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In this paper, we suggest a framework for multi-focal image classification and identification, 

the methodology being demonstrated on microscope pollen images (image processing and 

classification techniques). The framework is intended to be generic and based on a brute force-

like approach aimed to be efficient not only on any kind, and any number, of pollen images 

(regardless of the pollen type), but also on any kind of multi-focal images. Microscope images 

information obtained from bee pollen samples (72 samples) of different floral origin from 

various Algerian counties were used to formulate a method for rapid classification using 

Hierarchical Cluster Analysis (HCA). Both stages of the framework’s pipeline are planned to 
be used in an automated fashion. First, the optimum focus is chosen using the absolute 

gradient method. Then, pollen grains are collected using a coarse-to-fine method involving 

both clustering and morphological techniques. Finally, features are extracted and selected 

using a generalized method, and their classification is checked with using HCA. Our findings 

indicate that HCA meets the demands for automatic pollen detection making it an alternative 

method for research concerning pollen. 
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1. Introduction  

Bee and honey hive related products, along with other 

natural resources of essential amino acids, flavones, 

vitamins, polyphenols, and enzymes, enjoy considerable 

traction on the social marketplace. Pollen, bee-bread, royal 

jelly and bee-venom are all indicated by an outstanding 

anti-allergenic sequence[1]. 

Classification of pollen grains has become a costly 

analytical process involving the detection and classification 

of features by a professionally qualified palynologist. Still 

the most detailed and reliable method. But it does obstruct 

scientific progress, taking significant time and resources 

[2].Recent improvements in the instruments used to collect, 

process and analyze fluorescence signals have now allowed 

the classification and counting of pollen grains[3]. 

Those problems can be solved by automated 

identification of pollen grains, generating strictly objective 

results faster[4].  Such an instrument will prove invaluable 

in flora studies. For Flenley these advantages were 

obvious[5].At that moment, however, the idea was 

intractable.  Mainly because of limitations on the 
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technology. Nowadays, technology is no longer an 

obstacle, and thanks to computer vision the device being 

addressed is a reality[6].  

It is generally easy and unambiguous to classify the 

grains as fluorescent; however, often pollen grains show 

intermediate fluorescence, so their classification is 

difficult. Another type of classification error occurs when 

the grain fluorescence in a microscope field is uniform 

because the ratio of fluorescent to non-fluorescent grains is 

either very large or very small. In such situations, a slight 

variation in the intensity of the fluorescence will allow the 

operator to take some grains into a classification[7]. 

However, this method is comparatively less reliable as a 

subjective classification tool. Various spectral techniques, 

such as Fourier transform infrared (FTIR) spectroscopy, 

Raman spectroscopy (RS), and fluorescence spectroscopy 

(FS), have so far put a lot of effort into improving the 

performance of pollen classification [8-10]. 

According to Pinnick et al., Fluorescence is a useful 

index for differentiating among biological and non-

biological airborne particles; hence, fluorescence 

microscopy is a practical method for pollen grain 

investigation [7, 11, 12].  

A pollen analysis system requires not only a pollen grain 

location in the picture but also a botanical type 

classification of the pollen grain. Fluorescence images of 

bee pollen grains can be used to identify pollens, so the 

fluorescence technique is an important method for 

classifying pollens [3, 7, 13].  

The application of computational image processing and 

machine learning algorithms to recognise and characterise 

disease patterns on digitised tissue slides [14]. In the field 

of breast cancer pathology, a variety of computational 

imaging methods have been recently applied for problems 

such as I detection of mitoses [15-17]  , tubules[18], 

nuclei[19], (ii) association of quantitative histologic image 

features and molecular features of breast cancer 

aggressiveness [20], and (iii) recognition of histologic 

image features that are predictive of breast cancer outcome 

and survival [21]. Deep learning has also been used to 

identify image-based plant diseases [22]. 

We depend on this study to classify the variables 

(pictures, Algerian bee pollen) according to specific 

properties in different groups with chemometrics analysis, 

and they are arranged inside hierarchical clusters, where 

the variables with similar characteristics are positioned 

within one cluster distinguished by features that are 

different from the rest of the other clusters. We may also 

find the degree of similarity in the form between the 

samples by their components using a hierarchical. 

