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Abstract 
Currently, the development of mobile phones and mobile applications based on the Android operating 
system is growing rapidly. Many start-ups and startups are digitally transforming by using mobile apps to 
provide disruptive digital services to replace existing obsolete services. This transformation prompts 
attackers to create malicious software (malware) using sophisticated methods to target victims of Android 
phone users. Research in the field of security by analyzing Malware statically, has been very saturated 
and the accuracy results have reached 98% and many have even reached 99% accuracy. As a new 
challenger, the researcher wants to increase the accuracy of more than 99% by using the static method. 
The purpose of this study is to identify Android APK files by classifying them using Artificial Neural 
Network (ANN) and Non-Neural Network (NNN). ANN is a Multi-Layer Perceptron Classifier (MLPC), 
while NNN is a method of KNN, SVM, Decision Tree. This study aims to make a comparison between the 
performance of Non-Neural Networks and Artificial Neural Networks. The problem that occurs when 
classifying using the Non-Neural Network algorithm has a problem with decreasing performance, where 
performance often decreases if it is done with a larger dataset. Answering the problem of decreasing 
model performance, a solution with the Artificial Neural Network algorithm is used. The artificial neural 
network algorithm chosen is the Multi_layer Perceptron Classifier (MLPC). Using the Non-Neural Network 
algorithm, K-Nearest Neighbor conducts training with the 600 APK dataset achieving 91.2% accuracy and 
training using the 14170 APK dataset reduces its accuracy to 88%. The use of the Support Vector 
Machine algorithm with the 600 APK dataset has an accuracy of 99.1% and the 14170 APK dataset has 
decreased accuracy to 90.5%. The use of the Decision Tree algorithm to conduct training with the 600 
APK dataset has an accuracy of 99.2% and training with the 14170 APK dataset has decreased accuracy 
to 90.8%. Experiments using the Multi-Layer Perceptron Classifier have improved accuracy performance 
with the 600 APK dataset reaching 99% accuracy and training using the 14170 APK dataset increasing 
the accuracy by reaching 100%. 
 
Keywords : Multi-Layer Perceptron Classifier; Non Neural Network; Support Vector Machine; Decision 
Tree; Artificial Neural Network 
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INTRODUCTION  
Currently, the development of malware 

APKs is increasing, along with the number of 
Package Kit Applications (APKs) which are 
applications that run on the Android operating 
system. So many Android APKs, causing more 
and more certain parties to attack for purposes 
that benefit malware authors. Therefore, it is 
very detrimental for Android phones that have 
been infected with malware. From year to year 
the development of malware is increasing, for 
this reason this research uses the topic of 
Android malware. 

Intents are interfaces that connect 
interactions between Activities in an Android 

APK. Additionally, Intents send data to other 
Activities, such as sending data to other 
applications (Gmail, Google Maps, etc.). In 
essence, Intents are mechanisms for performing 
actions and communication between application 
components. 

Originality: Most journals in the literature 
review focus on feature clearance, rarely 
exploring feature intent. Android APKs to enable 
actions or activities that call components, send 
data, require feature intents. Without feature 
intents, Android cannot perform action functions. 
Therefore, this research focuses on feature 
permissions and feature intent. 

http://dx.doi.org/10.23887/janapati.v11i1.40768
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Malware classification has been carried 
out by applying machine learning, such as the 
use of the K-Nearest Neighbor algorithm, 
Support Vector Machine and Decision Tree. The 
average classification performance accuracy is 
good, however using large datasets the 
classification performance accuracy decreases. 
Then an experiment was carried out by applying 
a deep learning algorithm, namely Multi-Layer 
Perceptron (MLPC). Some experimental results 

continue to increase in accuracy as the number 
of data sets increases. 
LITERATURE REVIEW 
In this study, we compare with previous research 
that discusses the Android malware APK. The 
attackers created malware using a new method 
of targeting victims of Android mobile phones. 
Several studies have used effective tools to carry 
out the malware detection process as accurately 
as possible. 

