Relationship Between Obesity and Immunological Parameters Among Students at the PSAU University-Alkharj, KSA

Hayat Alafari
Dept of Biology, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia

Dalal. S. Alshaya
Dept of Biology, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia

Yaser Alnaam
Dept of CLS, Prince Sultan Millitary College for health Sciences, Dhahran, Saudi Arabia

Rawiah Alsiary
KAIMRC center, KSAU, Jeddah, Saudi Arabia

Abeer Alsofyani
KAIMRC center, KSAU, Jeddah, Saudi Arabia

Mashael Altoub

Talat Bukhari
College of Medicine, Um Qura University, Makka, Saudi Arabia

Aisha Alanazi
Prince Sultan Medical City, Military Hospital, Riyadh, Saudi Arabia

Noufa Alonazi
Prince Sultan Medical City, Military Hospital, Riyadh, Saudi Arabia

Maha Alanazi
Prince Sultan Medical City, Military Hospital, Riyadh, Saudi Arabia

International Journal of Health Sciences ISSN 2550-6978 E-ISSN 2550-696X © 2022.
Corresponding author: Alenzi, F. Q.; Email: f.alenzi@psau.edu.sa
Manuscript submitted: 27 Nov 2021, Manuscript revised: 09 Feb 2022, Accepted for publication: 13 March 2022

Hajir Alsaihati
Dept of Med Lab Sci, College of Appl Med Sci, Hafr Albatan University, Saudi Arabia

Awal Zaki
Dammam Regional Lab, Dammam, Saudi Arabia

Abdulkarim S. Bin Shaya

Noura Aldheyan

Nahed Alharthi

Zyad Alanazi

Abdulrahman Alqahtani

Salman Alzehairi

Nadiyah Alenezi
Health Affairs, Madina, Saudi Arabia

Rakan Alanazi
Alfaisal University, Riyadh, Saudi Arabia

Naif Alruwaili
RT Dept, Prince Mohamed Hospital, Riyadh, Saudi Arabia

Hiba S. Al-Amodi
Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia

Essa E. Alanazi
Virology Lab, KSMC, Riyadh, Saudi Arabia

Fadel H. Alhababi
Virology Lab, KSMC, Riyadh, Saudi Arabia
Abstract—Obesity represents a major worldwide health problem, all aspects of which have not fully defined, nor fully understood. In the current study, we investigated a population of university students in terms of the relationship between incidence of obesity in individuals (n=171), within this larger cohort (n=500), with the comorbidities that these high BMI individuals also carried. We also report important statistical differences in blood levels each of cardiac-related protein (CRP) (p=0.002), IL-6 (p=0.005), leptin (p=0.02), when we related the blood values with individual student BMIs which were used as a measure of obesity.

Keywords—BMI, CRP, leptin, obesity, Saudi Arabia.

Introduction

Obesity is a global epidemic that affects large populations, both in rich and poor countries. There are nearly 500 million obese adults worldwide, and another 1.5 billion are overweight. Obesity results from an imbalance between food intake and energy expenditure leading to an excessive accumulation of adipose tissue (Weiss, J 200). Obesity has become more prevalent in the last few decades, especially young adults (WHO report 2000). Whilst obesity can be broadly defined as an excess in body fat which leadsto ill health; however, the body mass index (BMI kg/m2) offers a more practical classification for identifying and monitoring obesity (Bray G 1998). BMI is calculated by dividing body mass (kg) by squared height (m2). Adults with a BMI ≥30kg/m2 are classified as obese, those with a BMI of 25–29.9 are regarded as overweight. A BMI between 18.5–24.9 is considered normal, whilst a BMI <18.5 is considered underweight.

Links have been described between obesity and many risk factors, these include: smoking, cardiovascular disease (CVD), cancer, osteoarthritis and sleep apnoea (Bray G 1985 & Dandona P, 2004). In the US and UK, the prevalence of obesity has doubled since the 1980's. Saudi Arabia is among the fastest growing economies of the world. As a result, there have been significant modifications in
When leptin, a hormone released by adipose cells in the small intestine, is released into the circulation, its plasma levels correlate with BMI. Leptin induces proliferation and differentiation of hematopoietic cells. It also stimulates (a) proliferation of monocytes/macrophages; (b) activation of neutrophils by inducing TNF-α and IL-6 production; (c) Th1-type cytokine production. These findings may help explain the fact that obesity is associated with nearly 40% of some malignancies, such as thyroid, colon cancers, multiple myeloma and leukemia. Accordingly, the purpose of the current study was to assess the prevalence and immunological parameters of obesity of Saudi students at the PSAU.