2. Materials and methods 

2.1. Materials  

Ethanol (C2H6O, M = 46.07 g /mol, 99.8%) 

manufactured bya company Honeywell. Distilled water 

(H2O) prepared in the laboratory. 

1.2. Apparatus 

Sensitive scale (EXPLORER) (0.1 mg) made (OHRUS), 

Optical Microscope equipped with a digital camera 

(OPTIKA B-350), Scanner. 

1.3. Bee pollen sampling 

Seventy two samples of bee Pollen were collected from 

various locations and states of Algeria (Figure 1), where 

they were collected by specialists in beekeeping, in a time 

spanning between 2016 - 2018. Table 1 shows a summary 

about the various collected propolis samples. 

1.4. Sample Preparation 

2 mg of each sample of different pollen was weighed 

and placed in test tubes, we added 1 ml of ethanol (C2H6O) 

"Ethanol (alcohol) was chosen to avoid the spread of 

bacteria in the medium". After an hour, we take the 

remaining residue from the decomposition process and 

place it on a glass slide, add drops of distilled water to 

dilute the samples, then cover the slide with a coverslip, 

and add drops of oil to "clarify the images better", and 

place them in an optical microscope equipped with a 

computer and a camera to capture different Pictures of 

pollen zoom 1000 times (Figure 2). 

1.5. Unsupervised analysis of bee pollen images 

Deep learning [23] has revolutionised the field of 

biomedical image processing. Conventional methods have 

used problem-specific algorithms to represent images with 

manually designed features, such as cell morphology, 

count, strength, and texture [24]. 

 Feature learning with deep convolutionary neural 

networks is implicit, and network training usually focuses 

on specific tasks, such as mammography detection of 

breast cancer[14], subcellular protein localization [25], or 

plant disease detection [22]. Training a deep network 

normally involves a large number of images, which limits 

its usefulness. 

Here, we use the Orange Data Mining (Orange3-3.13.0-

Python36 Pro 2018. University of Ljubljana, Slovenia) 

visual programming toolbox to simplify the study of bee 

pollen images by incorporating deep-learning embedding, 

machine learning processes and data visualisation. 

1.6. Hierarchical cluster analysis (HCA) 

Cluster analysis is really the process of grouping 

objects into clusters which have meaning in the context of 

a specific problem. Clustering methods are unsupervised 

types of analysis, as there are no a priori concepts of cluster 

membership [26]. HCA helped classify the samples 

analysed into groups of similar characteristics [27]. 

In this work, we checked that the best results were 

obtained using a metric based on Cosine's correlation 

coefficient and the average linkage process. 
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Fig. 1. Geographical locations from which bee pollen samples were obtained. 

Table 1. A summary of Propolis samples. 

Code Region Forest Cover Date of harvest Source 

P1 

A1 

Bouira Intensive 

 

 

2017 

 

Acer negundo L 

J1 Acer opalus subsp. 

O1 Anemonastrum narcissiflorum L 

N1 Ajuga reptans L 

P2 

J2    Ajuga reptans L 

O2 

Mtija Intensive 2017 

Soybean 

Js2 Spotted yellow loosestrife 

B2 Red sand-spurrey 

P3 

J3    Pink corydalis 

O3 

Skikda Intensive 2017 

Pearly everlasting 

B3 Caliculé Leatherleaf 

V3 Canada fly honeysuckle 

P4 

J4    Trembeling aspen 

O4 

Constantine Intensive 2017 

Common storksbill 

A4 Leatherleaf 

Js4 Crocus sativus L 

P5 

J5    Bitter Wintercress 

Jo5 Birch 

Js5 Common ragweed 

O5 

Tipaza Intensive 2017 

Buckwheat 

V5 European columbine 

N5 Brunet’s milk-vetch 

R5 Holly 

 

P6 

 

 

J6    Mexican dock 

O6 

El-Bayadh Intensive 2017 

Plantain lily 

Jo6 Meadow geranium 

N6 Tatarian honeysuckle 

 

P7 

 

J7    Common wormwood 

O7 Everlasting pea 

Js7 

Tipaza Intensive 2017 

Garlic mustard 

N7 European columbine 

R7 Bitter wintercress 

Rs7 Round-leaved dogwood 
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P8 

 

 

