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1. Introduction

The researches proposed in this paper belong to one of 
the promising and rapidly developing areas of mathemat-
ical control theory in recent years. The relevance of such 
research is reasoned by the fact that control tasks are en-
countered in almost all areas of human activity: these are 
complex technical systems and technological processes. 
In these systems, there are issues of achieving the goal by 
selecting the optimum control actions, taking into account 
various constraints (system trajectory requirements, control 
constraints).

The problem of optimal control for dynamic systems can 
be formulated as the problem of finding a program control 
or constructing a synthesizing control depending on the 
system state and the current time moment. In the first case, 
the problem can be solved using the Pontryagin maximum 
principle [1], which reduces the initial problem of optimal 

control to a two-point boundary value problem of ordinary 
differential equations. In the general case, the Pontryagin 
maximum principle gives necessary optimality conditions 
and allows us to obtain the program control depending on 
the current moment of time. In the second case, the Bellman 
dynamic programming method [2] or Krotov sufficient op-
timality conditions [3] can be used. It should be noted that 
it is difficult to apply these methods directly to obtain the 
optimal control law.

In practice, we meet a large number of optimal control 
problems for economic systems, which are non-linear systems 
with coefficients that depend on the state of the control ob-
ject. Economic systems are required to achieve a certain level 
of economic development over a given planning horizon.

A cluster (in economics) is a group of interconnected 
organizations, infrastructures, producers, suppliers, research 
institutes, universities, etc., concentrated on a certain terri-
tory, complementing each other and reinforcing competitive 
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mal control problems for one class of nonlinear 
systems with and without control constraints 
are considered. The nonlinear objective func-
tional in these problems depends on the control 
and state of the object. Then, using the results 
of solving optimal control problems on a finite 
interval, an algorithm for solving the problem for 
a nonlinear system of a three-sector economic 
cluster is developed. A nonlinear control based 
on the feedback principle using Lagrange mul-
tipliers of a special kind is found. The results 
obtained for nonlinear systems are used to con-
struct the control parameters of a mathemati-
cal model of a three-sector economic cluster at 
a finite time interval with a given functional and 
various initial conditions. The results of the sys-
tem state calculation are shown in the figures, 
the optimal controls satisfy the given constraints. 
The optimal distribution of labor and invest-
ment resources for a three-sector economic clus-
ter is determined. They ensure that the system 
is brought into an equilibrium state and satisfy 
balance ratios. These results are useful for prac-
tice and are important because there are a num-
ber of optimal control problems when it is nec-
essary to transfer a system from an initial state 
to a desired final state for a given time interval. 
Such problems often arise for an economic system 
when a certain level of development is required
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advantages of individual companies and the cluster as a 
whole. Aspects of structure and functioning of clusters were 
first studied elaborately in [4]. The three-sector economic 
cluster model and the necessary conditions for optimal bal-
anced economic growth were given by [5, 6]. The extensive 
work of [7] provided a basis of the mathematical theory of 
the infinite-horizon optimal control of dynamic systems 
using the Pontryagin maximum principle and an example 
of a two-sector model of optimal economic growth with an 
occasional jump in prices.

It should be noted that the controllability criteria for 
nonlinear systems were obtained in [8], and for discrete 
systems in [9]. The work [10] considered the optimization of 
discrete processes with bounded control.

One of the methods for designing non-linear controllers 
is the method based on using the Riccati equation, whose pa-
rameters depend on the state of the object. At the same time, 
an inefficient algorithm in terms of computational volume, 
which requires multiple integration of matrix differential 
Riccati equations with state-dependent coefficients, is pro-
posed. It should be noticed that the ambiguity of representa-
tion of non-linear system like a linear system structure, but 
with state-dependent parameters, also the absence of suffi-
ciently universal algorithms of solving the Riccati equation, 
whose parameters as well depend on state rise many possible 
sub-optimal solutions.

Therefore, researches devoted to developing an algo-
rithm for solving the problem of optimal control of a non-lin-
ear system to determine a non-linear control based on the 
feedback principle, allowing to find synthesizing controls 
with control constraints, which depend on the system state 
and the current time are relevant.

2. Literature review and problem statement

In [11], the optimal sampling times of the compensator as a 
function of different sampling output frequencies are discussed 
and comparison results for different quality indicators are giv-
en. The proposed algorithm is general and will require further 
analysis and investigation to build control of different systems. 
And in [12], a class of nonlinear systems, for which there exists a 
coordinate representation (diffeomorphism) that translates the 
initial system into a system with a linear fundamental part and 
nonlinear feedback, is considered. The matrix of the controller 
gain is found by solving the matrix equations of Riccati type 
with parameters that depend on the state of the system. Note 
that it is not possible to solve the Riccati equation in the general 
case. It is necessary to approximate the solution and then it is 
possible to obtain a suboptimal control.

