
ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 11, Nomor 1, Maret 2022

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 49

PERFORMANCE COMPARISON OF SUPERVISED LEARNING USING
NON-NEURAL NETWORK AND NEURAL NETWORK

Djarot Hindarto1, Handri Santoso2

1
Magister Technology Informatic, Universitas Pradita

2
 Magister Technology Informatic, Universitas Pradita

email: djarot.hindarto@student.pradita.ac.id

1
, handri.santoso@pradita.ac.id

2

Abstract
Currently, the development of mobile phones and mobile applications based on the Android operating
system is growing rapidly. Many start-ups and startups are digitally transforming by using mobile apps to
provide disruptive digital services to replace existing obsolete services. This transformation prompts
attackers to create malicious software (malware) using sophisticated methods to target victims of Android
phone users. Research in the field of security by analyzing Malware statically, has been very saturated
and the accuracy results have reached 98% and many have even reached 99% accuracy. As a new
challenger, the researcher wants to increase the accuracy of more than 99% by using the static method.
The purpose of this study is to identify Android APK files by classifying them using Artificial Neural
Network (ANN) and Non-Neural Network (NNN). ANN is a Multi-Layer Perceptron Classifier (MLPC),
while NNN is a method of KNN, SVM, Decision Tree. This study aims to make a comparison between the
performance of Non-Neural Networks and Artificial Neural Networks. The problem that occurs when
classifying using the Non-Neural Network algorithm has a problem with decreasing performance, where
performance often decreases if it is done with a larger dataset. Answering the problem of decreasing
model performance, a solution with the Artificial Neural Network algorithm is used. The artificial neural
network algorithm chosen is the Multi_layer Perceptron Classifier (MLPC). Using the Non-Neural Network
algorithm, K-Nearest Neighbor conducts training with the 600 APK dataset achieving 91.2% accuracy and
training using the 14170 APK dataset reduces its accuracy to 88%. The use of the Support Vector
Machine algorithm with the 600 APK dataset has an accuracy of 99.1% and the 14170 APK dataset has
decreased accuracy to 90.5%. The use of the Decision Tree algorithm to conduct training with the 600
APK dataset has an accuracy of 99.2% and training with the 14170 APK dataset has decreased accuracy
to 90.8%. Experiments using the Multi-Layer Perceptron Classifier have improved accuracy performance
with the 600 APK dataset reaching 99% accuracy and training using the 14170 APK dataset increasing
the accuracy by reaching 100%.

Keywords : Multi-Layer Perceptron Classifier; Non Neural Network; Support Vector Machine; Decision
Tree; Artificial Neural Network

Diterima Redaksi: 29-11-2021 | Selesai Revisi: 14-03-2022 | Diterbitkan Online: 31-03-2022
DOI: http://dx.doi.org/10.23887/janapati.v11i1.40768

INTRODUCTION
Currently, the development of malware

APKs is increasing, along with the number of
Package Kit Applications (APKs) which are
applications that run on the Android operating
system. So many Android APKs, causing more
and more certain parties to attack for purposes
that benefit malware authors. Therefore, it is
very detrimental for Android phones that have
been infected with malware. From year to year
the development of malware is increasing, for
this reason this research uses the topic of
Android malware.

Intents are interfaces that connect
interactions between Activities in an Android

APK. Additionally, Intents send data to other
Activities, such as sending data to other
applications (Gmail, Google Maps, etc.). In
essence, Intents are mechanisms for performing
actions and communication between application
components.

Originality: Most journals in the literature
review focus on feature clearance, rarely
exploring feature intent. Android APKs to enable
actions or activities that call components, send
data, require feature intents. Without feature
intents, Android cannot perform action functions.
Therefore, this research focuses on feature
permissions and feature intent.

http://dx.doi.org/10.23887/janapati.v11i1.40768

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 11, Nomor 1, Maret 2022

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 50

Malware classification has been carried
out by applying machine learning, such as the
use of the K-Nearest Neighbor algorithm,
Support Vector Machine and Decision Tree. The
average classification performance accuracy is
good, however using large datasets the
classification performance accuracy decreases.
Then an experiment was carried out by applying
a deep learning algorithm, namely Multi-Layer
Perceptron (MLPC). Some experimental results

continue to increase in accuracy as the number
of data sets increases.
LITERATURE REVIEW
In this study, we compare with previous research
that discusses the Android malware APK. The
attackers created malware using a new method
of targeting victims of Android mobile phones.
Several studies have used effective tools to carry
out the malware detection process as accurately
as possible.

Table 1. Literature Review

LITERATURE
WORK

FEATURES
DATASET

CLASSIFIER DATASET PERFORMANCE

[1] Permission SVM

10000

Precision 98.20%
Recall 95.80%
F-measure 96.96%

25000 Precision 97.16%
Recall 93.75%
F-measure 95.42%

60000 Precision 95.17%
Recall 92.86%
F-measure 94.00%

DT 10000

Precision 98.99%
Recall 96.10%
F-measure 97.53%

25000 Precision 96.10%
Recall 93.20%
F-measure 94.68%

60000 Precision 92.11%
Recall 91.10%
F-measure 91.60%

[2] Permission Static
Analysis,
extract
feature

1000 success rate of 89.5%

[3] Application
Programming
Interface (API) calls
Permissions

SVM 347 benign,
365
malware

96.2%

KNN 347 benign,
365
malware

97.2%

DT 347 benign,
365
malware

96.6%

RF 347 benign,
365
malware

97.8%

Naïve Bayes 347 benign,
365

93.9%

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 11, Nomor 1, Maret 2022

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 51

malwares

GRU 347 benign,
365
malware

98.2%

[4] Permission Chi-Square &
Naïve Bayes

5000
malware
(DREBIN)
and 5000
benign
(ANDROZ
OO)

