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Using the methods of the optimal control theory, the problem 
of determining the optimal technological mode of gas deposits’ 
exploitation under the condition of their depletion by a given 
point in time is solved. This task is of particular interest for the 
exploitation of offshore fields, the activity of which is limited by 
the service life of the field equipment. The considered problem 
is also of certain mathematical interest as an objective of opti-
mal control of nonlinear systems with distributed parameters.  
The usefulness and importance of solving such problems are 
determined by the richness of the class of major tasks that have 
a practical result. As an optimality criterion, a quadratic func-
tional characterizing the conditions of reservoir depletion is 
considered. By introducing an auxiliary boundary value prob-
lem, and taking into account the stationarity conditions for the 
Lagrange functions at the optimal point, a formula for the gra-
dient of the minimized functional is obtained.

To obtain a solution to this specific optimization problem, 
which control function is sought in the class of a piecewise con-
tinuous and bounded function with discontinuities of the first 
kind, the Pontryagin’s maximum principle is subjected. The cal-
culation of the gradient of the functional for the original and 
adjoint problems with partial differential equations is carried 
out by the method of straight lines.

The numerical solution of the problem was carried out by 
two methods – the method of gradient projection with a special 
choice of step and the method of successive approximations.

Despite the incorrectness of optimal control problems with 
a quadratic functional, the gradient projection method did 
not show a tendency to «dispersion» and gave a convergent 
sequence of controls
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1. Introduction

Every year the share of hard-to-recover reserves of 
oil and gas raw materials increases, and the development 
of hydrocarbon materials requires the involvement of the 
latest technologies. The search for the best option for the 
development of an oil or gas field is usually carried out based 
on many variants. It is problematic that, as a result of such 
enumeration, a truly optimal development option will be 
found [1]. The foregoing is determined by the fact that there 
are no effective algorithms for optimizing the process of de-
veloping gas fields based on mathematical models, suitable 
for all types of natural hydrocarbon deposits and considering 
as much as possible the features of the processes occurring in 
gas-bearing formations. At the same time, that is the kind of 
solution, which is important for the practice of developing 
natural hydrocarbon deposits. 

These problems are included in the sphere of optimal 
control of processes described by nonlinear boundary value 
problems of parabolic type, and Pontryagin’s maximum prin-
ciple is the powerful mathematical apparatus for their study 
and solution. From the point of view of specific applications, 

the value of the maximum principle is determined by the 
wealth of problems for which it is suitable. The maximum 
principle has found numerous practical and theoretical ap-
plications. Note that thanks to this theory, it became possible 
to obtain a solution to a number of practically important 
problems, including the inverse problem of the theory of 
heat conduction, the problem of optimal control of a nuclear 
reactor, and many others. From year to year, more and more 
papers are published on the study of various sections of the 
theory on optimal control.

And yet, despite the abundance of scientific publications 
on the theory of control systems with distributed parame-
ters, many issues of the foundations of this theory remain 
unresolved or insufficiently studied. These include, first of 
all, various problems in the theory of control of nonlinear sys-
tems with distributed parameters, finding the approximate 
solution of certain linear-quadratic optimal control problems.  
In applications, there also arise a large number of problems 
on optimal control of processes described by nonlinear dif-
ferential equations in ordinary and partial derivatives, which 
initial equations’ nonlinearity necessitates the use of appro-
ximate optimization methods. For such problems, the issues 
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of existence and uniqueness of the optimal control have not 
been practically studied, the necessary optimality conditions 
have not been found, and methods for their solution have not 
been developed.

At present, there are still no sufficiently convincing for-
mulations of the problems of optimal control for oil and gas 
fields, although in their content the solutions of such kinds  
of problems should be based on the methods of optimal 
control theory. Despite the successes, optimization methods 
have not yet found proper application when considering the 
prospects for the development of the gas production industry. 
Therefore, the theory of optimal control plays a significant 
role, and there is no doubt that this direction is one of the 
relevant and developing sections of modern science.