Such a system is also studied for one class of nonlinear 
uncertain systems and based on adaptive dynamic program-
ming (ADP) methods based on neuro-observables have been 
developed for the optimal control problem with continu-
ous-time [13] and neural network approximation design of 
optimal control with guaranteed costs [14]. In these works, 
the optimal control problem of a nonlinear system is trans-
formed to the optimal control problem of a nominal system 
by changing the cost function. The main result is to develop 
an adaptive learning algorithm for solving the optimal control 
problem of uncertain nonlinear systems. In practical applica-
tions, there are a variety of uncertainties in nonlinear systems 
in the presence of constraints on the control actions. Howev-
er, in this work, only a single network is used instead of the 

typical dual network, which provides a smaller computational 
burden, but initial stabilizing control requirements may arise.

In [15], an ADP-based control algorithm has been proposed 
to solve the problem of optimal control of nonlinear systems 
with saturating actuators and non-quadratic cost functionals. 
In these works, the solutions of the Hamilton-Jacobi-Bellman 
equation are reduced to the solution of matrix Riccati type 
equations with parameters depending on the system state. New 
algorithms for solving the problem of optimal control of nonlin-
ear systems have been developed in the framework of ADP in 
[16]. The authors proposed an adaptive algorithm for nonlinear 
systems with bounded inputs and the influence of possible un-
certainties has not been taken into account. 

In [17], an adaptive neural decentralized control method is 
proposed for a class of uncertain stochastic nonlinear strongly 
coupled systems with multiple inputs and multiple outputs. 
The main feature of this work is that the proposed approach 
allows one to control stochastic systems with strongly inter-
connected nonlinearities in both drift and diffusion, which 
are functions of all states of the whole system. And in [18], 
the problem of adaptive neural control of triangular nonlinear 
systems with unmodelled dynamics and dynamic perturba-
tions is considered. The main advantage of this study is that 
the neural network-based tracking method is developed for 
uncertain nonlinear systems. In [19], optimal control of power 
flows in a microgrid network (MGs) based on the Pontryagin 
Maximum Principle (PMP) is presented. In [20], the focus is 
on the design of near-optimal controllers based on adaptive 
criticism for nonlinear decentralized feedback problems with 
continuous time. Note that in these works, the requirement 
for an initial stabilizing control is a rather serious limiting 
condition, and especially for uncertain nonlinear systems. 
Stabilizing control is difficult to obtain in practice in the pres-
ence of constraints on the control actions. In [15–20], solving 
Hamilton-Jacobi-Bellman equation is reduced to solving 
matrix equation similar to Riccati’s state-dependent param-
eters. At the same time, an inefficient algorithm in terms of 
computational volume, which requires multiple integration of 
matrix differential Riccati equations with state-dependent co-
efficients, is proposed. However, it should be noticed that the 
ambiguity of representation of non-linear system like a linear 
system structure, but with state-dependent parameters, also 
the absence of sufficiently universal algorithms of solving the 
Riccati equation, whose parameters as well depend on state 
rise many possible sub-optimal solutions.

We consider the optimal control problem for a three-sector 
economy model consisting of the material sector (i=0), the 
capital generating sector (i=1) and the consumer sector (i=2). 
It is assumed that each sector produces its aggregate product: 
the material sector produces objects of labor (fuel, electricity, 
raw materials and other materials); the capital-generating sec-
tor produces means of labor (machines, equipment, industrial 
buildings, etc.); the consumer sector produces consumer goods.

In accordance with [5], the mathematical model consists of:
1. Three Cobb-Douglas type functions of the product 

specific output:

,i

i i i ix A kα= θ 0,iA >  0 1,i< α <  ( 0,1,2).i =   (1)

2. Three differential equations describing the dynamics 
of the capital-labor ratio:

1,i
i i i

i

s
k k x= −λ +

θ
  ( ) 0

0 ,i ik k=  0,iλ >  ( )0,1,2 .i =  (2)
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3. Three balance equations:

0 1 2
1,s s s+ + =  0,is ≥  ( )0,1,2 .i =     (3)

0 1 2
1θ + θ + θ = , 0,iθ ≥  ( )0,1,2 .i =    (4)

( )0 0 1 1 2 2
1 ,x x x+ β = β + β  0,iβ ≥  ( )0,1,2 .i =    (5)

Here the state of the system (capital-labor ratio) is 
described by a vector k0, k1, k2; (s0, s1, s2, θ0, θ1, θ2) is a 
control vector, where s0, s1, s2 are shares of sectors in an 
investment resources distribution and θ0, θ1, θ2 are shares 
of sectors in a workforce distribution; xi is products spe-
cific outputs (the number of products in the i-th sector 
per worker); αi is the coefficient of elasticity of funds; 
λi is the capital-labor ratio; βi is direct material costs of 
manufacturing products in the i-th mentioned sector of a 
cluster (i=0,1,2).