 
Table 1. Literature Review 

LITERATURE 
WORK 

FEATURES 
DATASET 

CLASSIFIER DATASET PERFORMANCE 

[1] Permission SVM 
 

10000 
 
 
 

Precision 98.20% 
Recall 95.80% 
F-measure 96.96% 
 

25000 Precision 97.16% 
Recall 93.75% 
F-measure 95.42% 
 

60000 Precision 95.17% 
Recall 92.86% 
F-measure 94.00% 
 

DT 10000 
 
 
 

Precision 98.99% 
Recall 96.10% 
F-measure 97.53% 
 

25000 Precision 96.10% 
Recall 93.20% 
F-measure 94.68% 
 

60000 Precision 92.11% 
Recall 91.10% 
F-measure 91.60% 
 

[2] Permission Static 
Analysis, 
extract 
feature 

1000 success rate of 89.5% 

[3] Application 
Programming 
Interface (API) calls 
Permissions 

SVM 347 benign, 
365 
malware 

96.2% 

KNN 347 benign, 
365 
malware 

97.2% 

DT 347 benign, 
365 
malware 

96.6% 

RF 347 benign, 
365 
malware 

97.8% 

Naïve Bayes 347 benign, 
365 

93.9% 
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malwares 

GRU 347 benign, 
365 
malware 

98.2% 

[4] Permission Chi-Square & 
Naïve Bayes 

5000 
malware 
(DREBIN) 
and 5000 
benign 
(ANDROZ
OO) 

91.1% 

[5] API 
Permissions 

RF  
ANN 

5000 
benign, 
1260 
malware 

94% 
94% 

[6] Permissions 
API 

SVM 1500 
benign, 
1500 
malware 

99.6% 

[7] API 
Net Info  

SVM  
K-NN  

5560 
benign, 
5560 
malware 

90.4% 
90.47%  

[8] API 
Net Info 

Ensemble  4403 
benign, 
3982 
malware 

99.7% 

[9] API 
Net Info 

NB  
RF       
K-NN     
XGBOOST 
DL  

11187 
benign, 
18677 
malware 

87% 
96% 
94% 
97%  
96% 

[10] Permissions 
Intents  

NB  
SVM  
DT  
LR  

1846 
benign, 
5560 
malwares 

95.5%   
94%    
83%    
91% 

[11] Permissions  
Intents  

Ensemble  445 benign, 
1246 
malware 

99.8% 

 
 Table 1 shows a lot of research using 
extract on feature permissions, system calls, API 
Calls, Net Info, but still very rarely uses feature 
intent. This feature intent is an addition to the 
research, in addition to using feature 
permissions. This research uses feature 
permission and feature intent. 
 The reason for the research, the use of 
Non-Neural Networks such as KNN, Support 
Vector Machines and Decision Trees are already 
good in accuracy performance, however 
producing high accuracy performance can be 
improved with better algorithms. To overcome 
the research gap, this study uses the Neural 
Network algorithm in an experiment to produce 
better accuracy performance. 
 
 

 
THE STATE OF THE ART 
 The state of the art research is a training 
dataset with Permission and Intent features 
using an Artificial Neural Network. Where the 
static analysis intent feature is rarely done by 
researchers.  
 This study aims to compare the 
performance accuracy of Non Neural Network 
and Artificial Neural Network on Android APK file 
identification by classifying Android APK files 
using Multi-Layer Perceptron Classifier. The 
main contribution of this paper is to improve 
the accuracy of the classification performance of 
Non Neural Network by applying Artificial Neural 
Network algorithm using Multi-Layer Perceptron 
Classifier (MLPC). 
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RESEARCH QUESTIONS 

Based on the description, there are 
several research questions in this paper. 
RQ 1, How to extract malware dataset using 
permission feature and intent feature? 
RQ 2, What is the percentage of application of 
the K-NN algorithm, Support Vector Machine 
and Decision Tree? 
RQ 3, What is the percent increase in accuracy 
with the implementation of the Multi-Layer 
Perceptron algorithm? 

RQ 4, Is it effective to perform malware analysis 
using static methods? 
This article contains articles that contain: 
Section 1 Introduction. Section 2 Research 
methods presents a literature review of several 
articles related to the classification of Android 
malware. Section 3 presents the results of the 
experiments that have been carried out. Section 
4 includes a summary of the paper. 
 