2. Literature review and problem statement

Methods of the theory of optimal control are currently 
widely used in the practice of developing oil and gas fields.  
In connection with the transformation of the oil and gas in-
dustry into a key sector of the economy of many world coun-
tries, the gas industry is in dire need of improving existing 
methods of influencing gas fields and searching for new tech-
nologies to increase gas recovery from reservoirs. In this case, 
it is often necessary to consider the problems of various tech-
nological processes’ optimum control, for example, the prob-
lem of optimal placement of oil reservoir wells and operating 
their flow rates, the problem of determining the technological 
modes of well management that ensure compliance with the 
rules of subsoil protection and trouble-free exploitation of 
boreholes, and many others.

In [2], the problem of determining the technological modes 
of well operation, ensuring compliance with the rules for the 
protection of subsoil, and trouble-free operation of wells, is 
numerically solved. By introducing an additional variable, the 
problem is reduced to the problem of controlling processes de-
scribed by a set of equations in partial and ordinary derivatives.  
In [3], one class of problems on processes’ optimal control, 
described by a set of nonlinear equations in ordinary and 
partial derivatives, is studied by the method of straight lines. 
Convergence in functional is proved and a constructive scheme 
for constructing a minimizing sequence of controls is proposed. 
The results of the numerical solution of one variational problem 
related to thermal processes are presented. However, due to the 
nonlinearity of boundary value problems in [2] and [3], it was 
not possible to prove the maximum principle, which gives the 
necessary optimality conditions. 

In [4], the urgent problem associated with the develop-
ment of oil and gas fields to increase the gas recovery of reser-
voir systems is considered. To conduct a comprehensive study 
of the process under consideration, a mathematical model has 
been developed based on the major laws of hydromechanics. 
A numerical method is proposed for the analysis and develop-
ment of multi-layer gas fields in the presence of a dynamic con-
nection between the layers and making managerial decisions. 
Based on the proposed mathematical tool, computational ex-
periments are carried out, the results of which are presented in 
the form of graphic objects, and their analysis is given. In [5], 
for optimal control and forecasting of production processes in 
gas fields, mathematical and computer models are studied, and 
computational algorithms are created. However, the conver-
gence issues related to the solution of the grid analog of the 
considered optimal control problem have not been studied;  

the structure of the optimal control software is given, however 
the calculation results are not presented.

In [6], the problem of optimal control of thermodynamic 
processes for an ideal gas based on the geometric formulation 
of thermodynamics is solved. The thermodynamic state is 
given as a Legendre manifold in the contact space. With the 
help of Pontryagin’s maximum principle, on this manifold, 
an optimal trajectory is found that maximizes the work done 
by the gas. It is shown that in the case of an ideal gas, the 
corresponding Hamiltonian system is completely integrable, 
and its solution is given in quadratures. However, this work 
is of theoretical interest, unfortunately, it does not present 
any practical applications of the considered optimal control.

In [7], the problem of two-phase filtration (oil and water) 
in a horizontal reservoir of an oil deposit is considered. An 
asymptotic method for calculating both the filtration process 
and related optimal control problems is proposed, namely, the 
problems of choosing optimal control actions to achieve ma-
ximum oil production at a given level of water resource con-
sumption or minimum water resource consumption that pro-
vides the required oil production level according to the plan.  
The theoretical results obtained in this case, which can also 
be applied to the problems of optimal control of thermal and 
physicochemical effects on the oil reservoir, are formulated 
in the form of a theorem, and the numerical solution of the 
optimal control problem is not given.

The aim of research [8] is to develop a method for a two-
stage search for the optimal control trajectory in periodic 
production processes. This technique refers to such opera-
tional processes in which the use of a dynamic programming 
method is impossible due to the incompatibility of the results 
of each stage of the operation. The study presents the results 
of numerous calculations in the form of tables and graphs.