91.1%

[5] API
Permissions

RF
ANN

5000
benign,
1260
malware

94%
94%

[6] Permissions
API

SVM 1500
benign,
1500
malware

99.6%

[7] API
Net Info

SVM
K-NN

5560
benign,
5560
malware

90.4%
90.47%

[8] API
Net Info

Ensemble 4403
benign,
3982
malware

99.7%

[9] API
Net Info

NB
RF
K-NN
XGBOOST
DL

11187
benign,
18677
malware

87%
96%
94%
97%
96%

[10] Permissions
Intents

NB
SVM
DT
LR

1846
benign,
5560
malwares

95.5%
94%
83%
91%

[11] Permissions
Intents

Ensemble 445 benign,
1246
malware

99.8%

 Table 1 shows a lot of research using
extract on feature permissions, system calls, API
Calls, Net Info, but still very rarely uses feature
intent. This feature intent is an addition to the
research, in addition to using feature
permissions. This research uses feature
permission and feature intent.
 The reason for the research, the use of
Non-Neural Networks such as KNN, Support
Vector Machines and Decision Trees are already
good in accuracy performance, however
producing high accuracy performance can be
improved with better algorithms. To overcome
the research gap, this study uses the Neural
Network algorithm in an experiment to produce
better accuracy performance.

THE STATE OF THE ART
 The state of the art research is a training
dataset with Permission and Intent features
using an Artificial Neural Network. Where the
static analysis intent feature is rarely done by
researchers.
 This study aims to compare the
performance accuracy of Non Neural Network
and Artificial Neural Network on Android APK file
identification by classifying Android APK files
using Multi-Layer Perceptron Classifier. The
main contribution of this paper is to improve
the accuracy of the classification performance of
Non Neural Network by applying Artificial Neural
Network algorithm using Multi-Layer Perceptron
Classifier (MLPC).

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 11, Nomor 1, Maret 2022

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 52

RESEARCH QUESTIONS

Based on the description, there are
several research questions in this paper.
RQ 1, How to extract malware dataset using
permission feature and intent feature?
RQ 2, What is the percentage of application of
the K-NN algorithm, Support Vector Machine
and Decision Tree?
RQ 3, What is the percent increase in accuracy
with the implementation of the Multi-Layer
Perceptron algorithm?

RQ 4, Is it effective to perform malware analysis
using static methods?
This article contains articles that contain:
Section 1 Introduction. Section 2 Research
methods presents a literature review of several
articles related to the classification of Android
malware. Section 3 presents the results of the
experiments that have been carried out. Section
4 includes a summary of the paper.

RESEARCH METHODS

The methodology proposed for this
research is as follows.

Figure 1. Proposed Method Research

Pipeline 1: Create Dataset.

This stage is to create a dataset from
Android APK files that are indicated as malware
or Benign. The malware APK files are
downloaded from the University of New
Brunswick. The file has been labeled for types of
malwares. The downloaded file is
accommodated to local storage, then the
classification process is carried out and stored in
a similar folder.

Next, the Android APK file extraction
feature is carried out using reverse engineering.
Many reverse engineering tools are commonly
used. In this research, reverse engineering uses
the JADX module. The result of the reverse
engineering process is some folders and files
AndroidManifest.xml. Files and folders other than
AndroidManifest.xml are deleted, while

AndroidManifest.xml is then parsed to read the
permissions and intent features.

The results of the feature extraction [12]
process produce a malware dataset. The next
process is classification using machine learning
or deep learning algorithms [13].

Pipeline 2: Prepare Training Dataset malware.

Before training the malware dataset, the
prepare stage is very necessary. To generate a
model from a machine learning or deep learning
training process must use a clean dataset, a
good dataset (no null, incorrect data in features).
The dataset must ensure that the contents of the
malware Dataset should not be mixed with the
Benign data. If there is a mixture of malware and
Benign, the resulting model will experience
errors and affect the performance of the model.

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 11, Nomor 1, Maret 2022

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 53

In addition to the data cleaning process,
there are also engineering features, namely
feature analysis and the most influential features.
This process must be carried out because this
process is also very influential on the resulting
model.

The next process is to create a uniform
dataset, in the sense that if there are five groups
of datasets, then the dataset must be an
unmixed dataset. For example, the malware
APK dataset is of the Ransomware type, then
the Ransomware dataset should not be mixed
with the Riskware APK dataset.

The division of the number of datasets for
machine learning is to divide the 70% training
dataset and 30% testing data. But there is no
requirement to do so. There are also those who
share it, 60% training data and 40% testing data.
Sharing datasets for deep learning, training data,
validation data and testing data. Example (Data
Training + Data Validation) = 70%, while testing
data is 30%.

Cross validation of datasets or swapping
training positions with testing is also carried out
to get the performance model that will be
generated by machine learning or deep learning.

Some of the reasons for this data
preparation is done:

 The data owned is not ideal, there is data
that is missing value. Missing data in the
dataset will result in a declining model for its
performance. Filling must be done so that
the dataset becomes intact and good. It is
not permissible to fill in the dataset
arbitrarily and an analysis of the features or
dimensions of the appropriate dataset must
be carried out.

 There are different data formats. To avoid
differences in formats in the feature dataset,
it is necessary to check, validate the dataset
and analyze the features of the dataset.

 Small datasets or datasets that are not
balanced from the ideal in terms of quantity.
Small data sets are not ideal for machine
learning or deep learning processes to be
generated as models. This invalidates the
model. The Synthetic Minority Over-
sampling Technique (SMOTE) is a way to
balance datasets, if machine learning is
done, to produce good models. This study
did not use the SMOTE method, because
the datasets in each class were balanced.
The SMOTE annotation is only used on
unbalanced malware dataset classes.

 The dependent variable and the
independent variable are not clear or have
no label.

Pipeline 3: Training and Testing Process.
This stage is conducting training on the

malware dataset. Training using the KNN
Algorithm, Support Vector Machine and Decision
Tree. The distribution of the dataset is carried
out, the training dataset is 70% and the testing
dataset is 30%. The Multi-Layer Perceptron
Classifier algorithm [14], [15] is also used for this
stage. The training process is also carried out
using changes in the position of the training
dataset and testing dataset, which is better
known as cross validation. In this study using 5-
fold cross validation, to get better model
accuracy.