We will consider the problem of transition of a nonlinear 
system from an initial state (k00, k10, k20) of capital-labor ra-
tio to the state (k0s, k1s, k2s) over the time interval [0, T]. As 
a desired final state (k0s, k1s, k2s) we choose a steady state of 
the system, which is determined by equating the right sides 
of differential equations (2) to zero:

1

0 1 1 1
0

0 0

,s
s

s A k
k

αθ
=

λ θ

1

1

1
1 1

1

1

,s

s A
k

−α 
=  λ 

1

2 1 1 1

2

2 2

.s
s

s A k
k

αθ
=

λ θ
 (6)

The capital-labor ratio values of the capital-labor ratio 
kis (i=0,1,2) in the equilibrium state (6) depend on the con-
trols (s0, s1, s2, θ0, θ1, θ2), for which we can select the values 
(s0s, s1s, s2s, θ0s, θ1s, θ2s), the result of solving the nonlinear 
programming problem in order to maximize the specific con-
sumption: x2→max. The system of differential equations (2) 
in vector form is:

( ) ( ) ( )( ) ( ),y t Ay t Bf y t u t= +  [ ]0, ,t T∈
  

(7)

where

1 1,y k=  
2 2

,y k=  
3 0

,y k=

1 1,u s=  2 1

2

2

,
s

u
θ

=
θ

 0 1

3

0

,
s

u
θ

=
θ

( ) ( ) 1

1 1 1 ,f y f y kα= =  ( ) 2

2 2 2
,f y kα=  ( ) 0

3 3 0 ,f y kα=

1

2

3

0 0

0 0 ,

0 0

A

−λ 
 = −λ 

−λ 

1

1

1

0 0

0 0 .

0 0

A

B A

A

 
 =  
 

Here y=(y1, y2, y3)* is a vector of the object state, u=(u1, 
u2, u3)* is the control vector. The initial and final states of 
the system are given:

( ) 00 ,y y=  ( ) .Ty T y=    (8)

Note that the desired final state of the system y(T)=ys 

is an equilibrium state in which per capita consumption is 
maximized and ensures a balanced growth of the economy.

To solve the initial state into an equilibrium state 
y(T)=ys in a time interval and minimize the cost func-
tional:

( )
( ) ( )

( ) ( )
( ) ( )

*

*

0

1
d ,

2

s s
T

s s

s s

y t y Q y t y

J u f y u t f u t

R f y u t f u

    − − +    
  = + − ×  
 

 × −   

∫   (9)

where Q and R are positive semidefinite and positive defi-
nite (3×3) matrices, respectively.

Studies of the stability of nonlinear systems in the 
form (7) were carried out by [21, 22] describing optimal 
stabilization of these systems over an infinite time interval.

It follows from the analysis of scientific researches that 
the proposed algorithms for solving the problem of optimal 
control of non-linear systems lead to the solution of Riccati 
equation, which requires multiple integration of matrix differ-
ential equations with coefficients that depend on the state of 
the system. An option to overcome this problem is to search 
for new approaches to develop algorithms to solve the prob-
lems of optimal control of non-linear systems and to provide 
the required constraint in the form of algebraic equation. All 
this suggests that research on optimal control problems for 
one class of nonlinear systems under external influences and 
with constraints on the controlling actions is promising.

3. The aim and objectives of the study

The aim of the study is to develop an algorithm for solving 
the problem of optimal control on a finite interval for a non-lin-
ear system of a three-sector economic cluster. This algorithm 
will make it possible to apply in practice the obtained scientific 
results in economic systems in order to achieve a certain level of 
economic development on a given planning horizon.

To achieve this aim, the following objectives are accom-
plished:

– to find a synthesizing control u(t,y) such that the pair 
{y(t),u(t)} corresponding to it delivers the minimum value to 
the functional (9), where y(t) is the solution of the differen-
tial equation (7) under the control u(t)=u(y(t),t);

– to find a synthesizing control u(t,y) such that the pair 
{y(t),u(t)} corresponding to it delivers the minimum value 
to the functional (9), where y(t) is the solution of the differ-
ential equation (7) under the control u(t)=u(y(t),t) in the 
presence of restrictions on controls of the form (3), (4);

– to develop an algorithm for solving the problem of 
constructing control parameters for a three-sector economic 
cluster.