RESEARCH METHODS 

The methodology proposed for this 
research is as follows. 

 

 
Figure 1. Proposed Method Research 

 
Pipeline 1: Create Dataset. 

This stage is to create a dataset from 
Android APK files that are indicated as malware 
or Benign. The malware APK files are 
downloaded from the University of New 
Brunswick. The file has been labeled for types of 
malwares. The downloaded file is 
accommodated to local storage, then the 
classification process is carried out and stored in 
a similar folder.   

Next, the Android APK file extraction 
feature is carried out using reverse engineering. 
Many reverse engineering tools are commonly 
used. In this research, reverse engineering uses 
the JADX module. The result of the reverse 
engineering process is some folders and files 
AndroidManifest.xml. Files and folders other than 
AndroidManifest.xml are deleted, while 

AndroidManifest.xml is then parsed to read the 
permissions and intent features. 

The results of the feature extraction [12]  
process produce a malware dataset. The next 
process is classification using machine learning 
or deep learning algorithms [13]. 

 
Pipeline 2: Prepare Training Dataset malware. 

Before training the malware dataset, the 
prepare stage is very necessary. To generate a 
model from a machine learning or deep learning 
training process must use a clean dataset, a 
good dataset (no null, incorrect data in features). 
The dataset must ensure that the contents of the 
malware Dataset should not be mixed with the 
Benign data. If there is a mixture of malware and 
Benign, the resulting model will experience 
errors and affect the performance of the model. 
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In addition to the data cleaning process, 
there are also engineering features, namely 
feature analysis and the most influential features. 
This process must be carried out because this 
process is also very influential on the resulting 
model. 

The next process is to create a uniform 
dataset, in the sense that if there are five groups 
of datasets, then the dataset must be an 
unmixed dataset. For example, the malware 
APK dataset is of the Ransomware type, then 
the Ransomware dataset should not be mixed 
with the Riskware APK dataset. 

The division of the number of datasets for 
machine learning is to divide the 70% training 
dataset and 30% testing data. But there is no 
requirement to do so. There are also those who 
share it, 60% training data and 40% testing data. 
Sharing datasets for deep learning, training data, 
validation data and testing data. Example (Data 
Training + Data Validation) = 70%, while testing 
data is 30%. 

Cross validation of datasets or swapping 
training positions with testing is also carried out 
to get the performance model that will be 
generated by machine learning or deep learning. 

Some of the reasons for this data 
preparation is done: 

 The data owned is not ideal, there is data 
that is missing value. Missing data in the 
dataset will result in a declining model for its 
performance. Filling must be done so that 
the dataset becomes intact and good. It is 
not permissible to fill in the dataset 
arbitrarily and an analysis of the features or 
dimensions of the appropriate dataset must 
be carried out. 

 There are different data formats. To avoid 
differences in formats in the feature dataset, 
it is necessary to check, validate the dataset 
and analyze the features of the dataset. 

 Small datasets or datasets that are not 
balanced from the ideal in terms of quantity. 
Small data sets are not ideal for machine 
learning or deep learning processes to be 
generated as models. This invalidates the 
model. The Synthetic Minority Over-
sampling Technique (SMOTE) is a way to 
balance datasets, if machine learning is 
done, to produce good models. This study 
did not use the SMOTE method, because 
the datasets in each class were balanced. 
The SMOTE annotation is only used on 
unbalanced malware dataset classes.  

 The dependent variable and the 
independent variable are not clear or have 
no label. 

 

Pipeline 3: Training and Testing Process. 
This stage is conducting training on the 

malware dataset. Training using the KNN 
Algorithm, Support Vector Machine and Decision 
Tree. The distribution of the dataset is carried 
out, the training dataset is 70% and the testing 
dataset is 30%. The Multi-Layer Perceptron 
Classifier algorithm [14], [15] is also used for this 
stage. The training process is also carried out 
using changes in the position of the training 
dataset and testing dataset, which is better 
known as cross validation. In this study using 5-
fold cross validation, to get better model 
accuracy. 