Figure 2. Method 5-Fold Cross Validation

Cross Validation (CV) [16], [17], [18] is a
method used to evaluate model performance,
where data is separated into two subsets,
namely learning process data and evaluation
data. The model or algorithm is trained by the
learning subset and validated by the validation
subset. Furthermore, the selection of the type of
CV can be based on the size of the dataset. CV
K-fold is used because it can reduce
computation time while maintaining the
accuracy of the estimate. 5-fold CV is one of the
K-fold CVs used for selecting the best model
because it tends to provide less biased
accuracy estimates. In 5-fold CV, the dataset is
divided into 5 folds of approximately equal size,
thus having 5 subsets of data to evaluate model
performance. For each of these 5 subsets of
data, CV will use 4 folds for training data and 1-
fold for testing.

Pipeline 4: Prepare New APK data to be
tested

At this stage the aim is to add new
datasets. If in performing the classification and
new variants of malware are found, before being
entered into the dataset, the data must be
feature extraction. Then retraining is carried out.
The more datasets, the better the classification
model in identifying malware APK.

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 11, Nomor 1, Maret 2022

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 54

Pipeline 5: Decision Classification Output
Label.

The last stage aims to produce a
classification model and the model is ready for
deployment. Testing the model before the model
is ready for use, aims to anticipate model errors
in identifying Android APK files.

In this section, the researcher discusses
malware analysis and classification [19]
research methodology. Performing malware
analysis there are three analyzes, namely static
analysis[20], dynamic analysis and hybrid
analysis. The use of the malware identification
or detection method is supervised learning
classification. The algorithm used is KNN,
Support Vector Machine and Decision Tree, as
well as Deep Learning Multi-Layer Perceptron
Classifier [21], [22].

In the previous research in table 1.
Literature Review, researchers mostly use Non
Neural Networks such as Random Forest, Naive
Bayes, KNN, SVM, DT and good results are
around 90%. For that reason researchers use
Non Neural Networks such as KNN, SVM and
DT is simple, the experimental results are very
good and become trending (many use these
algorithms). The KNN, SVM and DT algorithms
will be explained further.

The dataset used is a total of 61 GB of
original malware from the UNB Canadian
Institute for Cybersecurity download, with the
link https://www.unb.ca/cic/datasets/index.html.
Dataset Malware there are 5 classes, Banking,
Ransomware, Riskware, SMS Malware, Benign.
After reverse engineering, it produces a
malware dataset.

Static Analysis

Static analysis [23] is a malware analysis
method by analyzing source code. Reverse
engineering is used to obtain the source code
file, which converts the executable file into a
source code file. To analyze the malware APK
file, for example, the APK file must be reverse
engineered. Analyzing static malware does not
need to run the application.

Using the JADX module from APKTOOL,
to do reverse engineering. The source code to
be analyzed is the AndroidManifest.xml file. This
file is then read or parse android-permission and
android-intent.
Some purposes for reverse engineering:

 To know the protocol of a program. For
example: want to create a command line
Instagram client.

 To find out the API used by a program. For
example, you want to know how to turn on
the camera flash as a flashlight.

 To find security bugs for a program.

 To find out if a program violates copyright.
For example, we suspect that a program
uses a commercial library that we created,
without paying for a license.

For forensic purposes. For example, we want to
know the data format used by a program.

Figure 3. AndroidMafest.xml information feature
APK Android

Figure 3, AndroidManifest.xml file, the result of
the reverse engineering process. This file will
parse the permissions and intent features.

Dynamic Analysis

Malware is a threat to Android, various
methods are used to analyze malware, one of
which is using dynamic analysis. Analyzing
Android malware with dynamic methods aims to
understand its behavior and improve the ability
to detect it. Dynamic analysis also takes an
analytical approach to analyze Android malware
behavior. How to perform analysis by running
malware code in a virtual environment to
understand the actual behavior of malware.

The dynamic analysis method, does not
examine the source code, but runs the malware
files in a controlled environment, which is called
a sandbox. This way the behavior of the
malware can be analyzed in a controlled
environment, this is very useful where the
malware does not spread to other systems.
After observing the behavior of malware, a log
of malware activity is obtained. This log will be
analyzed.

Hybrid Analysis

Dynamic malware analysis is a
combination of static analysis and dynamic
analysis, where the analysis runs the malware in

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 11, Nomor 1, Maret 2022

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 55

a controlled environment after that it also
analyzes the source code. Hybrid model
analysis is a perfect and complete analysis for
analyzing a malware.

K-Nearest Neighbor

K-Nearest Neighbor (KNN) [24], [25] is a
classification algorithm using a way to measure
the distance, which is measured from the k
nearest neighbors. This classification projects
the training dataset in a multidimensional space.
The space is divided into sections that describe
the character of the data. Each training data is
represented as points in a multidimensional
space. Where the KNN classification [26], [27]
process is looking for the point c closest to the
new (c). The general formula is to find the
Euclidean distance, Hamming distance,
Manhattan distance, and Minkowski Distance.

Euclidean distance [28] is a formula for
finding the distance between two points in two-
dimensional space. Hamming distance [29] is a
way to find the distance between two points
which is calculated by the length of the binary
vector formed by the two points in the binary
code block. Manhattan Distance [30] is a
formula to find the distance d between 2 vectors
in n dimensional space. Minkowski distance is a
formula for measuring between two points in a
normal vector space which is a hybridization
that generalizes the Euclidean distance and
Manhattan distance.

The K-Nearest Neighbor (KNN) [31], [32]
algorithm is a classification of objects based on
the learning data that is closest to the object.
Then the determination of the K value is carried
out. It is determined that the K value is odd,
after that a vote is carried out on the closest
distance.

Advantages of KNN (K-Nearest
Neighbor), dataset used for training is very
nonlinear and easy to implementation.

Disadvantages of KNN (K-Nearest
Neighbor): Need to indicate the parameter K
(number of nearest neighbors). Does not handle
missing values implicitly. Sensitive to data
outliers (outliers). Vulnerable to non-informative
variables. Vulnerable to high dimensionality.
The computational cost is quite high, because it
is necessary to calculate the distance from each
testing data to the entire training data.

