An optimized clustering approach for automated detection of abnormalities in MRI brain images

Sudheesh K V  
Associate Professor, Department of Electronics and Communication Engineering, Vidyavardhaka College of Engineering, Mysuru, Karnataka 570002, India  
Corresponding author email: sudheesh.kv@vvce.ac.in

Geethashree A  
Associate Professor, Department of Electronics and Communication Engineering, Vidyavardhaka College of Engineering, Mysuru, Karnataka 570002, India  
Email: geethashree.a@vvce.ac.in

K Paramesha  
Professor, Department of Computer Science and Engineering, Vidyavardhaka College of Engineering, Mysuru, Karnataka 570002, India  
Email: paramesha.k@vvce.ac.in

Vinutha D C  
Professor, Department of CSE (Artificial Intelligence and Machine Learning), Vidyavardhaka College of Engineering, Mysuru, Karnataka 570002, India  
Email: vinuthadc@vvce.ac.in

Sushma S J  
Associate Professor, Department of Electronics and Communication Engineering, GSSS Institute of Engineering and Technology for Women, Mysuru, Karnataka 570002, India  
Email: enggsush@gmail.com

Abstract—The medical image phenomenon may be a developing and progressive field these days. The processing of MRI images differs between parts of this field. This paper presents an economical approach for identifying tumors in brain MRI imageries. The process consists of following steps: the occurrence of image processing using intermediate filters, image enlargement is obtained by calibration chart calculation (histogram measurement); image segmentation is performed by binding. This approach is considered for the incorporation of morphological practices. Finally, the tumor stage is determined by manipulation of the image editing strategy. This
research work presents an automatic brain tumor diagnosis method using MR imaging. The target system identifies and classifies the image segmentation using k-values. It also divides part of the plant into blood and bruises.

**Keywords**---median filtering, clustering, K-means clustering, DWT, support vector method.

**Introduction**

Muscles cause brain damage, and they die. Brain tumors are called low or secondary. The intestinal lining of the brain is spherical, but then a second brain tumor is also known as a metastatic brain tumor, arises along with cancerous growth of brain cells from other organs. Tumor treatment has been a pivotal point for medicinal scholars for decades, but development of new diagnostic methods takes much time and money. Approximately 40% of all tumors are treated well by the surgical procedure and sometimes by radiation. The malignant brain tumor numbers are increasing in the recent years for no clear reason. For a doctor detection and categorization of different type of brain tumor is of great importance in terms of technical and economic reasons. Currently used slow prevalent practices are very slow, it is very subjective and has low responsibility, which is hard to quantify, it also depends highly on specialized technicians. Brain tumor are categorized into 120 different types, making it a complex disease. One type of such tumor is non-malignant (Benign) tumor, which reduce normal brain tissue and rattle activity, making it as deadly as a malignant tumor. So, early detection and proper diagnosis of the tumor very important. MRI, is an advanced medical imagery technology that is extensively castoff because of its high contrast of soft tissue and its non-invasive procedure. This technology provides high level of detail of human body tissues when compared to other competing technology. It also provides valuable information about the formation, size and localization of the intestinal tract deprived of revealing the patient to high ionization radioactivity. Therefore, most research on tumor detection is about MR imaging. In edge technology, many of the most common tasks are done electronically. One of the gardens that make up the infinite garden is the tree. Automation in this field will improve accuracy and completeness. Instinctive detection of brain tumors using MR pictures is one of the most effective and difficult technologies available in the field of medicine. Isolation is one of the methods of image manipulation, which plays an important role in tumor detection. MR images were then segmented to identify the tumor type. When dealing with automated detection of tumors in different organs of the human body, high accuracy is required. To avoid false detection and diagnosis of diseases by a human, computer assistance is required by medical institution. It is proven that analyzing a medical image twice can improve tumor detection. However, the costs incurred in the double study are quite high, which is why good software to help people in medical facilities requires an hour. Here we are dealing with efficient, accurate and cost-effective automated detection of the brain tumor. The project’s main proposal is to detect and then later classify tumor into smaller and detection of fragmented population of tumor on the basis of separation effect.
**Methodology**

The planned procedure for research of this work is shown in Figure 1. Image Acquisition the first step. Image acquisition is a process of retrieving data sets from different sources, which is generally hardware-based sources such as digital camera, image sensor, satellite scanner etc. We have worked on MR images obtained from pathology lab, which has been acquired from circular sensors or MRI machine.