 

 
Figure 2. Method 5-Fold Cross Validation 

Cross Validation (CV) [16], [17], [18] is a 
method used to evaluate model performance, 
where data is separated into two subsets, 
namely learning process data and evaluation 
data. The model or algorithm is trained by the 
learning subset and validated by the validation 
subset. Furthermore, the selection of the type of 
CV can be based on the size of the dataset. CV 
K-fold is used because it can reduce 
computation time while maintaining the 
accuracy of the estimate. 5-fold CV is one of the 
K-fold CVs used for selecting the best model 
because it tends to provide less biased 
accuracy estimates. In 5-fold CV, the dataset is 
divided into 5 folds of approximately equal size, 
thus having 5 subsets of data to evaluate model 
performance. For each of these 5 subsets of 
data, CV will use 4 folds for training data and 1-
fold for testing. 

 
Pipeline 4: Prepare New APK data to be 
tested 

At this stage the aim is to add new 
datasets. If in performing the classification and 
new variants of malware are found, before being 
entered into the dataset, the data must be 
feature extraction. Then retraining is carried out. 
The more datasets, the better the classification 
model in identifying malware APK. 
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Pipeline 5: Decision Classification Output 
Label. 

The last stage aims to produce a 
classification model and the model is ready for 
deployment. Testing the model before the model 
is ready for use, aims to anticipate model errors 
in identifying Android APK files. 
 

In this section, the researcher discusses 
malware analysis and classification [19] 
research methodology. Performing malware 
analysis there are three analyzes, namely static 
analysis[20], dynamic analysis and hybrid 
analysis. The use of the malware identification 
or detection method is supervised learning 
classification. The algorithm used is KNN, 
Support Vector Machine and Decision Tree, as 
well as Deep Learning Multi-Layer Perceptron 
Classifier [21], [22]. 

In the previous research in table 1. 
Literature Review, researchers mostly use Non 
Neural Networks such as Random Forest, Naive 
Bayes, KNN, SVM, DT and good results are 
around 90%. For that reason researchers use 
Non Neural Networks such as KNN, SVM and 
DT is simple, the experimental results are very 
good and become trending (many use these 
algorithms). The KNN, SVM and DT algorithms 
will be explained further. 

The dataset used is a total of 61 GB of 
original malware from the UNB Canadian 
Institute for Cybersecurity download, with the 
link https://www.unb.ca/cic/datasets/index.html. 
Dataset Malware there are 5 classes, Banking, 
Ransomware, Riskware, SMS Malware, Benign. 
After reverse engineering, it produces a 
malware dataset. 
 
Static Analysis 

Static analysis [23] is a malware analysis 
method by analyzing source code. Reverse 
engineering is used to obtain the source code 
file, which converts the executable file into a 
source code file. To analyze the malware APK 
file, for example, the APK file must be reverse 
engineered. Analyzing static malware does not 
need to run the application. 

Using the JADX module from APKTOOL, 
to do reverse engineering. The source code to 
be analyzed is the AndroidManifest.xml file. This 
file is then read or parse android-permission and 
android-intent. 
Some purposes for reverse engineering: 

 To know the protocol of a program. For 
example: want to create a command line 
Instagram client. 

 To find out the API used by a program. For 
example, you want to know how to turn on 
the camera flash as a flashlight. 

 To find security bugs for a program. 

 To find out if a program violates copyright. 
For example, we suspect that a program 
uses a commercial library that we created, 
without paying for a license. 

For forensic purposes. For example, we want to 
know the data format used by a program. 
 

 
Figure 3. AndroidMafest.xml information feature 
APK Android 

Figure 3, AndroidManifest.xml file, the result of 
the reverse engineering process. This file will 
parse the permissions and intent features. 

Dynamic Analysis 

Malware is a threat to Android, various 
methods are used to analyze malware, one of 
which is using dynamic analysis. Analyzing 
Android malware with dynamic methods aims to 
understand its behavior and improve the ability 
to detect it. Dynamic analysis also takes an 
analytical approach to analyze Android malware 
behavior. How to perform analysis by running 
malware code in a virtual environment to 
understand the actual behavior of malware. 

The dynamic analysis method, does not 
examine the source code, but runs the malware 
files in a controlled environment, which is called 
a sandbox. This way the behavior of the 
malware can be analyzed in a controlled 
environment, this is very useful where the 
malware does not spread to other systems. 
After observing the behavior of malware, a log 
of malware activity is obtained. This log will be 
analyzed. 
 