Support Vector Machine

Support Vector Machine (SVM), was first
presented by Boser, Guyon and Vapnik in 1992.
Support Vector Machine is a supported
classification algorithm by finding the

hyperplane with the largest margin. There are
three main sections in SVM, namely
Supervised, Classified and Hyperplane with the
largest margin.

How the Support Vector Machine [33],
[34], [35] works. Support vectors are two closely
spaced data that come from different classes or
groups, these two data will be used as support
vectors. Hyperplane [36], [37] is the dividing line
between support vectors. Max Margin [38] is the
distance between the support vector and the
hyperplane, the margin distance must be
maximum to be able to anticipate the similarity
of one data to another. For non-linear data,
SVM Kernel Trick [39], [40], [41] is used by
creating new dimensions. So that it can create a
hyperplane.

The advantage of SVM is that Supervised
is able to control the accuracy of classification
and Kernel trick is able to classify with non-
linear data. Disadvantages of SVM, not good for
large amounts of data and Kernel trick is not
easy to implement.

Decision Tree

The Decision Tree [42], [43] algorithm
was developed by J. Ross Quinlan, in 1975.
Decision tree is a popular classification method,
because it is easy to interpret. Predictive model
that uses a tree structure. Another term for
Decision Tree is Classification and Regression
Tree (CART) [43], [44], [45] which is a decision
tree. Decision trees can convert data into
decision trees and decision rules. The benefits
of DT are its ability to break down complex
decision-making processes into simpler ones,
so that decision-makers better interpret problem
solutions.

Figure 4. Decision Tree APK Benign and APK
malware

Figure 4, is used to classify the types of
malwares APKs. Beginning by asking whether

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 11, Nomor 1, Maret 2022

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 56

the Android APK file is Banking malware, if true
then the Android APK file is a type of Banking
malware. And keep asking the type of malware
Ransomware, Riskware, SMS malware to APK
Benign.

Making a Decision Tree model [46], [47],
[48] is like drawing an inverted tree where the
Root Node is in the top position. Internal Node
that has 1 input and at least 2 outputs. Leaf
Node is the final Node, has 1 input and has no
output.

Multi-Layer Perceptron Classifier

Multi-Layer Perceptron [49], [50] is a
classification algorithm that works by using a
deep neural network. This algorithm is very
different from machine learning algorithms
based on statistical science.

By using the deep neural network
method, it is expected that the performance of
the model is more accurate, when compared to
machine learning. Here's the architecture of the
Multi-Layer Perceptron Classifier:

Figure 5. Architecture Multi-Layer Perceptron

RESULTS AND DISCUSSION

In conducting the experiment, using the
MacBook Air 2020 hardware with specifications
of 8 GB RAM, 256 GB storage. Using the
Python programming language in the Jupiter
Notebook package, the reverse engineer JADX
module made by APKTOOL.
In this section, answer research questions and
report experimental results.

RQ 1, How to extract malware dataset
using permission feature and intent feature?
This is a much-needed step, where this step
generates a malware dataset. APK files are
downloaded and extracted, reverse engineered
and parsed to read feature permissions and
feature intents. The final result of feature
extraction is a malware dataset.
Following are the feature-feature permissions of
the malware dataset:

Table 2. Feature Permission

FEATURE PERMISSION

ACCESS_ALL_DOWN
LOADS

ACCESS_CACHE_F
ILESYSTEM

BLUETOOTH_SHARE ACCESS_CHECKIN
_PROPERTIES

ACCESS_DOWNLOA
D_MANAGER_ADVA

NCED

ACCESS_DRM_CE
RTIFICATES

ACCESS_LOCATION
_EXTRA_COMMAND

S

ACCESS_FM_RADI
O

ACCESS_NETWORK
_CONDITIONS

ACCESS_NOTIFICA
TIONS

ACCESS_NETWORK
_STATE

ACCESS_NOTIFICA
TION_POLICY

ACCESS_PDB_STAT
E

BLUETOOTH_PRIVI
LEGED

BIND_DEVICE_ADMI
N

BIND_CARRIER_SE
RVICES

BIND_CARRIER_MES
SAGING_SERVICE

BIND_APPWIDGET

BIND_ACCESSIBILIT
Y_SERVICE

BROADCAST_PHO
NE_ACCOUNT_RE

GISTRATION

BROADCAST_SMS BIND_ACCESSIBILI
TY_SERVICE

CAPTURE_AUDIO_O
UTPUT

CALL_PRIVILEGED

CONFIGURE_WIFI_DI
SPLAY

CHANGE_CONFIGU
RATION

INSTALL_GRANT_RU
NTIME_PERMISSION

S

INTERNAL_SYSTE
M_WINDOW

INSTALL_LOCATION
_PROVIDER

INTERACT_ACROS
S_USERS_FULL

GET_PASSWORD KILL_BACKGROUN
D_PROCESSES

INTERNAL_SYSTEM_
WINDOW

INSTALL_GRANT_R
UNTIME_PERMISSI

ONS

MANAGE_DOCUMEN
TS

MANAGE_ACCOUN
TS

HARDWARE_TEST INSTALL_LOCATIO

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 11, Nomor 1, Maret 2022

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 57

N_PROVIDER

FORCE_STOP_PACK
AGES

MANAGE_APP_TOK
ENS

INSTALL_PACKAGES KILL_UID

Table 3. Feature Intent

FEATURE INTENT

ACTION_POWER_CO
NNECTED

ACTION_POWER_D
ISCONNECTED

ACTION_SHUTDOWN AIRPLANE_MODE

BATTERY_CHANGED BATTERY_LOW

BATTERY_OKAY BOOT_COMPLETE
D

CAMERA_BUTTON CONFIGURATION_
CHANGED

CREATE_SHORTCUT DATE_CHANGED

DEVICE_STORAGE_
LOW

DEVICE_STORAGE
_OK

DOCK_EVENT DREAMING_START
ED

DREAMING_STOPPE
D

EXTERNAL_APPLIC
ATIONS_AVAILABL
E

EXTERNAL_APPLICA
TIONS_UNAVAILABL
E

FETCH_VOICEMAIL

GTALK_CONNECTED GTALK_DISCONNE
CTED

HEADSET_PLUG INPUT_METHOD_C
HANGED

LOCALE_CHANGED MANAGE_PACKAG
E_STORAGE

MAIN MEDIA_BAD_REMO
VAL

MEDIA_BUTTON MEDIA_CHECKING

MEDIA_EJECT MEDIA_NOFS

MEDIA_MOUNTED MEDIA_REMOVED

PACKAGE_ADDED PACKAGE_DATA_C
LEARED

PACKAGE_CHANGE
D

MEDIA_SCANNER_
SCAN_FILE

PACKAGE_FIRST_LA
UNCH

PACKAGE_FULLY_
REMOVED

PACKAGE_INSTALL PACKAGE_NEEDS_
VERIFICATION

PACKAGE_REMOVE
D

PROVIDER_CHANG
ED

ACTION_TIME_CHAN
GED

SIM_STATE_CHAN
GED

SENT_SMS_ACTION ACTION_EXTERNA
L_APPLICATIONS_
AVAILABLE

Furthermore, the permission features

and intent features are trained with machine
learning and deep learning to produce models
with the best accuracy.

In performing the extraction of the
Android APK dataset consisting of the Benign
APK and the malware APK that have been
labeled, it takes 24 hours of processing for 2
weeks.

RQ 2, What is the percentage of
application of the K-NN algorithm, Support
Vector Machine and Decision Tree?

Definition
TP = True Positive.
TN = True Negative.
FP = False Positive.
FN = False Negative.

Accuracy is the ratio of correct
predictions (positive and negative) to the entire
dataset. Accuracy and answer the question
“What percentage of Android APK files correctly
predicted Malware and Benign from the entire
dataset of Android APK files”.

Accuracy = (TP + TN) / (TP + FP + FN +
TN) [51]. Accuracy can be seen in table 4.

Table 4. Accuracy for Algorithm Machine
Learning (NNN)

Algorithm

Accuracy

600
APK

7000
APK

14170
APK

K Nearest
Neighbour (KNN)

88% 86.8
%

88%

Decision Tree
(DT)

100
%

89% 91,3%

Support Vector
Machine (SVM)

97% 90% 91%

 Precision is the ratio of a positive correct
prediction compared to the overall positive

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 11, Nomor 1, Maret 2022

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 58

predicted outcome. Precision answers the
question “What percentage of Android APK files
are Malware correct from the total dataset that
Malware predicts?”
 Precision = (TP) / (TP + FP) [51]. Precision
can be seen in table 5.

Table 5. Pression for Algorithm Machine
Learning

Algorithm Precision

600
APK

7000
APK

14170
APK

K-Nearest
Neighbour (KNN)

88% 85.6% 88%

Decision Tree
(DT)

100% 89.4% 91.8%

Support Vector
Machine (SVM)

96.5% 90% 91.4%

F1 Score is a weighted comparison of

the average precision and recall
F1 Score = 2 * (Recall * Precision) / (Recall +
Precision) [51]. F1-Score can be seen in table 6.

Table 6. F1-Score for Algorithm Machine
Learning

Algorithm

F1-Score

600
APK

7000
APK

14170
APK

K-Nearest
Neighbour (KNN)

88% 85.2% 88%

Decision Tree (DT) 100% 88.6% 91.2%
Support Vector
Machine (SVM)

96.7% 89.4% 90.4%

Recall is the ratio of true positive

predictions compared to the total number of true
positive data. Recall answers the question
"What percentage of Android APK files are
predicted to be malware compared to all
students who are actually malware".

Recall = (TP) / (TP + FN) [51]. Recall
can be seen in table 7.

Table 7. Recall for Algorithm Machine Learning

Algorithm

Recall

600
APK

7000
APK

14170
APK

K-Nearest
Neighbour (KNN)

88% 85.2% 88%

Decision Tree (DT) 100% 88.8% 91.2%
Support Vector
Machine (SVM)

97% 89.4 90.6%

There is a decrease in performance for
the model generated from the K-Nearest
Neighbor algorithm, Support Vector Machine
and Decision Tree.

RQ 3, What is the percent increase in
accuracy with the implementation of the Multi-
Layer Perceptron algorithm?

Table 8. Performance Artficial Neural Network

Performance

Dataset

600
APK

7000
APK

14170
APK

Accuracy 99% 100% 100%
Precision 99% 100% 100%
Recall 99% 100% 100%
F1-Score 99% 100% 100%

The performance of the Multi Layer Perceptron
Classifier (MLPC), the trained dataset is 600
APKs, 7000 APKs and 14170 APKs. The
training was carried out with these three
datasets, so the graphical display can be seen
in Figure 6.

Figure 6. Performance Multi Layer Perceptron
Classifier

The results of the Multi-Layer
Perceptron classification experiment show that
performance increases with increasing datasets.
The more the number of datasets, the better for
performance. Experiment from dataset 600 APK
= 99%, dataset 7000 APK = 100% and dataset
14170 APK = 100%.

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 11, Nomor 1, Maret 2022

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 59

Figure 7. Receiver Operating Characteristic
(ROC) Multi-Class Multi-Layer Perceptron
Algorithm

Receiver Operating Characteristic [52],
[53] (ROC) is a plot of True Positive Rate (TPR)
on the y-axis and False Positive Rate (FPR) on
the x-axis. Where, True Positive Rate = True
Positives / (True Positives + False Negatives)
and False Positive Rate = False Positives /
(False Positives + True Negatives). It can be
seen that the ROC and Area Under Curve
scores show significant values.

RQ 4, Is it effective to perform malware
analysis using static methods?
Using this static method does not require
running the malware into an isolated or
controlled environment. The malware APK file is
only extracted, then stored into the malware
dataset. The dataset is classified using the
classification method and then the model is
tested with the extracted malware dataset. The
results are effective for detecting the Android
APK file is infected with malware or normal. The
static method is actually simple and works
effectively in malware detection.