![General block diagram](image)

*Figure 1: General block diagram*

The third step is the partitioning of the image. Partitioning is an important event that gathers information from a complex medical picture. The most commonly used partition for this purpose is K-means clustering. The final stage of feature extraction and classification. Feature abstraction removes valuable features from the image for classification purpose. Determining good characterization for classification can be challenging. Discrete waveforms are used to extract particular properties from segmented results. In contrast, various parameters such as correlation, force, symmetry, mean, standard deviation, entropy, rms, difference, smoothness, kurtosis and IDM are used to classify tumors as benign and malignant.

**MR Image Acquisition**

Image acquisition is the initial step performed in any image preprocessing technique. In Magnetic Resonance Imaging (MRI) an image of organs in a human body is generated using magnetic energy and radio waves. MRI scanner uses powerful magnets to image human organs. These powerful magnets excite and polarize the proton i.e. hydrogen nuclei of the water molecules in human tissues and organs, which then generates discernible signal which is partially encoded and an image is generated. The magnetic properties of the nuclei in the body tissues were measured by MRI. Initially using these powerful magnets, the nucleus of the body enters the excited state, returns to its initial steady state, the nucleus returns energy, and these irradiated radiations appear as the MRI signals go. For each spatial point, resonant nuclei are cast-off in MRI. Coming to the gray level of image, MRIs are essentially their main tissue parameters and the banks of these parameters - proton density (PD), spin - lattice relaxation time (T1) and spin - spin relaxation time (T2). Different researchers prefer T1, T2 and PD types of images for different MR applications. The PD image has now been replaced with a new technology called the Fluid-Attained Inversion Recovery Sequence (FLAIR). FLAIR produces T2-weighted images and suppresses the signal from the cerebrospinal fluid. Higher extremes for white matter and higher extremes for cerebrospinal fluid are represented by T1 and T2, respectively. In general, MR
images depict 3 main features with variable properties. Axial orientation is commonly used for the dissection of magnetic resonance imaging and is available for all other orientations of magnetic resonance. For the present work, the brain for classification of MRI images is extracted from T2-weighted real-time images of MRI scanning centers and pathology labs. Anomalous image i.e. images with different anomalies and normal images are the two sets of MRI images that are collected.

**Image Preprocessing**

An important part of any image event system is represented by the preprocessing phase. This may be in contrast to phase noise enhancement techniques or noise removal methods. Pre-event activities include filtering to eliminate pre-image noise, converting the RGB into a gray scale image, via the Otsu Thresholding method.

**Grayscale Imaging**

Representation of an image by using variations of black and white is called grey scale representation. In grey scale representation, the possible shades that are recognized are pure black and pure white shade. During light transmission, decimal 0 to 255 (or binary 00000000 to 11111111) are brightness levels od R(Red), G(Green) and B(Blue). Here black is denoted as R=B=G=00000000 and white can be denoted as R=B=G=11111111. Grayscale has a array of shades of gray, where black is dimmest probable shade and white is brightest probable shade. Hence, we convert the input image in the first step i.e. Magnetic Resonance imaging image is pre-phenomenon to a Grayscale image.

**Noise Elimination Procedure**

Acquisition of precise images to establishment of accurate observations for a given application. When it comes to effective image feature extraction, analysis, recognition and quantitative measurement, poor image quality is a major problem. So, it is essential to reduce noise that are present in medical image. MRI and Ultrasound Imaging are newly developed medical imagery modalities, that as the potential for accurate measurement of anatomy of a human organ in a minimally invasive way. Median filter is the most commonly used nonlinear filter for reducing noise since it has good de-noising power and computational efficiency. It is a common image augmentation technique for eliminating salt and pepper noise. Median filters can remove impulse noise deprived of significantly plummeting the sharpness of the image, since this filtering is somewhat less subtle than any other linear methods for great variations in pixel standards. Since we are working with MR images, median filter is the filter employed in the de-noising stage. Median filtering is often used to get rid of noise, it is a nonlinear digital filter. Therefore, noise reduction is the first basic step of doing something to improve the effects of preprocessing (for example, the detection of edges in an image). Median filtering is often employed in a digital imaging preprocessing that, under many circumstances it retains edges whereas confiscating noise. Primary aim of median filter is to result in signal penetration, replacing each and every entry in the neighboring input. The neighbor's pattern is called a "window", which
folds, pointing at points, over every sign. In the case of a 1D signal, a highly
visible window is simply inserted and following entries, while 2D (or larger)
displays such as images, complex windows patterns are possible (such as "box" or
"cross" patterns). All vectors inside the mask and arrange the size. In turn, a
Median-sized pixel is used to capture the read pixel image. The functionality of
the median filter can be articulated as equation 1.