4. Materials and methods

This method also allows taking into account the con-
straints on the values of control. It should be emphasized 
that there is a more general statement of the optimal control. 
The problem is considered for a three-sector economic clus-
ter, where the share of labor and investment resources for all 
three sectors of the economy can be changed simultaneously.

In practice, there are a number of optimal control prob-
lems where it is necessary to move a system from an initial 
state to a desired final state over a specified time interval. 
Such problems often arise for an economic system, when it 
is required to achieve a certain level of economic develop-
ment on a given planning horizon. To solve this problem, we 
construct an auxiliary functional with Lagrange multipliers 
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of a special kind. For that, we add a system of differential 
equations (7) with multiplier λ=K(t)(y(t)–ys)+q(t) to the 
expression for functional (9). As a result, we get the follow-
ing functional:

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )( ) ( )
( )( )

( )( ) ( )

*

*

0
*

1

2

1

2

d ,

s s

s s

T

s s

s

s

s s

y t y Q y t y

f y u t f u

L u R f y u t f u t

K t y t y q t

A y t y

B f y u f u y t

 
    − − +    
 
  + − ×  
  = × − +  
 

  + − + ×  
  − +
  ×
  + − −  

∫



  (10)

where q(t) is a vector of dimension (3×1); K(t) is a symmetric 
positive definite (3×3) matrix.

Consider the following functions:

( ) ( ) ( ) ( )

( ) ( )

*

*

1
,

2

,

s s

s

v y t y t y K t y t y

y t y q t

   = − − +   

 + − 

( ) ( ) ( ) ( ),
.s

v y t
K t y t y q t

y

∂
 = − + ∂

   (11)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( ) ( )
( )( ) ( )( ) ( )( ) ( )

*

*

*

1
, ,

2

1

2

s s

s s s s

s

s s s s

M y u t y t y Q K t y t y

f y u t f u R f y u t f u

K t y t y q t

A y t y B f y u f u y t y q t

    = − + − +    

   + − − +   

 + − + × 
 × − + − + − 



  (12)

Using (11) and (12), we get the following representation 
for the Lagrange functional (10):

( ) ( ) ( )0 0

0

, , , , d .

T

L y u v y t M y u t t= + ∫    (13)

For the given task, the principle of liberation from ties is as 
follows: the original task of optimal control with constraints is 
reduced to another task, without constraints. At the same 
time, a new task is formulated so that its solution would be the 
solution of the original problem [15, 16]. The multiplier 

( )( ) ( )( )sK y t y q t− +  removes constraints on ( ) ( ){ }, ,x t u t  in 
the form of a system of differential equations (7), and func-
tions ( ) ( ){ }1 2

,t tλ λ
 
– corresponding constraints, imposed on 

control (3), (4). Such representation of the functional (13) al-
lows reducing the initial problem on a conditional extremum 
to the problem on an unconditional extremum.

5. Results of the study of optimal control problems 
and the development of an algorithm for solving the 

problem for a nonlinear system of a three-sector 
economic cluster

5. 1. Solution of the optimal control problem (7)–(9)
To find a solution of the problem, it is necessary to de-

termine matrices K(t), W(t,T) and vector q(t) in accordance 

with the proposed algorithm [23]. Applying common meth-
ods of differential calculus, from (12) we determine a control 
function that minimizes M(y,u,t):

( ) ( ) ( ) ( )( ) ( )1 *
.s s sf y u t f u R B K t y t y q t−  − = − − +   (14)

Matrices K(t), W(t,T) and vector q(t) are defined as follows: 

( ) ( ) ( )
( ) ( )

*

1 *
0,

K t K t A A K t

K t BR B K t Q−

+ + −

− + =



 ( ) 00 .K K=   (15)

( ) ( ) ( )
( ) ( )

*

1

1 1

, ,

, ,

W t T W t T A t

A t W t T B

= +

+ −



 ( ), 0.W T T =   (16)

( ) ( ) ( )*

1
,q t A t q t= −  ( ) ( ) ( )( )1

0 0, 0 ,sq W T y y−= −  (17)

where

( ) ( )1 *

1
,A t A BR B K t−= −  1 *

1
.B BR B−=

  
(18)

Assuming that the solutions of the equations (15)–(17) 
exist and the conditions (14) are satisfied, we can represent 
the differential equations that determine the law of the sys-
tem motion, as follows:

( ) ( ) ( )( ) ( )1 1 ,sy t A t y t y B q t= − −  ( ) 0
0 .y y=

  
(19)

Using the solutions of differential equations (17) and (19), 
and following [23], we find that the state of system (19) 
corresponding to the control (14) will satisfy y(T)=ys at the 
final time T.