CONCLUSION
Based on the results of experiments conducted
in this study, it can be concluded that
classification using machine learning produces
good accuracy in the K-Nearest Neighbor
algorithm, Support Vector Machine, and
Decision Tree. However, the use of larger data
sets leads to a decrease in inaccuracy.
Application of Artificial Neural Network with
Multi-Layer Perceptron Classifier is the answer
to the problem of using Non-Neural Network.
Training using Non Neural Network on large
datasets still produces high accuracy
performance. Accuracy performance of Non
Neural Network (NNN) such as K-Nearest
Neighbor algorithm on average = 88%, if using
APK 14170 dataset. Average accuracy of
Support Vector Machine = 90.5%, when using

APK 14170 dataset. Decision Tree accuracy on
average = 90.8%, when using the APK 14170
data set. Accuracy performance on Artificial
Neural Network (ANN) with Multi-Layer
Perceptron results in 100% accuracy, using the
APK 14170 dataset. High accuracy
performance, resulting in good models in
identification Android Malware APK file,
because it is very appropriate if applied in an
identification application.

SUGGESTION
Research can be continued by using dynamic
methods and hybrid methods. Malware can be
researched better if using dynamic methods,
because dynamic methods will determine the
behavior of malware. The results of dynamic
research can make malware groups, carry out
attacks with specific targets. Hybrid method is a
method that combines static methods and
dynamic methods, which makes the perfection
of malware analysis as a whole.

REFERENSI
[1] A. Ghasempour, N. Fazlida, M. Sani, and

O. J. Abari, “Permission Extraction
Framework for Android Malware
Detection,” vol. 11, no. 11, pp. 463–475,
2020.

[2] G. Shrivastava and P. Kumar, “Android
application behavioural analysis for data
leakage,” Expert Syst., vol. 38, no. 1, pp.
1–12, 2021, doi: 10.1111/exsy.12468.

[3] Z. Xu, K. Ren, and F. Song, “Android
malware family classification and
characterization using CFG and DFG,”
Proc. - 2019 13th Int. Symp. Theor. Asp.
Softw. Eng. TASE 2019, pp. 49–56,
2019, doi: 10.1109/TASE.2019.00-20.

[4] S. R. T. Mat, M. F. A. Razak, M. N. M.
Kahar, J. M. Arif, and A. Firdaus, “A
Bayesian probability model for Android
malware detection,” ICT Express, no.
xxxx, 2021, doi:
10.1016/j.icte.2021.09.003.

[5] M. Qiao, A. H. Sung, and Q. Liu,
“Merging permission and api features for
android malware detection,” Proc. - 2016
5th IIAI Int. Congr. Adv. Appl.
Informatics, IIAI-AAI 2016, pp. 566–571,
2016, doi: 10.1109/IIAI-AAI.2016.237.

[6] A. K. Singh, C. D. Jaidhar, and M. A. A.
Kumara, “Experimental analysis of
Android malware detection based on
combinations of permissions and API-
calls,” J. Comput. Virol. Hacking Tech.,
vol. 15, no. 3, pp. 209–218, 2019, doi:
10.1007/s11416-019-00332-z.

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 11, Nomor 1, Maret 2022

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 60

[7] M. Shohel Rana, C. Gudla, and A. H.
Sung, “Evaluating machine learning
models for android malware detection - A
comparison study,” ACM Int. Conf.
Proceeding Ser., pp. 17–21, 2018, doi:
10.1145/3301326.3301390.

[8] X. Wang, D. Zhang, X. Su, and W. Li,
“Mlifdect: Android malware detection
based on parallel machine learning and
information fusion,” Secur. Commun.
Networks, vol. 2017, 2017, doi:
10.1155/2017/6451260.

[9] H. Fereidooni, M. Conti, D. Yao, and A.
Sperduti, “ANASTASIA: ANdroid
mAlware detection using STatic analySIs
of applications,” 2016 8th IFIP Int. Conf.
New Technol. Mobil. Secur. NTMS 2016,
2016, doi:
10.1109/NTMS.2016.7792435.

[10] A. Feizollah, N. B. Anuar, R. Salleh, G.
Suarez-Tangil, and S. Furnell,
“AndroDialysis: Analysis of Android
Intent Effectiveness in Malware
Detection,” Comput. Secur., vol. 65, pp.
121–134, 2017, doi:
10.1016/j.cose.2016.11.007.

[11] F. Idrees, M. Rajarajan, M. Conti, T. M.
Chen, and Y. Rahulamathavan,
“PIndroid: A novel Android malware
detection system using ensemble
learning methods,” Comput. Secur., vol.
68, pp. 36–46, 2017, doi:
10.1016/j.cose.2017.03.011.

[12] S. Arshad, R. Chaudhary, M. Ali, N.
Hafeez, and M. Kamran, “InstDroid: A
Light Weight Instant Malware Detector
for Android Operating Systems,” Int. J.
Adv. Comput. Sci. Appl., vol. 8, no. 8, pp.
168–175, 2017, doi:
10.14569/ijacsa.2017.080822.

[13] S. I. Imtiaz, S. ur Rehman, A. R. Javed,
Z. Jalil, X. Liu, and W. S. Alnumay,
“DeepAMD: Detection and identification
of Android malware using high-efficient
Deep Artificial Neural Network,” Futur.
Gener. Comput. Syst., vol. 115, pp. 844–
856, 2021, doi:
10.1016/j.future.2020.10.008.

[14] B. Turkoglu and E. Kaya, “Training multi-
layer perceptron with artificial algae
algorithm,” Eng. Sci. Technol. an Int. J.,
vol. 23, no. 6, pp. 1342–1350, 2020, doi:
10.1016/j.jestch.2020.07.001.

[15] M. F. Zorkafli, M. K. Osman, I. S. Isa, F.
Ahmad, and S. N. Sulaiman,
“Classification of Cervical Cancer Using
Hybrid Multi-layered Perceptron Network
Trained by Genetic Algorithm,” Procedia

Comput. Sci., vol. 163, pp. 494–501,
2019, doi: 10.1016/j.procs.2019.12.132.

[16] G. Valente, A. L. Castellanos, L.
Hausfeld, F. De Martino, and E.
Formisano, “Cross-validation and
permutations in MVPA: Validity of
permutation strategies and power of
cross-validation schemes,” Neuroimage,
vol. 238, no. March, p. 118145, 2021,
doi: 10.1016/j.neuroimage.2021.118145.