Materials and Methods

Subjects

Characteristic of samples

Data were collected as a questionnaire, which included demographic information and relevance to chronic diseases. This survey that included 500 Saudi students studying at the PSAU, Alkharj region, Saudi Arabia, during the period from Sept 2018 to December 2021.

Characteristic of obese students

A total of 171 of 500 students were classified as obese and undertaken for further immunological investigations. BMI was calculated from measured height and weight and thereby classified as follows: overweight (25–30 kg/m²); and obese (30–35 kg/m²), morbidly obesity (>36 kg/m²).

Measurement of serum CRP level

The sera were separated from thirty obese and thirty healthy controls (aged and sex matched) and were used to assess the concentrations of CRP. All samples were screened to confirm the presence of CRP by using Card-CRP Single Test (Axis-Shield, Norway) according to the manufacturer's instructions. The level of CRP of positive samples was measured by using CRP enzyme-linked immunosorbent assay-ELISA Kit (Abcam, Massachusetts, USA). The normal range of serum level of CRP is less than 8mg/ml, 'positive' samples those who have 9mg/ml or greater.

Measurement of serum IL-6

Once the sera were separated from thirty obese and thirty healthy controls (aged and sex matched), they were also used to assess the concentrations of cytokines. Plasma from all groups were collected and stored at -20°C for later analysis. During analysis, an ELISA kit was used for measuring cytokines. Sample duplicates were utilized and the analytic procedure was carried out according to
manufacturer’s manual. Luminex kits were used to analyze patients’ plasma and was purchased from (Merck Millipore, MILLIPLEX MAP Human) and they were used as per manufacturer’s instructions.

LEPTIN measurements

Once the sera were separated from thirty obese and thirty health control (aged and sex matched), they were also used to assess the concentrations of Leptin. Serum leptin was measured by enzyme-linked immunosorbant assay (sandwich method).

Statistical analysis

Statistical analysis was performed using SPSS (Statistical Package for Social Sciences) for Windows, version 10.0.1, 1999. Student t-test, and Mann-Whitney test were applied as appropriate according to the results of Levene test of homogeneity of variances. Pearson correlation coefficients were also calculated.

Results

The mean age of the study population was 20.5 ± 2.5 years for males, and 19.4±5.8 for females. Males;females’ ratio was 4: 1. As shown in Fig 1. the prevalence rates of obesity in the PSAU was 34.2%.

Table 1 shows that the majority of the students were between 17-20 years old, although a few of them were >25 years old.

<table>
<thead>
<tr>
<th>Age</th>
<th>% of participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-20 years old</td>
<td>56%</td>
</tr>
<tr>
<td>21-24 years old</td>
<td>41%</td>
</tr>
<tr>
<td>25 and More years old</td>
<td>3%</td>
</tr>
</tbody>
</table>

Table 2, shows that there was a 2:1 preponderance of males in the study group.

<table>
<thead>
<tr>
<th>Sex</th>
<th>% of participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>66%</td>
</tr>
<tr>
<td>Female</td>
<td>34%</td>
</tr>
</tbody>
</table>

Table 3; shows the distribution of obese students according to their college of study. The highest incidence of obesity was amongst students of engineering, followed by students of CAMS at 56%, then students in their preparatory year at 30%. Students of medicine (3%) were the least obese.
Table 3
Subject distribution according to college of study

<table>
<thead>
<tr>
<th>College</th>
<th>Number of Obese Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicine</td>
<td>3</td>
</tr>
<tr>
<td>CAMS</td>
<td>56</td>
</tr>
<tr>
<td>Pharmacy</td>
<td>14</td>
</tr>
<tr>
<td>Engineering</td>
<td>91</td>
</tr>
<tr>
<td>Computing</td>
<td>21</td>
</tr>
<tr>
<td>Administration</td>
<td>16</td>
</tr>
<tr>
<td>Preparatory Year</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 4 also shows which additional chronic diseases were present in obese students. We found that allergy was the most common among these students (75), then asthma (10), and lastly BP and DM at 2 and 1 respectively.