Hybrid Analysis 

Dynamic malware analysis is a 
combination of static analysis and dynamic 
analysis, where the analysis runs the malware in 
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a controlled environment after that it also 
analyzes the source code. Hybrid model 
analysis is a perfect and complete analysis for 
analyzing a malware. 
 
K-Nearest Neighbor 

K-Nearest Neighbor (KNN) [24], [25] is a 
classification algorithm using a way to measure 
the distance, which is measured from the k 
nearest neighbors. This classification projects 
the training dataset in a multidimensional space. 
The space is divided into sections that describe 
the character of the data. Each training data is 
represented as points in a multidimensional 
space. Where the KNN classification [26], [27] 
process is looking for the point c closest to the 
new (c). The general formula is to find the 
Euclidean distance, Hamming distance, 
Manhattan distance, and Minkowski Distance. 

Euclidean distance [28] is a formula for 
finding the distance between two points in two-
dimensional space. Hamming distance [29] is a 
way to find the distance between two points 
which is calculated by the length of the binary 
vector formed by the two points in the binary 
code block. Manhattan Distance [30] is a 
formula to find the distance d between 2 vectors 
in n dimensional space. Minkowski distance is a 
formula for measuring between two points in a 
normal vector space which is a hybridization 
that generalizes the Euclidean distance and 
Manhattan distance. 

The K-Nearest Neighbor (KNN) [31], [32] 
algorithm is a classification of objects based on 
the learning data that is closest to the object. 
Then the determination of the K value is carried 
out. It is determined that the K value is odd, 
after that a vote is carried out on the closest 
distance. 

Advantages of KNN (K-Nearest 
Neighbor), dataset used for training is very 
nonlinear and easy to implementation.  

Disadvantages of KNN (K-Nearest 
Neighbor): Need to indicate the parameter K 
(number of nearest neighbors). Does not handle 
missing values implicitly. Sensitive to data 
outliers (outliers). Vulnerable to non-informative 
variables. Vulnerable to high dimensionality. 
The computational cost is quite high, because it 
is necessary to calculate the distance from each 
testing data to the entire training data. 

 
Support Vector Machine 

Support Vector Machine (SVM), was first 
presented by Boser, Guyon and Vapnik in 1992. 
Support Vector Machine is a supported 
classification algorithm by finding the 

hyperplane with the largest margin. There are 
three main sections in SVM, namely 
Supervised, Classified and Hyperplane with the 
largest margin. 

How the Support Vector Machine [33], 
[34], [35] works. Support vectors are two closely 
spaced data that come from different classes or 
groups, these two data will be used as support 
vectors. Hyperplane [36], [37] is the dividing line 
between support vectors. Max Margin [38] is the 
distance between the support vector and the 
hyperplane, the margin distance must be 
maximum to be able to anticipate the similarity 
of one data to another. For non-linear data, 
SVM Kernel Trick [39], [40], [41] is used by 
creating new dimensions. So that it can create a 
hyperplane. 

The advantage of SVM is that Supervised 
is able to control the accuracy of classification 
and Kernel trick is able to classify with non-
linear data. Disadvantages of SVM, not good for 
large amounts of data and Kernel trick is not 
easy to implement.  
 
Decision Tree 

The Decision Tree [42], [43] algorithm 
was developed by J. Ross Quinlan, in 1975. 
Decision tree is a popular classification method, 
because it is easy to interpret. Predictive model 
that uses a tree structure. Another term for 
Decision Tree is Classification and Regression 
Tree (CART) [43], [44], [45] which is a decision 
tree. Decision trees can convert data into 
decision trees and decision rules. The benefits 
of DT are its ability to break down complex 
decision-making processes into simpler ones, 
so that decision-makers better interpret problem 
solutions. 

 

 
Figure 4. Decision Tree APK Benign and APK 
malware 

Figure 4, is used to classify the types of 
malwares APKs. Beginning by asking whether 
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the Android APK file is Banking malware, if true 
then the Android APK file is a type of Banking 
malware. And keep asking the type of malware 
Ransomware, Riskware, SMS malware to APK 
Benign. 