( ) ( ) ( ), ,sy t y W t T q t− =  0
[ , ].t t T∈

   
(20)

Now, the obtained results for the optimal control prob-
lem can be formulated as the following assertion:

Theorem 1. The pair of functions in problem (7)–(9) is 
optimal if and only if:

1. y(t) satisfies the differential equation:

( ) ( ) ( )( ) ( )1 1sy t A t y t y B q t= − −    (21)

with the conditions y(t0)=y0, y(T)=ys.
2. Control u(t) is defined as follows:

( ) ( ) ( ) ( )( ) ( ){ }1 1 *
, .s s su y t f y f u R B K t y t y q t− −  = − − +   (22)

Matrices K(t) and W(t,T) are the solutions of equa-
tions (15) and (16), and vector q(t) satisfies the differential 
equation (17).

5. 2. Solving the problem with limited control
We write the system of differential equations (7) in vec-

tor form using the following notation:

( ) ( ) ( )( ) ( ),y t Ay t BD y t u t= +  ( ) 0
0 ,y y=  [0, ],t T∈

( )( )
1

1

1

1

1

1

0 0

0 0 .

0 0

y

D y t y

y

α

α

α

 
 =  
  

   (23)

Here, y(t)=(y1,y2,y3)* is a state vector of the object, 
u(t)=(u1,u2,u3)* is a control vector. The components of the 
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control vector u(t)=(u1,u2,u3)* satisfy two-sided constraints 
of the following form:

1 2
,uγ ≤ ≤ γ  

1 2
0 1,i i iu< γ ≤ ≤ γ <  ( )0,1,2 .i =

  
(24)

which are obtained from the initial constraints (3), (4).
In [24], optimal control problems with fixed ends of tra-

jectories for a linearized system of an economic cluster are 
considered.

It is required to find a synthesizing control u(y,t) that 
takes the system (23) from a given initial state y(0)=y0 

to the desired equilibrium state y(T)=ys in a time interval 
[0,T], while minimizing the functional:

( )
( ) ( )

( )
( ) ( )

( ) ( )

*

*

0

*

1
( ) d

2

1
,

2

s s
T

s s

s s

s s

y t y Q y t y

J u D y u t D u t

R D y u t D u

y T y F y T y

    − − +    
  = + − × +  
 

 × −   

   + − −   

∫

 (25)

where Q is a positively semidefinite (3×3) matrix, and R, F, 
D(y(t)) are positive definite matrices of dimension (3×3), 
Ds=D(ys). The symbol (*) means the operation of transpos-
ing a matrix or a vector.

To solve the problem, we add to the expression for the 
functional (25) the system of differential equations (23) 
with the factor λ=K(t)(y(t)–ys)+q(t), as well as the following 
expression:

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

* * * *

1 1 2
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2 3
, ,s

t D y RD y u t t D y RD y

u t t y t y W t T q t

 λ γ − + λ × 
   × − γ + λ − −     (26)

where λ1≥0, λ2≥0. As a result, we obtain the following func-
tional:
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 (27)

where q(t) is a vector of dimension (n×1), and K(t) is a sym-
metric positive definite matrix of dimension (n×n).

For the problem under consideration, the principle of 
releasing from bonds is as follows: the original problem of 
optimal control with constraints is reduced to another prob-
lem, but without any limitations. We introduce the following 
functions:
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Then the following representation of the functional 
holds [24]:
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( )( ) ( ) ( )

0 0

0

*

, , , , d

1
, .

2

T

s s

L y u v y t M y u t t

v y T T y T y F y T y

= + −

   − + − −   

∫

  (30)

The desired control is determined from the relation:

( ) ( )
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where the matrices K(t), W(t,T) and the vector q(t) satisfy in 
the interval tt0,T] the differential equations:
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Here we used the following notation:
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Let there exist solutions of equations (32), (33), then 
the differential equations defining the law of motion of the 
system can be represented in the following form:
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( ) ( ) ( )( )
( ) ( ) ( )
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1 , ,

sy t A t y t y
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− + φ
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 ( )0 0
.y t y=   (37)

We note that the initial condition for the differential 
equation (34) is determined from the following relations:

( ) ( ) ( ), ,sy t y W t T q t− =  [ ]0
, .t t T∈

  
(38)

The results established for the problem of optimal control 
are formulated in the form of the following assertion.