\[
f(x, y) = \text{median}\{g(s, t)\} \quad (s, t) \epsilon S_{x,y} \quad (1)
\]

\(s_{x,y}\) is positioned at point \((x, y)\), denote pairs of points in the rectangular window
and the mean value of the median window. In the case of the center filter, its
appearances at every pixel of image and also appearances at its nearest neighbor
to determine whether it is representative of its surrounds. Instead of substituting
pixel value through several adjacent picture element values, it changes those
values. If the neighbors observed are the number of pixels, an average of two
pixels is used. Since only the epicenter pixel value is substituted, the edges of
images are saved. Figure 2 illustrates the brain MRI images before and after noise
elimination procedure.

![Image](image.png)

Figure 2: Noisy and Denoised image

**Image Segmentation**

The Otsu Threshold technique is one of the greatest successful approaches for
image thresholding. Threshold is a significant procedure for image subdivision.
Both are of the same standard, which reduces class difference. In this method,
the gray scale histogram should be calculated first. Otsu's scheme is used to
inevitably create an image based on merging otherwise cropping a gray graphic
image into a binary image. Procedure adopts that image comprises two groups of
picture elements, followed by a bimodal histogram procedure. The joint spread
(intra-class variance) calculates the positive range that separates the two classes
so that the difference between them is small or equal.
An example of an Otsu entry shows the result. The phenomenon of dividing the digital image into several categories (also called pixels sets, super pixels) is called image segmentation. The outcome of image subdivision is group of sections or textures that mutually cover whole picture. Each pixel in an area is equal to attributes such as color, intensity or texture. Neighbors are very dissimilar with respect to similar properties. Once combined with a set of imageries common to therapeutic imagery, the emergence of images after subsequent subdivision can be castoff to generate 3D restorations by the aid of interpolation procedures.

**K Means Clustering**

Vector quantification by clustering K-paths from a popular signal for cluster analysis in data mining. Clustering observations on the major moto k clusters of partitioning by k-means, where each observation occurs on average with the cluster, is a model of the cluster. 1-nearest neighbor classification can be applied to cluster centers gained through k-means to categorize new data in prevailing clusters, each observation d-dimensional actual trajectory, k-means of bunching n (set n) set S = {S1, S2..., Sk}. Divide into sk so that the squares in the cluster (WCSS) can be reduced (the sum of the remote functions in the center of cluster K) using equation 2.

$$\arg \min_{\mu} \sum_{i=1}^{k} \sum_{x \in S_i} \|x - \mu_i\|^2$$  \hspace{1cm} (2)

Where; $\mu_i$ is mean of points in $S_i$. 

![Figure 3: An example to illustrate Otsu thresholding](image)

![Figure 4: Unclustered and Clustered data](image)
Clustering Algorithm

K-means is easy and can be used for a wide variety of data types; It is sensitive to the initial conditions of cluster centers. The main cluster centroids might not remain ideal since algorithm can convert to local optimal solutions. Empty clusters can be obtained if the points are not assigned to the cluster during the assignment points. It is important to have a good startup cluster center for K-Mean to work properly. A new cluster center initialization algorithm is proposed for the algorithm to introduce cluster centers for K-means. So, the incremental k-means algorithm is as follows. Input: Number of initial groups (M) and target number of groups (K) where M > K.