Making a Decision Tree model [46], [47], 
[48] is like drawing an inverted tree where the 
Root Node is in the top position. Internal Node 
that has 1 input and at least 2 outputs. Leaf 
Node is the final Node, has 1 input and has no 
output. 

Multi-Layer Perceptron Classifier 

Multi-Layer Perceptron [49], [50] is a 
classification algorithm that works by using a 
deep neural network. This algorithm is very 
different from machine learning algorithms 
based on statistical science. 

By using the deep neural network 
method, it is expected that the performance of 
the model is more accurate, when compared to 
machine learning. Here's the architecture of the 
Multi-Layer Perceptron Classifier: 
 

 
Figure 5. Architecture Multi-Layer Perceptron 

 
RESULTS AND DISCUSSION 

In conducting the experiment, using the 
MacBook Air 2020 hardware with specifications 
of 8 GB RAM, 256 GB storage. Using the 
Python programming language in the Jupiter 
Notebook package, the reverse engineer JADX 
module made by APKTOOL.  
In this section, answer research questions and 
report experimental results. 

RQ 1, How to extract malware dataset 
using permission feature and intent feature? 
This is a much-needed step, where this step 
generates a malware dataset. APK files are 
downloaded and extracted, reverse engineered 
and parsed to read feature permissions and 
feature intents. The final result of feature 
extraction is a malware dataset. 
Following are the feature-feature permissions of 
the malware dataset: 

 
Table 2. Feature Permission 

FEATURE PERMISSION 

ACCESS_ALL_DOWN
LOADS 

ACCESS_CACHE_F
ILESYSTEM 

BLUETOOTH_SHARE ACCESS_CHECKIN
_PROPERTIES 

ACCESS_DOWNLOA
D_MANAGER_ADVA

NCED 

ACCESS_DRM_CE
RTIFICATES 

ACCESS_LOCATION
_EXTRA_COMMAND

S 

ACCESS_FM_RADI
O 

ACCESS_NETWORK
_CONDITIONS 

ACCESS_NOTIFICA
TIONS 

ACCESS_NETWORK
_STATE 

ACCESS_NOTIFICA
TION_POLICY 

ACCESS_PDB_STAT
E 

BLUETOOTH_PRIVI
LEGED 

BIND_DEVICE_ADMI
N 

BIND_CARRIER_SE
RVICES 

BIND_CARRIER_MES
SAGING_SERVICE 

BIND_APPWIDGET 

BIND_ACCESSIBILIT
Y_SERVICE 

BROADCAST_PHO
NE_ACCOUNT_RE

GISTRATION 

BROADCAST_SMS BIND_ACCESSIBILI
TY_SERVICE 

CAPTURE_AUDIO_O
UTPUT 

CALL_PRIVILEGED 

CONFIGURE_WIFI_DI
SPLAY 

CHANGE_CONFIGU
RATION 

INSTALL_GRANT_RU
NTIME_PERMISSION

S 

INTERNAL_SYSTE
M_WINDOW 

INSTALL_LOCATION
_PROVIDER 

INTERACT_ACROS
S_USERS_FULL 

GET_PASSWORD KILL_BACKGROUN
D_PROCESSES 

INTERNAL_SYSTEM_
WINDOW 

INSTALL_GRANT_R
UNTIME_PERMISSI

ONS 

MANAGE_DOCUMEN
TS 

MANAGE_ACCOUN
TS 

HARDWARE_TEST INSTALL_LOCATIO
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N_PROVIDER 

FORCE_STOP_PACK
AGES 

MANAGE_APP_TOK
ENS 

INSTALL_PACKAGES KILL_UID 

 
 

 

 