Theorem 2. Let Q be a positively semidefinite matrix, and 
R, F, D(y) be positive definite matrices in the time interval 
t0≤t≤T; the matrix W0=W(t0,T) is positive definite. Suppose 
that system (23) is completely controllable at the instant 
time t0. Then for the optimality of the pair (y(t),u(t)) in prob-
lem (23)–(25), it is necessary and sufficient that:

1. y(t) satisfies the differential equation:
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2. Control u(y,t) is defined as follows:
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 (39)

Matrices K(t) and W(t,T) are the solutions of equa-
tions (32) and (33), vector q(t) satisfies the differential 
equation (34), and the vector-valued function φ(y,t) is de-
termined by formula (35).

5. 3. Algorithm for solving the optimal control prob-
lem and constructing control parameters for a three-sec-
tor economic cluster

We describe an algorithm for solving the optimal control 
problem (1)–(5), which can conveniently be implemented 
with a computer.

Step 1. Integrate the system of differential equations (15) 
and (16) determine the matrices K(t) and W(t,T) over the 
interval [0,T] under conditions K(0)=K0 and W(T,T)=0.

It should be noted that K0 is an arbitrary symmetric 
and positive definite matrix. If we set different initial con-
ditions for the matrix differential equation (15), then we 
obtain different K(t) and W(t,T) matrices. However, this 
gives the same vector-function u(t) of the form (22), be-
cause the problem has a unique solution. When calculating 
vector q(t) with formula (17), the influence of matrix K(t) 
is compensated.

Step 2. Set the conditions y(0)=y0 and calculate q0= 
=W-1(0,T)(y0–ys).

Step 3. Integrate the system of differential equa-
tions (17), (21) in interval [0,T] with the initial conditions 
y(0)=y0, q(0)=q0. It is possible to output the results and 
a graph (if needed) of the optimal trajectory y(t) and 
optimal control u(t) in the process of integration of the 
system (17), (21).

Step 4. Using the results of step 3, the optimal trajectory 
y(t) (capacity to labor ratio) and the optimal control u(t), we 
find v(t) from the following relationship: 
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ensure the fulfillment of conditions (5); then we deter-
mine the optimal distribution of investment resources 
(s0(t),s1(t),s2(t)) 
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,s u t=  ( ) ( )( )2 1
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(41)

ensure the fulfillment of conditions (3); and optimal distri-
bution of labor resources (θ0(t),θ1(t),θ2(t)) 
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ensure the fulfillment of conditions (4).
Numerical calculations were carried out on a computer 

using the Maple application package with the following pa-
rameter values indicated in Table 1.

Table 1

Parameter values for a three-sector economic model of a cluster

I αi βi λi Ai sis θis kis

0 0.46 0.39 0.05 6.19 0.2763 0.3944 966.4430

1 0.68 0.29 0.05 1.35 0.4476 0.2562 2410.1455

2 0.49 0.52 0.05 2.71 0.2761 0.3494 1090.1238

Matrices Q and R are determined by formula (25) for two 
variants. Since matrix Q(t) is stationary, it follows from the 
differential matrix Riccati equation (32) that matrix K(t) 
will also be stationary in the time interval [t0,T] and KT=F.

We use two variants of the initial conditions. 
Here we solve the optimal control problem with the cho-

sen initial condition in the form:

( ) ( )*

0
200, 100, 100 .sy t y− = − − −   (43)

Matrices Q and R were chosen as:
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accordingly, matrix KT is equal to:
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3
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It is required to transfer the system (23) into an equi-
librium state y(T)=(k0s,k1s,k2s) over the time interval 
[t0,T]=[0,20],while minimizing functional (25).
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The obtained optimal trajectories and optimal controls 
are presented in Fig. 1, a, b. As can be seen from Fig. 1, a, 
the found optimal controls ensure that the trajectories of 
the system (fund-labor ratio) are brought to the state of 
equilibrium. The optimal controls found in Fig. 1, b do not 
exceed the limits of region U. Using the formulae (40)–(42), 
the optimal distribution of labor (θ0(t),θ1(t),θ2(t)) and invest-
ment resources(s0(t),s1(t),s2(t)) is determined. Fig. 2, a, b 
show the changes in resources that bring system (2) to 
a state of equilibrium and satisfy balance ratios (3)–(5). 
It follows from Fig. 1, a that the obtained optimum tra-
jectory values y1(T)→k1s=2410.15, y2(T)→k2s=1090.12, 
y3(T)→k0s=966.45. Fig. 1, b shows that the values of the dif-
ference of the fundamentals yi(T) and the steady-state funda-
mentals yis, (y1(T)–y1s)→0; (y2(T)–y2s)→0; (y3(T)–y3s)→0 
 and the optimal control values at the finite time at T=20: 
u1(T), u2(T), u3(T) satisfy the given constraints and are 
within the domain. Fig. 2, a, b shows graphs of optimal 
allocation of investment and labor resources, with invest-
ment resources s1(T)→s1s=0.4476, s2(T)→s2s=0.2761, 
s0(T)→s0s=0.2763, labor resources θ1(T)→θ1s=0.2562, 
θ2(T)→θ2s=0.3494, θ0(T)→θ0s=0.3944.