Feature Extraction

An algorithm suspects that the input data is too large and unnecessary (for example the same size in terms of feet and meters, or images presented as pixels), it can be set to fewer features. (Also called feature vector). The image or dataset is broken after segmentation by using the Segmented Wavelet Transform (DWT). Useful properties such as energy, entropy, RMS, correlation, mean, standard deviation, difference, sensitivity, kurtosis, etc. are extracted from the rotten image for hierarchical purpose. The acquired symptoms are used to classify brain tumors as benign and malignant. Figure. 5 shows the flow of detailed events of extraction and scale.

Discrete Wavelet Transform

The wavelet transform that gives the discrete models of the wavelet is called the discrete wavelength change (DWT). As with other wave changes, one of its main advantages over other changes is the temporal tenacity. Its apprehensions occurrence and positional statistics (location at one time). As shown in figure 6, 1D Discrete waveform transform (DWT) is a wavelet transform input by means of a distinct group of waveform standards and descriptions that follow other well-defined rubrics. Actually, it converts the signal obsessed by a waveform generated...
by a combination of waves, a significant alteration from continuous wavelet (CWT), or use of discrete time series continuous wavelet transform (DT-CWT). Wavelet Conversion of Image in 2D type of investigation and synthesis filter banks. Whereas in 2D, the 1D analysis filter bank is applied primarily to columns of image and subsequently to the next rows. Column 1D Analysis Filter bank receives image for two sub-band images with N1 columns and N2 columns, each containing N1 / 2 columns and N2 columns; later smearing a 1D analysis filter bank to all the two sub band imageries, four sub band imageries, n 1/2 rows and n 2/2 columns are obtained. This is as shown in Figure 7.

![Figure 6: 1D Discrete Wavelet Transform](image)

![Figure 7: One phase of multi resolution wavelet decomposition of an image](image)

**ANN based Feature Extraction for Categorization**

Since categorization is an event so separate substances (objects/patterns/image regions/pixels) are gathered based on correlation amongst item and description of the group. The tumor stages are categorized by the technique of Artificial Neural Network. Back Propagation Algorithm is one of the ANN methods, which classifies the tumor. In Artificial Neural Networks, the network should be trained initially and then using trained networks, categorization was developed. The training of networks is similar to human brain. In ANN, back propagation algorithm is chosen to clarify tumor stages. However, ANN does not take image as input; but it takes the values of the image. The back-propagation algorithms use three layers for classifying and are the input layer, hidden layer and output layer. Here, hidden layer is taken as three with input and output layers are taken as one. The hidden layer consists of weight and bias values. In case of hidden layer, the parameters like epoch, time, performance and gradient are computed. In this hidden layer, progress takes place in every step. Figure 8 portrays the different types of brain tumor and its corresponding texture features extracted images.
Image Categorization Using SVM

Classification is the phenomenon of classifying inputs trained with categorical classifications. Since the Support Vector Machine (SVM) classification is one of the best classifications suggested by most researchers, it has been selected for the Classification Brain Tumor for MR imaging. It does not rely on dimensionality and feature space. Linear and non-linear kernel functions with SVM classifiers provide the best results in classification. It is found that the seven kernels described here can be used for MR image classification. SVMs can perform more complex, linear, classification problems along with simple, linear, classification tasks. Wearable and wearable issues are handled by SVM in both linear and non-linear cases. SVM maps the innovative data facts from input space to the high dimensional or countless dimensional, feature space, thereby simplifying the classification delinquent in feature space. Mapping is done by a qualified selection of kernel functions. Different kinds of data can remain defined in many ways, if it’s simple to separate the data.

In Figure 9, SVM classifiers are by "X" and "O", while hyperplanes reduce the different margins between the two classes. Support vectors are aspects of training
determined on two classes of border hyper planes. Intelligent classification technology proposes simple and unusual MRI brain image recognition. SVM generalizes fit on complex image sorting glitches, wherever features are only high dimensional histograms. The scheme for tumor recognition and differentiation comprises of various steps:

- Input MRI image of brain.
- Image preprocessing is castoff to enhance the superiority of imageries.
- Image attained with the detached noise is converted to binary through smearing a histogram created image dissection to abstract the brain cancer.
- Properties taken from fragmented images.
- Some features appear under the SVM classification to identify a tumor.

