing industrial products. In today's technological era, remote monitoring and control have become commonplace in industries using connectivity techniques such as ZigBee, RF, and Infrared. Due to their slow communication speeds, long distances, and weak data security, these wireless communication techniques are generally limited to simple applications. Additionally, they are easily affected by noise and bad weather conditions, such as snow, fog, and rain. The present project proposes to use LoRa (long-range) technology to implement a new solution for the traditional monitoring and control of industrial applications using high-quality communication and high security.

Keywords---LoRa communication, monitoring, controlling.
Introduction

In these days, most ventures are observed by people. A few times people committed indiscreet errors while observing the machines and it turns into a colossal misfortune to the business. In this task, we screen the voltage, current, and temperature that are in esteem in the Industrial machines. In the event that the voltage is excessively high, machines run excessively quick and excessively high, shortening their life expectancy. In the event that the voltage is too low, the amperage builds, which might bring about dissolving or failing parts. Because of high temperatures, laborers might encounter uneasiness, weakness, and mental hindrance, and their usefulness might be impacted. So, we get the detecting the temperature and voltage by utilizing sensors and get the data by utilizing Lora (Long Range)[1]. Lora period become created via a business alluded to as Semtech and it is another remote convention planned particularly for long-range, low-power interchanges. By utilizing Lora, we can get the right and exact result so we can ready to do our laborers as indicated by that outcome. We additionally Using IoT. (The term IoT, or web of variables, alludes back to the aggregate organization of associated gadgets and the period that helps verbal trade among devices and the cloud, notwithstanding between the actual contraptions.) by IoT we can get watching the Machines in the significant distance moreover. In this Project By utilizing this project Industries get benefited and precautionary measure from the breakdown of the machines.

Industrial monitoring functions mainly consist of collecting, clustering, monitoring, analysing the performance of the machine, and monitoring the working conduction so the productivity can be increased. hence the production of the product depends on the efficiency of the machine. until there is no automated technology to check the working of the machine there will not be the desired productivity. hence for the industry obliged to increase the production without any downtime efficient functioning of the machine is required. In the early stages, the company relied on early wired technology. so we come up with a proposed solution of long-range communication system.

In This project, we use Arduino miniature controller.[7] It is in light of ATmega328. It has 14 computerized input/yield pins, 6 simple information sources, a 16 MHz clay resonator, a USB association, a power jack, an ICSP header, and a reset button. It contains everything expected to help the microcontroller; basically, we can interface with a PC with a USB link or power it with an AC-to-DC connector or battery to begin. Some of the advantages are low cost, open source in hardware and don’t need to external programmer.

Literature Review

A literature survey provides an overview of an industrial monitoring and control system using lots of technology. The existing technology used in this system such as ZigBee, Bluetooth, and RF. A Zigbee network is used as Zigbee nodes in a real-time application. Zigbee technology provides data rate, packet delay, Received Signal Strength Indication, and packet loss in the industrial monitoring system and it does not provide the data in long-range communication. Bluetooth is a technology that can be used in Industries to control various electrical devices.
using an android application. These applications provided a 12volt Fan, a bulb, and a buzzer.

Proposed System

This proposed system design is based on Industrial device monitoring and controlling. In this Proposed system research project, monitoring parameters are voltage, current and temperature of the industrial machines.

The System composed of:
- Lora
- IoT (Internet of things)
- Arduino and Programming

Since there is a lot of technologies used for Industrial monitoring but the drawback of all those technologies exists in the short-range. So, we come up with this emerging technology of Lora.[3] Where detects the long-range helps in low power consumption and high security.[2] Lora possesses numerous features which are used for industrial monitoring the key feature of our includes ranges from 2-5km urban areas, its frequency is about ISM 868/915 MHZ, it spreads spectrum modulation where type based on FM pulses vary, it has long-lasting battery life.

The main advantage of using Lora [4] over other technology in Industrial Monitoring is it can be controlled and monitored even at the Long-distance. The client who admins this technology can access their industrial machines over the long-range. In This System, We also use IoT (Internet Of Things)[9], where the Industrial machine Parameters Like Voltage, current, and temperature information are gathered by sensors are transferred to the cloud using IoT.

Block Diagram
Working Setup

- The real-time wireless monitoring framework Lora protocol which is used in our project consists of two sections namely the transmitter phase and receiver phase. The receiver phase consists of power supply (12v), voltage sensor (5v), current sensor (5v), temperature sensor.
- Transmitter phase consist of another Arduino microcontroller consisting of LCD which displays the received data.
- Current transformer analogy value helps in determining the input value of current and voltage which is sent to the Arduino microcontroller using its particular sensor. Even the value of the temperature sensor is also sent to the microcontroller.
- Perhaps all these values are displayed in the LCD which is connected to the Arduino microcontroller.
- The relay module which is connected to the load usually controls the high-power output using low power input.
- The whole heart of the transmission is done using the Lora protocol [6], which is used for long-range communication with low power consumption. Suppose if there is an overvoltage in the machinery, the buzzer at the transmitter side is turned on through the Arduino microcontroller by the Lora protocol.
- Using the keypad, the machinery can be turned off manually.