In this variant, we also solve the problem of optimal 
control for the values of the initial state of the system y(t0), 
which were chosen in the following form:

( ) ( )*

0
600, 200, 200 .sy t y− = − −   (44)

In this variant, matrices Q and R were chosen as:
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Matrix KT is equal to: 
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The results of the system state calculations are shown 
in Fig. 3, a, b. It can be seen from Fig. 4 that the optimal 
controls do not go beyond the range U determined by the 
constraints (9). For the example under consideration, these 
restrictions have the form:

Fig. 1. Graphs for optimum trajectories and optimum 

controls: a – Graphs of the optimal trajectories (capacity to 

labor ratio) for the system (7) with the initial condition (43) 

under the control (22); b – Graphs of the optimal controls for 

the system (7) with the initial condition (43)

a

b

Fig. 2. Graphs for optimal allocation of investment and 

labor resources: a – Graphs of the optimal allocations of 

investment resources for the balance ratios (3)–(5) for the 

system (7) with the initial condition (43); b – Graphs of 

the optimal distribution of labor resources for the balance 

ratios (3)–(5) for the system (7) with the initial condition (43)

a

b
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0.1 0.9,iu≤ ≤  ( )0,1,2 .i =
   

(45)

In this second variant, the control components u1(y) 
and u3(y) lie on the boundary of the region U in the time 
interval [0,t1], [0,t2], respectively, then for t1(t1,T], t2(t2,T], 
the lines enter the interior of the region U. Switching con-
trols occurs at times t1=0.637; t2=2.234 for components 
u1(t), u3(t) respectively. It follows from Fig. 3, a that the 
obtained optimum trajectory values y1(T)→k1s=2410.15, 
y2(T)→k2s=1090.12, y3(T)→k0s=966.45. It follows from 

Fig. 3, b that the values of the difference of the fundamentals 
yi(T) and steady-state fundamentals yis (y1(T)–y1s)→0; 
(y2(T)–y2s)→0; (y3(T)–y3s)→0 and optimal control val-
ues (Fig. 4) at the finite time at T=20: u1(T), u2(T), u3(T) 
satisfy the given constraints. Fig. 5, a, b shows graphs of 
optimal allocation of investment and labor resources, where 
investment resources s1(T)→s1s=0.4476, s2(T)→s2s=0.2761, 
s0(T)→s0s=0.2763, labor resources θ1(T)→θ1s=0.2562, 
θ2(T)→θ2s=0.3494, θ0(T)→θ0s=0.3944.

Using formulas (40)–(42), the optimal distribu-
tion of labor (θ0(t),θ1(t),θ2(t)) and investment resources 
(s0(t),s1(t),s2(t)) is determined. 

Fig. 5, a, b shows the changes in resources that ensure 
the system (23) is brought to an equilibrium state and satis-
fies the balance ratios (3)–(5).

Numerical examples with two variants of the initial con-
dition are considered. Fig. 1, 2 show trajectories at y(t0)–ys= 
=(–200, –100, –100)*, where control is performed by formu-
la (22). The balance relations (3)–(5) are satisfied.

Fig. 3–5 show optimum trajectories at y(t0)–ys=(–600, 
–200, 200)*. In this case controls u1(t), u2(t), u3(t) take 
values satisfying the given constraints (45) and the balance 
relations (3)–(5) are fulfilled.