J8    European bistort 

O8 Basswood 

Js8 

Bouira- 

Boumerdès 
Intensive 2017 

Wild sarsaparilla 

R8 Brunet’s milk-vetch 

B8 Wild sarsaparilla 

N8 Prostrate knotweed 

P9 

J9  

Average 

density 

 Creeping buttercup 

O9 Broad fruited burred 

B9 

Laghouat, Blida 

and Médéa 
2017 

Northern marsh yellowcress 

Bn9 American beech 

R9 Staghorn sumac 

N9 Tall meadow-rue 

P10 

 

J10    Bird’s-eye speedwell 

O10 Agropyron caninum L 

B10 

Tizi-Ouzou Intensive 2017 

Large flowered barrenwort 

R10 Benoîte du Canada White avens 

V10 Amélanchier Serviceberry 

P11 

J11    Siberian pea shrub 

O11 Pearly everlasting 

Js11 

Boumerdès Intensive 2017 

Dill 

R11 Spotted jewelweed 

V11 Purslane speedwell 

P12 

J12    Bitter wintercress 

O12 Birch 

Js12 

Tizi-Ouzou Intensive 2017 

Alder 

B12 Black knapweed 

R12 Creeping bugleweed 

N12 Garlic mustard 

 

 

P13 

A13  

 

 

 

 

 

 

 

EL-Oued 

 

 

 

 

 

 

 

 

Not dense 
 

2017 

Zygophyllum album L 

Genista saharae Coss & Dur 

W13 Eucalyptus 

J13 Mathiolalivida DC 

Phoenix dactylifera L 

O13 Anacyclus valentinus L 

Js13 Launaeare sedifolia O.K 

B13 Anacyclus valentinus L 

Launaeare sedifolia O.K 

V13 Brassica oleracea var.viridis L 

Vs13 Brassica oleracea var.viridis L 

Mathiola livida DC 

VIO13 Malcomia aegyptiaca spr 

R13 Retama raetam Eucalyptus 

Genista saharae Coss & Dur 

N13 Retama raetam 
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Fig. 2. Captured images of the optical microscope samples of pollen.
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3. Results and discussion 

Pollen authentication is a more specific problem 

in literature where there is limited data to model 

pollen types. One-class classification is an 

appropriate machine learning paradigm to deal with 

this problem.  

While there are restricted discernment methods 

for recognising pollen types in macroscopic images 

the majority of the current methods for analysing 

bee pollen and its origin are applied to microscopic 

pollen grains images, The first works on recognising 

pollen grains by optical microscopes were provided 

by France et al. (2000) and Boucher et al. (2002) 

where some discriminative features of various pollen 

taxa were detected and classified.  

Pollen authentication is a more complex issue in 

literature where there is insufficient data to model 

pollen forms. One-class classification is an effective 

machine learning model to deal with this problem. 

Cluster analysis easily classifies data into groups 

which helps to show similarities and is commonly 

used for rapid differentiation and classification of 

data. 

 
 

Fig.  3. Different images of pollen grains whose non-

homogeneous background features 

 

The model is taught using an open database of 

samples images containing grand a lot species. 

Experiments with a plant dataset show that the 

proposed model is significantly better than other 

classification methods.  High classification accuracy 

makes the model very useful for supporting the plant 

recognition system for working in real conditions. 

The particular attention has attributed to the 

understanding of the mechanisms underlying 

Microscope images classification of bee pollen.    

The influence of bee species, color of bee pollen, 

plant origin, geographic location, and season of 

collection it is directly related to the quality of the 

samples. 

4. Conclusions 

This paper has introduced the problem of 

automatic classification for bee pollen samples of 

different floral origin from various Algerian 

counties, where we adopted a standard methodology 

multi-focal image classification and authentication. 

We showed the results of applying the image 

processing algorithms to obtain the on any kind of 

multi-focal images properties of the pollen. Then, 

we tested the different one-class classification 

models based on HCA. The use of the presented 

standard methodology drastically reduce the time 

and effort spent by experts to several seconds and 

can be used as an standard method for 

macroscopically rejecting unknown pollen loads. 

Future work can be devoted to apply a more 

interpretable multi-classification system. 

In order to determined similarities and 

differences between bee pollen samples based on 

their Microscope images profile were established by 

the application of multivariate discriminate analysis. 

This method was proven to be a useful tool to study 

the relationships between bee pollen according to the 

Geographical area and to determine the importance 

of the Geographical area and plant origin on the bee 

pollen classification. 
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