Hardware Requirements

LCD (Liquid Crystal Display) is a sort of level board show which involves liquid crystal in its fundamental kind of action. LEDs have an enormous and fluctuating course of action of direction cases for customers and associations, as they can be typically found in mobile phones, TVs, PC screens and instrument sheets. LCDs are known for their energy-proficient properties.
Arduino contains a real programmable circuit board (microcontroller) and programming,[8] or IDE (Integrated Development Environment) that unexpected spikes in call for in your PC that is applied to compose and switch PC code to the real board. Arduino contains 14 superior input/yield pins, 6 easy facts sources, a sixteen MHz clay resonator (CSTCE16M0V53-R0), a USB association, an electricity jack, an ICSP header, and a reset button. The Arduino board is related to a PC thru USB.

Relays are electric controlled changes that utilization electromagnetism to change little electric boosts into enormous flows. These transformations emerge while electric information sources set off electromagnets to both shape or wreck present circuits. It utilizes Electromagnetic enlistment as standard. It incorporates a fixed of enter terminals for an unmarried or more than one oversees signals, and a fixed of running touch terminals.

Lora (long-range radio) is mainly focused on the machine to machine and IoT networks. Lora modules are a low-power RF modules that provide a long-range of low-bit rate IoT-based data connectivity to sensors and other networks. It is used to enable public or multi-tenant networks to connect n-number of applications that runs on the same networks.
A temperature sensor is a device that is used to measure the temperature of the device and is also used to monitor and analyse the various changes which occur on industrial machines that help in safety and security for the machines. This temperature sensor can measure air temperature, the temperature of the solid material, and the liquid temperature. There are many kinds of temperature sensors that use different principles and techniques to measure the temperature.

The current sensor is a device used to measure the current flowing through a wire. By using the magnetic field, the current can be detected and it generates the appropriate output. A current sensor is to measure both AC and DC. Choosing the current sensing method is depend on the bandwidth, robustness, accuracy, efficiency, cost, size, etc. The value of the measured current can be directly displayed or can be converted into the digital form which is used for monitoring and control of the industrial machines.

A bell or a beeper is a sound flagging instrument that might be mechanical or electromechanical. The essential utilization of the beepers and the ringers are clocks, alert contraptions, and confirmation of the buyer enters like a mouse click, keystroke, etc. The change of sound markers into sound pointers is called signal or beeper. The buzzer is fuelled with the guide of utilizing the DC voltage. Buzzer or beeper is broadly utilized as sound devices for the advanced product like computers, watches, printers and so on.
Future Scope

A system that is fine-tuned for long-distance communication, monitoring, and controlling the machinery. This also alerts the consumer to manually stop the machine to prevent further collapse. In future update, elongating with this, we have planned to detect the future damage that may occur in machinery previously.

Conclusion

Modern problems need a modern solution. The high production and quality of the product primarily depend on the efficiency of the machinery a consumer use. Practical monitoring framework using a wireless network is created using the Lora protocol. It uses multiple sensor nodes to diagnose the problem created by the machinery. Further, the data collected by the Lora protocol is used to detect machine utilization and its efficiency. The components used in this technology are cost-effective with comfortable size which can be used from small-scale to large-scale industries. A PR diagnostic data and analysis are done using the Lora protocol which is placed at the receiver end where this sensor provides the input to the microcontroller. Further, it is alerted by a buzzer so that quick action can be taken to prevent future damage immediately this proposed system is very useful for the industrial sector as it is a field with continuous excellence. Hence the adoption of emerging technology like Lora will be a beneficial one to reconfigure and customize problems in real-time and can also be rectified using this technology. Example: A person who owns more than two companies cannot ideally stock on one particular machine entirely humans can't be or monitor different places at the same time, hence ora helps them to monitor as well as control the machine entirely. wireless communication like Lora gives access to multiple modes of a wide range of new applications like long-range communication, flexibility, etc wireless communication or transmission of information over a distance without requiring wires, cables, or any other electrical components is effective as it reduces a lot of troubleshoots through an unguided medium. Hence by using the Lora protocol a continuous assessment is taken which also prevent future damage and in case of unpredictable machinery loss it can be stopped within a period. The ultimate effort of our proposed system is to provide a solution where industrial machines can be monitored over a long-range with a cost-effective method and long-lasting power consumption
References