Table 4
Association between obesity and chronic diseases

<table>
<thead>
<tr>
<th>Diseases</th>
<th>Number of obese participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>blood pressure (BP)</td>
<td>1</td>
</tr>
<tr>
<td>Diabetes (DM)</td>
<td>2</td>
</tr>
<tr>
<td>Allergy (Eye, Skin, GIT)</td>
<td>75</td>
</tr>
<tr>
<td>Asthma</td>
<td>10</td>
</tr>
<tr>
<td>Others</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 5 shows we found a significant difference in CRP production between obese and non obese subjects (p=0.002)

Table 5
Measurement of CRP

<table>
<thead>
<tr>
<th>CRP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td>1.8±1.0 mg/L</td>
</tr>
<tr>
<td>Obese students</td>
<td>17.2±0.8 mg/L</td>
</tr>
</tbody>
</table>

Table 6 shows we identified a significant difference in IL-6 production in the obese subjects compared to non obese (p=0.005)

Table 6
Measurement of Cytokine IL-6

<table>
<thead>
<tr>
<th>IL-6</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td>2.5±0.6 pg/mL</td>
</tr>
<tr>
<td>Obese students</td>
<td>6.7±0.5 pg/mL</td>
</tr>
</tbody>
</table>

Table 7 demonstrates a trend difference in Leptin production in obese subjects compared to non obese (p=0.2)
Table 7
Measurement of Leptin

<table>
<thead>
<tr>
<th></th>
<th>LEPTIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td>11.1±2.4 ng/mL</td>
</tr>
<tr>
<td>Obese students</td>
<td>17.2 ±3.1 ng/mL</td>
</tr>
</tbody>
</table>

Discussion

According to Forbes, Saudi Arabia ranked number 29 on a 2007 list of the countries in terms of the percentage (6%) of its citizens being overweight (BMI > 25) Streib, Forbes report, 2007). There are many local published studies that report the relatively high prevalence of obesity in the KSA. First was among college students (21.8%) ElMouzan, 2010 & Al-Malki, 2003 & Al-Rethaiaa, 2010 (Second; in a study in 2004 over 82% of the subjects were either overweight or obese) Al-Qahtani, 2005). Third, a study (2009-2011) to measure the prevalence of obesity among military personnel in KSA, it was reported that 40.9% of the participants were overweight, with 29% obese) Horaib, 2013). Fourth; a study on the prevalence rates of obesity in the Hail region (in Baqaa, Ash Shinan and Ghazala were, 64%, 70%, 69%, and 55%, respectively) Hussain Ahmed, 2014 Internationally, the prevalence of obesity is highest in USA (26%) and lowest in South East Asia (3%)(GHO report, 2013).

In the current study, we showed a weak link between obesity, hypertension, and diabetes, but a statistically significant difference between obesity and allergy reactions (p=0.001). At least four papers, some very recent, have previously shown an increase in the CRP in obese subjects compared to non-obese subjects:) Pavela, 2018 & Aronson 2004 & Visser 1999 & Cohen E, 2021(However, in contrast to this, Hassaen et al provided data that suggested CRP is not affected by obesity) Hassaen, 2016). Moreover, our results are also agreement with five papers which detected higher serum IL-6 among obese individuals)Gillespie, 2016 & ElKader, 2016 & Roytblat, 2000 & ElByoumy 2017 & ElMikkawy, 2020). Additionally, our results are also concordant with two papers which demonstrated higher plasma Leptin levels among obese individuals (Milaneschi, 2012 & Izquierdo, 2019)

Acknowledgments

This work was supported by the PSAU (grant no:2019/03/10211)

References

Weiss, J. W., Merrill, V., and Gritz, E. R. “Ethnic variation in the association between weight concern and adolescent smoking” Addict Behav 2007; 32, 2311–231’

Yuri Milaneschi, Eleanor M. Simonsick, Nicole Vogelzangs, Elsa S. Strotmeyer, Kristine Yaffe, Tamara B. Harris, Magdalena I. Tolea, Luigi Ferrucci, Brenda W.J.H. Penninx Leptin, abdominal obesity, and onset of depression in older men and women Journal of Clinical Psychiatry 2012; 73; 1205-1211