Table 3. Feature Intent 

FEATURE INTENT 

ACTION_POWER_CO
NNECTED 

ACTION_POWER_D
ISCONNECTED 

ACTION_SHUTDOWN AIRPLANE_MODE 

BATTERY_CHANGED BATTERY_LOW 

BATTERY_OKAY BOOT_COMPLETE
D 

CAMERA_BUTTON CONFIGURATION_
CHANGED 

CREATE_SHORTCUT DATE_CHANGED 

DEVICE_STORAGE_
LOW 

DEVICE_STORAGE
_OK 

DOCK_EVENT DREAMING_START
ED 

DREAMING_STOPPE
D 

EXTERNAL_APPLIC
ATIONS_AVAILABL
E 

EXTERNAL_APPLICA
TIONS_UNAVAILABL
E 

FETCH_VOICEMAIL 

GTALK_CONNECTED GTALK_DISCONNE
CTED 

HEADSET_PLUG INPUT_METHOD_C
HANGED 

LOCALE_CHANGED MANAGE_PACKAG
E_STORAGE 

MAIN MEDIA_BAD_REMO
VAL 

MEDIA_BUTTON MEDIA_CHECKING 

MEDIA_EJECT MEDIA_NOFS  

MEDIA_MOUNTED MEDIA_REMOVED 

PACKAGE_ADDED PACKAGE_DATA_C
LEARED 

PACKAGE_CHANGE
D 

MEDIA_SCANNER_
SCAN_FILE 

PACKAGE_FIRST_LA
UNCH 

PACKAGE_FULLY_
REMOVED 

PACKAGE_INSTALL PACKAGE_NEEDS_
VERIFICATION 

PACKAGE_REMOVE
D 

PROVIDER_CHANG
ED 

ACTION_TIME_CHAN
GED 

SIM_STATE_CHAN
GED 

SENT_SMS_ACTION ACTION_EXTERNA
L_APPLICATIONS_
AVAILABLE 

 
Furthermore, the permission features 

and intent features are trained with machine 
learning and deep learning to produce models 
with the best accuracy. 

In performing the extraction of the 
Android APK dataset consisting of the Benign 
APK and the malware APK that have been 
labeled, it takes 24 hours of processing for 2 
weeks. 

RQ 2, What is the percentage of 
application of the K-NN algorithm, Support 
Vector Machine and Decision Tree? 
 
Definition 
TP = True Positive. 
TN = True Negative. 
FP = False Positive. 
FN = False Negative. 

Accuracy is the ratio of correct 
predictions (positive and negative) to the entire 
dataset. Accuracy and answer the question 
“What percentage of Android APK files correctly 
predicted Malware and Benign from the entire 
dataset of Android APK files”.  

Accuracy = (TP + TN) / (TP + FP + FN + 
TN) [51]. Accuracy can be seen in table 4. 

Table 4. Accuracy for Algorithm Machine 
Learning (NNN) 

Algorithm 

Accuracy 

600 
APK 

7000 
APK 

14170 
APK 

K Nearest 
Neighbour (KNN) 

88% 86.8
% 

88% 

Decision Tree 
(DT) 

100
% 

89% 91,3% 

Support Vector 
Machine (SVM) 

97% 90% 91% 

 
 Precision is the ratio of a positive correct 
prediction compared to the overall positive 
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predicted outcome. Precision answers the 
question “What percentage of Android APK files 
are Malware correct from the total dataset that 
Malware predicts?” 
 Precision = (TP) / (TP + FP) [51]. Precision 
can be seen in table 5. 
 

Table 5. Pression for Algorithm Machine 
Learning 

Algorithm Precision 

600 
APK 

7000 
APK 

14170 
APK 

K-Nearest 
Neighbour (KNN) 

88%   85.6%     88%     

Decision Tree 
(DT) 

100% 89.4% 91.8% 

Support Vector 
Machine (SVM) 

96.5% 90% 91.4% 

 
F1 Score is a weighted comparison of 

the average precision and recall 
F1 Score = 2 * (Recall * Precision) / (Recall + 
Precision) [51]. F1-Score can be seen in table 6. 
 
 

Table 6. F1-Score for Algorithm Machine 
Learning 

Algorithm 

F1-Score 

600 
APK 

7000 
APK 

14170 
APK 

K-Nearest 
Neighbour (KNN) 

88%   85.2%     88%     

Decision Tree (DT) 100% 88.6% 91.2% 
Support Vector 
Machine (SVM) 

96.7% 89.4% 90.4% 

 
Recall is the ratio of true positive 

predictions compared to the total number of true 
positive data. Recall answers the question 
"What percentage of Android APK files are 
predicted to be malware compared to all 
students who are actually malware". 