[17] M. Rafało, “Cross validation methods:
Analysis based on diagnostics of thyroid
cancer metastasis,” ICT Express, no.
xxxx, 2021, doi:
10.1016/j.icte.2021.05.001.

[18] A. L. Pomerantsev and O. Y. Rodionova,
“Procrustes Cross-Validation of short
datasets in PCA context,” Talanta, vol.
226, no. January, p. 122104, 2021, doi:
10.1016/j.talanta.2021.122104.

[19] A. Abusitta, M. Q. Li, and B. C. M. Fung,
“Malware classification and composition
analysis: A survey of recent
developments,” J. Inf. Secur. Appl., vol.
59, no. April, p. 102828, 2021, doi:
10.1016/j.jisa.2021.102828.

[20] V. Syrris and D. Geneiatakis, “On
machine learning effectiveness for
malware detection in Android OS using
static analysis data,” J. Inf. Secur. Appl.,
vol. 59, no. May, p. 102794, 2021, doi:
10.1016/j.jisa.2021.102794.

[21] P. Opěla, I. Schindler, P. Kawulok, R.
Kawulok, S. Rusz, and H. Navrátil, “On
various multi-layer perceptron and radial
basis function based artificial neural
networks in the process of a hot flow
curve description,” J. Mater. Res.
Technol., vol. 14, pp. 1837–1847, 2021,
doi: 10.1016/j.jmrt.2021.07.100.

[22] M. L. Baptista, E. M. Elsa, and K.
Goebel, “A self-organizing map and a
normalizing multi-layer perceptron
approach to baselining in prognostics
under dynamic regimes,”
Neurocomputing, vol. 456, pp. 268–287,
2021, doi:
10.1016/j.neucom.2021.05.031.

[23] M. Amin, T. A. Tanveer, M. Tehseen, M.
. Khan, F. A. Khan, and S. Anwar, “Static
malware detection and attribution in
android byte-code through an end-to-end
deep system,” Futur. Gener. Comput.
Syst., vol. 102, pp. 112–126, 2020, doi:
10.1016/j.future.2019.07.070.

[24] L. Xiong and Y. Yao, “Study on an
adaptive thermal comfort model with K-
nearest-neighbors (KNN) algorithm,”

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 11, Nomor 1, Maret 2022

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 61

Build. Environ., vol. 202, no. May, p.
108026, 2021, doi:
10.1016/j.buildenv.2021.108026.

[25] D. Sisodia and D. S. Sisodia, “Quad
division prototype selection-based k-
nearest neighbor classifier for click fraud
detection from highly skewed user click
dataset,” Eng. Sci. Technol. an Int. J.,
no. xxxx, 2021, doi:
10.1016/j.jestch.2021.05.015.

[26] A. Shokrzade, M. Ramezani, F.
Akhlaghian Tab, and M. Abdulla
Mohammad, “A novel extreme learning
machine based kNN classification
method for dealing with big data,” Expert
Syst. Appl., vol. 183, no. May, p. 115293,
2021, doi: 10.1016/j.eswa.2021.115293.

[27] X. Zhu, C. Ying, J. Wang, J. Li, X. Lai,
and G. Wang, “Ensemble of ML-KNN for
classification algorithm
recommendation,” Knowledge-Based
Syst., vol. 221, p. 106933, 2021, doi:
10.1016/j.knosys.2021.106933.

[28] C. E. A. Bundak, M. A. Abd Rahman, M.
K. Abdul Karim, and N. H. Osman,
“Fuzzy rank cluster top k Euclidean
distance and triangle based algorithm for
magnetic field indoor positioning
system,” Alexandria Eng. J., 2021, doi:
10.1016/j.aej.2021.08.073.

[29] R. Taheri, M. Ghahramani, R. Javidan,
M. Shojafar, Z. Pooranian, and M. Conti,
“Similarity-based Android malware
detection using Hamming distance of
static binary features,” Futur. Gener.
Comput. Syst., vol. 105, pp. 230–247,
2020, doi: 10.1016/j.future.2019.11.034.

[30] R. Suwanda, Z. Syahputra, and E. M.
Zamzami, “Analysis of Euclidean
Distance and Manhattan Distance in the
K-Means Algorithm for Variations
Number of Centroid K,” J. Phys. Conf.
Ser., vol. 1566, no. 1, 2020, doi:
10.1088/1742-6596/1566/1/012058.

[31] S. Zhang, “Cost-sensitive KNN
classification,” Neurocomputing, vol. 391,
no. xxxx, pp. 234–242, 2020, doi:
10.1016/j.neucom.2018.11.101.

[32] T. Du, Z. Zhao, Q. Zhu, and L. Tian,
“Locating a γ-ray source using cuboid
scintillators and the KNN algorithm,”
Nucl. Instruments Methods Phys. Res.
Sect. A Accel. Spectrometers, Detect.
Assoc. Equip., vol. 993, no. January,
2021, doi: 10.1016/j.nima.2021.165069.

[33] R. M. Arias Velásquez, “Support vector
machine and tree models for oil and Kraft
degradation in power transformers,” Eng.

Fail. Anal., vol. 127, no. May, 2021, doi:
10.1016/j.engfailanal.2021.105488.

[34] Y. Arbabi Yazdi, H. Toossian Shandiz,
and H. Gholizadeh Narm, “Stiction
detection in control valves using a
support vector machine with a
generalized statistical variable,” ISA
Trans., no. xxxx, 2021, doi:
10.1016/j.isatra.2021.07.020.

[35] J. Lesouple, C. Baudoin, M. Spigai, and
J. Y. Tourneret, “How to introduce expert
feedback in one-class support vector
machines for anomaly detection?,”
Signal Processing, vol. 188, p. 108197,
2021, doi: 10.1016/j.sigpro.2021.108197.

[36] X. Ju, Y. Tian, D. Liu, and Z. Qi,
“Nonparallel hyperplanes support vector
machine for multi-class classification,”
Procedia Comput. Sci., vol. 51, no. 1, pp.
1574–1582, 2015, doi:
10.1016/j.procs.2015.05.287.