Fig. 3. Graphs for optimum trajectories and (y(t)–y(ts)) 

trajectories: a – Graphs of optimal trajectories (capacity 

labor ratio) for the system (23) with the initial condition (44) 

under the control (39); b – Graphs of trajectories (y(t)–y(ts))

a

b

Fig. 4. Graphs of the optimal controls for the system (23) 

with the initial condition (44)

Fig. 5. Graphs for optimal allocation of investment and 

labor resources: a – Graphs of the optimal allocations of 

investment resources for the balance ratios (3)–(5) for the 

system (23) with the initial condition (44);  

b – Graphs of the optimal distribution of labor resources 

for the balance ratios (3)–(5) for the system (23) with the 

initial condition (44)

a

b
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6. Discussion of the results of research and development 
of an algorithm for solving optimal control problems for 

the economic control object 

To solve nonlinear optimal control problems in which 
the right parts of the ordinary differential equations are first 
reduced to a formally linear form by state and control, where 
the coefficients of all matrices may depend on the state of the 
system. The synthesizing feedback control is constructed by 
solving the corresponding linear-quadratic optimal control 
problems, where the coefficients of the weight matrices in the 
optimality criterion may also depend on the state variables. 
Then the matrix of the regulator gain is found by solving the 
matrix equations of Riccati type for the control problems 
on a finite time interval. As numerous experiments have 
shown, this heuristic approach in the numerical solution of 
the matrix Riccati equations, whose coefficients also depend 
on state, generates many possible sub-optimal solutions. But 
considering the complexity of construction and the impor-
tance for applications of controls in the form of feedback laws 
in nonlinear systems, this approach has been widespread in 
the literature in solving optimal control problems without 
control constraints. In this work, an algorithm for solving 
the problem of optimal control for one class of nonlinear 
controllable systems on a finite time interval is developed. It 
is shown that it is possible to construct a nonlinear synthe-
sizing control (39) in problems with control constraints by 
means of an auxiliary functional with Lagrange multipliers 
of special form (30). At the same time, a more effective 
algorithm in terms of computation volume of Riccati equa-
tions (32), which does not require multiple integration of 
matrix differential equations with state-dependent coeffi-
cients, is proposed.

The results obtained for the nonlinear system, are used 
in the construction of the control parameters for the mathe-
matical model of the economic control object. Numerical cal-
culations for the mathematical model of the economic object 
have been performed using the proposed control method of 
the nonlinear system. The figures show the optimal trajec-
tories, and the synthesizing controls take values that satisfy 
the given constraints (45) and balance relations (3)–(5) are 
fulfilled. 

One of the drawbacks of the results of the presented 
research is the need to account for uncertain nonlinearities 
and external perturbations. The next stage of the research 
work is the need to consider the increasing complexity of 
mathematical models, taking into account nonlinearities, 
perturbations, increasing the dimensionality of the state and 

control vectors. At the same time, it is obvious that one may 
encounter such difficulties as taking into account various 
control constraints and non-linear characteristics of the 
system.

7. Conclusions

1. For solving the problem, auxiliary functional with 
Langrage multipliers of special form (13) is constructed. A 
non-linear synthesizing control (22) is constructed with the 
help of Langrage multiplier of special form. In doing so, we 
propose an efficient algorithm in terms of the computation 
volume of the Riccati equation (15) that does not require 
multiple integration of matrix differential equations with 
state-dependent coefficients. The state of the system y(t) sat-
isfies differential equation (21), and the synthesizing control 
u(y,t) is defined by formula (22).

2. To solve the problem, a new approach to constructing 
synthesizing control based on the feedback principle and 
with control constraints is proposed. The possibility of con-
structing a non-linear synthesizing control (39) in problems 
with control constraints by means of an auxiliary functional 
with Lagrange multipliers of special form (30) is shown. In 
this case, we propose a more efficient algorithm in terms of 
the computational volume of the Riccati equations (32) that 
does not require multiple integration of matrix differential 
equations with state-dependent coefficients. The problem 
is solved using special Lagrange multipliers, taking into 
account the constraints on the controls. The synthesizing 
control is defined as follows:

( ) ( ) ( ) ( )( ) ( ) ( )
1

1
, , .

s s

s

D u R B
u y t D y y t

K t y t y q t

− ∗

−
 − ×

= + ϕ   × − +  

The matrices K(t) and W(t,T) are solutions of equa-
tions (32) and (33), vector q(t) satisfies differential equa-
tion (34), and vector function φ(y,t) is defined by formu-
la (35). 

3. Algorithm of solving the problem of optimal con-
trol (1)–(5) is described in p. 5. 3. Numerical calculations for 
the mathematical model of the economic object have been 
performed using the proposed control method of the non-lin-
ear system. Numerical examples with two variants of the 
initial condition are considered. The figures show the optimal 
trajectories and the controls take values that satisfy the given 
constraints (45) and balance relations (3)–(5) are fulfilled.
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