**Results and Discussions**

Performance of brain tumor segments is assessed based on K-means bunching. Dataset has a magnetic resonance imaging (MRI) size of 200X200. The MRI image databank used in image segmentation procedures refers to openly accessible bases. This image databank comprises 30 brain MRI imageries, encompassing of malignant and benign tumor images. The training dataset and the test dataset are two subsets of the brain image dataset. The training data set is one for which both the input data and the results of each step are known. It provides a learning relationship between the data and attributes of function. Testing data set consists of images that have to be tested in order to get the desired result. This provides the comparison between attributes obtained and real attributes. The RGB scans are converted into grayscale and then into binary image using binarization technique. Thus, the pre-preprocessing is done by filtering. Segmentation is performed by advanced K-means algorithm. Features are extracted with help of discrete wavelet transformation and categorization is done based on parameters extracted using SVM. Figure 10 shows the MRI scan of a benign tumor. Figure 11 shows the grayscale image converted to a binary image. This binary image is inaccurate, as it does not clearly show the tumor part. Further Figure 12 shows the clustered objects.
Figure 13 shows the completely extracted tumor along with some error. This error occurs due to the density of the outer layer of the skull that is falsely interpreted as a tumor by the MRI machine.
The Table 1 shown below tabulates some of the important features used for categorization of the tumors into benign category. These attributes are commonly used for all the operations pertaining to image preprocessing.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast</td>
<td>0.2250</td>
<td>Correlation</td>
<td>0.0991</td>
</tr>
<tr>
<td>Energy</td>
<td>0.7691</td>
<td>Entropy</td>
<td>3.5182</td>
</tr>
<tr>
<td>Homogeneity</td>
<td>0.9365</td>
<td>IDM</td>
<td>0.5462</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>6.7672</td>
<td>Mean</td>
<td>0.0021</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.4413</td>
<td>Smoothness</td>
<td>0.8850</td>
</tr>
</tbody>
</table>

The above sets of values are compared with the training set data to determine the categorization of the tumor. In this case, it is found to be benign type of tumor. Repeated calculations show that for the above sample the various kernels give the accuracy as follows:

- Accuracy of Linear kernel: 80%
- Accuracy of RBF kernel: 95%
- Accuracy of Polynomial kernel: 93.333%

Figure 14 shows the MRI scan of a malignant tumor. Figure 15 shows the grayscale image converted to a binary image. Further figure 16 shows the clustered objects. Figure 17 shows the completely extracted tumor with little error. This error is very much less compared to the error as in the case of benign tumor.
Figure 14: Original image

Figure 15: Otsu threshold image

Figure 16: Clustering result
The Table 1 shown below tabulates some of the important features used for categorization of the tumors into benign category. The above set of values is compared with the training set data to determine the categorization of the tumor. In this case, it is found to be malignant type of tumor.

Table 2: Features extracted for malignant tumor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast</td>
<td>0.3059</td>
<td>Correlation</td>
<td>0.1421</td>
</tr>
<tr>
<td>Energy</td>
<td>0.7862</td>
<td>Entropy</td>
<td>3.2051</td>
</tr>
<tr>
<td>Homogeneity</td>
<td>0.9379</td>
<td>IDM</td>
<td>1.2156</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>12.2408</td>
<td>Mean</td>
<td>0.0063</td>
</tr>
<tr>
<td>Skewness</td>
<td>1.1048</td>
<td>Smoothness</td>
<td>0.9591</td>
</tr>
</tbody>
</table>

Repeated calculations show that for the above sample the various kernels give the accuracy as follows:

Accuracy of Linear kernel: 90%
Accuracy of RBF kernel: 95%
Accuracy of Polynomial kernel: 92%

**Conclusion**

This research has thrown light on the automated phenomenon of segmenting and categorizing of the brain tumors into benign and malignant categories. First step is used for conversion of the grayscale image into binary image. This step involves Otsu’s thresholding method. Even though other methods are available for thresholding, Otsu’s thresholding method is far more worthy than other methods. The next operation to be done on the binary image is the clustering phenomenon. This sub-phenomenon becomes the foundation of the entire procedure for
automated segmentation and categorization. Clustering is based on various statistical parameters obtained from the image. These parameters help us to organize the images into the required categories.

References