[37] Q. Zhang, H. Wang, and S. W. Yoon, “A
1-norm regularized linear programming
nonparallel hyperplane support vector
machine for binary classification
problems,” Neurocomputing, vol. 376,
no. xxxx, pp. 141–152, 2020, doi:
10.1016/j.neucom.2019.09.068.

[38] Z. Zhao, P. Zhong, and Y. Zhao,
“Learning SVM with weighted maximum
margin criterion for classification of
imbalanced data,” Math. Comput.
Model., vol. 54, no. 3–4, pp. 1093–1099,
2011, doi: 10.1016/j.mcm.2010.11.040.

[39] J. Mariéthoz and S. Bengio, “A kernel
trick for sequences applied to text-
independent speaker verification
systems,” Pattern Recognit., vol. 40, no.
8, pp. 2315–2324, 2007, doi:
10.1016/j.patcog.2007.01.011.

[40] S. F. Hussain, “A novel robust kernel for
classifying high-dimensional data using
Support Vector Machines,” Expert Syst.
Appl., vol. 131, pp. 116–131, 2019, doi:
10.1016/j.eswa.2019.04.037.

[41] X. Huang, A. Maier, J. Hornegger, and J.
A. K. Suykens, “Indefinite kernels in least
squares support vector machines and
principal component analysis,” Appl.
Comput. Harmon. Anal., vol. 43, no. 1,
pp. 162–172, 2017, doi:
10.1016/j.acha.2016.09.001.

[42] M. Moshkov, “Decision trees based on 1-
consequences,” Discret. Appl. Math., vol.
302, pp. 208–214, 2021, doi:
10.1016/j.dam.2021.07.017.

[43] V. Gumuskaya, W. van Jaarsveld, R.
Dijkman, P. Grefen, and A. Veenstra,

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 11, Nomor 1, Maret 2022

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 62

“Integrating stochastic programs and
decision trees in capacitated barge
planning with uncertain container
arrivals,” Transp. Res. Part C Emerg.
Technol., vol. 132, no. December 2020,
p. 103383, 2021, doi:
10.1016/j.trc.2021.103383.

[44] A. Strzelecka and D. Zawadzka,
“Application of classification and
regression tree (CRT) analysis to identify
the agricultural households at risk of
financial exclusion,” Procedia Comput.
Sci., vol. 192, pp. 4532–4541, 2021, doi:
10.1016/j.procs.2021.09.231.

[45] D. H. Lee, S. H. Kim, and K. J. Kim,
“Multistage MR-CART: Multiresponse
optimization in a multistage process
using a classification and regression tree
method,” Comput. Ind. Eng., vol. 159, no.
May, p. 107513, 2021, doi:
10.1016/j.cie.2021.107513.

[46] M. Li, P. Vanberkel, and X. Zhong,
“Predicting ambulance offload delay
using a hybrid decision tree model,”
Socioecon. Plann. Sci., no. July, p.
101146, 2021, doi:
10.1016/j.seps.2021.101146.

[47] W. Gao, Z. Bai, F. Zhu, C. C. Chou, and
B. Jiang, “A study on the cyclist head
kinematic responses in electric-bicycle-
to-car accidents using decision-tree
model,” Accid. Anal. Prev., vol. 160, no.
May 2020, p. 106305, 2021, doi:
10.1016/j.aap.2021.106305.

[48] D. Prieto-González, I. Castilla-
Rodríguez, E. González, and M. L.
Couce, “Automated generation of
decision-tree models for the economic
assessment of interventions for rare
diseases using the RaDiOS ontology,” J.
Biomed. Inform., vol. 110, no. May, p.
103563, 2020, doi:
10.1016/j.jbi.2020.103563.

[49] N. Tathawadekar, N. A. K. Doan, C. F.
Silva, and N. Thuerey, “Modeling of the
nonlinear flame response of a Bunsen-
type flame via multi-layer perceptron,”
Proc. Combust. Inst., vol. 38, no. 4, pp.
6513–6520, 2021, doi:
10.1016/j.proci.2020.07.115.

[50] I. Lorencin, N. Anđelić, J. Španjol, and Z.
Car, “Using multi-layer perceptron with
Laplacian edge detector for bladder
cancer diagnosis,” Artif. Intell. Med., vol.
102, no. May 2019, 2020, doi:
10.1016/j.artmed.2019.101746.

[51] R. R. Sanni and H. S. Guruprasad,
“Analysis of Performance Metrics of

Heart Failured Patients using Python and
Machine Learning Algorithms,” Glob.
Transitions Proc., pp. 0–8, 2021, doi:
10.1016/j.gltp.2021.08.028.

[52] G. Parmigiani, “Receiver operating
characteristic curves with an
indeterminacy zone,” Pattern Recognit.
Lett., vol. 136, pp. 94–100, 2020, doi:
10.1016/j.patrec.2020.04.035.

[53] V. Giglioni, E. García-Macías, I. Venanzi,
L. Ierimonti, and F. Ubertini, “The use of
receiver operating characteristic curves
and precision-versus-recall curves as
performance metrics in unsupervised
structural damage classification under
changing environment,” Eng. Struct., vol.
246, no. July, 2021, doi:
10.1016/j.engstruct.2021.113029.

	PERFORMANCE COMPARISON OF SUPERVISED LEARNING USING NON-NEURAL NETWORK AND NEURAL NETWORK
	Djarot Hindarto1, Handri Santoso2
	1Magister Technology Informatic, Universitas Pradita
	2 Magister Technology Informatic, Universitas Pradita
	Abstract
	Keywords : Multi-Layer Perceptron Classifier; Non Neural Network; Support Vector Machine; Decision Tree; Artificial Neural Network
	INTRODUCTION
	research methods
	The methodology proposed for this research is as follows.
	Static Analysis
	Dynamic Analysis
	Hybrid Analysis
	K-Nearest Neighbor
	Support Vector Machine
	Decision Tree
	Multi-Layer Perceptron Classifier
	RQ 3, What is the percent increase in accuracy with the implementation of the Multi-Layer Perceptron algorithm?
	RQ 4, Is it effective to perform malware analysis using static methods?