Recall = (TP) / (TP + FN) [51]. Recall 
can be seen in table 7. 

 
Table 7. Recall for Algorithm Machine Learning 

Algorithm 

Recall 

600 
APK 

7000 
APK 

14170 
APK 

K-Nearest 
Neighbour (KNN) 

88%   85.2%     88%     

Decision Tree (DT) 100% 88.8% 91.2% 
Support Vector 
Machine (SVM) 

97% 89.4 90.6% 

 

There is a decrease in performance for 
the model generated from the K-Nearest 
Neighbor algorithm, Support Vector Machine 
and Decision Tree. 

RQ 3, What is the percent increase in 
accuracy with the implementation of the Multi-
Layer Perceptron algorithm? 

 
Table 8. Performance Artficial Neural Network 

Performance 

Dataset 

600 
APK 

7000 
APK 

14170 
APK 

Accuracy 99%   100%     100%     
Precision 99% 100% 100% 
Recall 99% 100% 100% 
F1-Score 99% 100% 100% 

 
The performance of the Multi Layer Perceptron 
Classifier (MLPC), the trained dataset is 600 
APKs, 7000 APKs and 14170 APKs. The 
training was carried out with these three 
datasets, so the graphical display can be seen 
in Figure 6. 

 
Figure 6. Performance Multi Layer Perceptron 
Classifier 

The results of the Multi-Layer 
Perceptron classification experiment show that 
performance increases with increasing datasets. 
The more the number of datasets, the better for 
performance. Experiment from dataset 600 APK 
= 99%, dataset 7000 APK = 100% and dataset 
14170 APK = 100%. 
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Figure 7. Receiver Operating Characteristic 
(ROC) Multi-Class Multi-Layer Perceptron 
Algorithm 

Receiver Operating Characteristic [52], 
[53] (ROC) is a plot of True Positive Rate (TPR) 
on the y-axis and False Positive Rate (FPR) on 
the x-axis. Where, True Positive Rate = True 
Positives / (True Positives + False Negatives) 
and False Positive Rate = False Positives / 
(False Positives + True Negatives). It can be 
seen that the ROC and Area Under Curve 
scores show significant values. 

RQ 4, Is it effective to perform malware 
analysis using static methods? 
Using this static method does not require 
running the malware into an isolated or 
controlled environment. The malware APK file is 
only extracted, then stored into the malware 
dataset. The dataset is classified using the 
classification method and then the model is 
tested with the extracted malware dataset. The 
results are effective for detecting the Android 
APK file is infected with malware or normal. The 
static method is actually simple and works 
effectively in malware detection. 
 
CONCLUSION 
Based on the results of experiments conducted 
in this study, it can be concluded that 
classification using machine learning produces 
good accuracy in the K-Nearest Neighbor 
algorithm, Support Vector Machine, and 
Decision Tree. However, the use of larger data 
sets leads to a decrease in inaccuracy. 
Application of Artificial Neural Network with 
Multi-Layer Perceptron Classifier is the answer 
to the problem of using Non-Neural Network. 
Training using Non Neural Network on large 
datasets still produces high accuracy 
performance. Accuracy performance of Non 
Neural Network (NNN) such as K-Nearest 
Neighbor algorithm on average = 88%, if using 
APK 14170 dataset. Average accuracy of 
Support Vector Machine = 90.5%, when using 

APK 14170 dataset. Decision Tree accuracy on 
average = 90.8%, when using the APK 14170 
data set. Accuracy performance on Artificial 
Neural Network (ANN) with Multi-Layer 
Perceptron results in 100% accuracy, using the 
APK 14170 dataset. High accuracy 
performance, resulting in good models in 
identification Android Malware APK file, 
because it is very appropriate if applied in an 
identification application. 
 
SUGGESTION 
Research can be continued by using dynamic 
methods and hybrid methods. Malware can be 
researched better if using dynamic methods, 
because dynamic methods will determine the 
behavior of malware. The results of dynamic 
research can make malware groups, carry out 
attacks with specific targets. Hybrid method is a 
method that combines static methods and 
dynamic methods, which makes the perfection 
of malware analysis as a whole. 
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