The work [9] proposes a method for determining the op-
timal speed and final state control of technological processes 
based on the analysis of the solution to a system of stochastic 
differential equations, which is a mathematical model of the 
controlled process. Based on the results of numerical simula-
tion, it is shown that the proposed method allows obtaining 
solutions that are fully consistent with the results obtained us-
ing Pontryagin’s maximum principle for the velocity problem.  
Two options for implementing control are proposed and jus-
tified, which differ in the principle of choosing the moments 
of control switching.

The presented paper discusses the issues of a numerical 
solution for determining the optimal technological regime 
of gas extraction for the exploitation of deposits under the 
condition of their depletion by a given point in time. This 
task is of particular interest for the exploitation of offshore 
fields, the life of which is limited by the service period of 
the foundations, that is, it is predetermined. In this case, it 
is often necessary to consider the problem both in the case 
of fields with a single reservoir, and in the case of fields 
where there are multilayer deposits, and the upper reservoir 
is further developed by returning the well operating in the  
lower reservoir. For such deposits, it is necessary to choose 
during and before the development of gas deposits the opti-
mal rates of extraction for a given period of operation.

3. The aim and objectives of the study

The aim of the study is to solve the problem of determin-
ing the optimal technological regime for the operation of gas  
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deposits under the condition of their depletion by a given 
point in time. The study of the problems of optimal forecast-
ing and management of hydrocarbon resource assessment 
processes and their development on the basis of economic 
and mathematical modeling plays a crucial role in both 
strategic planning and operational management processes in 
various fields of science and technology.

To achieve the aim, the following objectives are ac-
complished:

– by introducing an auxiliary boundary value problem, 
called the adjoint one and corresponding to the original op-
timal problem, obtain a formula for calculating the gradient;

– by applying the two proposed methods to the opti-
mization problem, compare the results obtained to identify  
the better approach for solving the considered optimal con-
trol problem; 

– to present a numerical solution of the problem under 
consideration for confirmation or refutation of the conver-
gence of the found solution to the optimal control, taking the 
Pontryagin’s maximum principle as a basis. 

4. Materials and methods

The need to solve applied problems in real-time causes 
interest in the development of optimization methods with 
guaranteed estimates of the computational complexity, as 
well as in the search for ways to improve the efficiency of 
known methods by modifying them. The practice has shown 
that to successfully resolute variational problems, as a rule, 
it is necessary to resort to the use of additional artificial me-
thods for accelerating convergence.

A common way to evaluate the effectiveness of methods 
for finding the extremum of the function under study is com-
putational experiments and comparative analysis of methods 
founded on the results of experiments. However, the result 
of the computational experiment based on software imple-
mentation allowed us to conclude that such an analysis not 
in all cases may lead to unambiguous conclusions about 
the advantages of one method over another. The methods 
used (the gradient projection method with a special choice of 
step and the method of constructing successive approxima-
tions in calculating the optimal control), as a result, behaved 
differently at various stages of the minimization process. 
Theoretically, there is no satisfactory way to overcome  
such difficulties. In the presented work, we tried to fetch 
data on the results of calculations in an expanded form, 
which makes it possible to compare methods according to 
various criteria. The software implementation was carried 
out in the Visual Basic environment, the results of the nu-
merical experiment are given.

In this research, Pontryagin’s maximum principle was 
extended to the general case of minimizing a functional of 
integral type. This paper also contains some new results, 
the main of which are the formula for the increment of the 
functional and the necessary optimality conditions that fol-
low from it. Necessary conditions for the considered optimal 
control were also presented along with the optimal state 
trajectory for solving the so-called Hamiltonian system, 
which is an auxiliary boundary value problem, plus a maxi-
mum for the Hamiltonian condition. Achieving the above 
aim and objectives involves the use of two methods – the 
gradient projection method and the method of successive 
approximations.

5. Results of research of optimal control problems 
considering the depletion of gas reservoir

5. 1. Statement of the problem and derivation of the 
formula for calculating the gradient

We consider the problem of determining the optimal 
technological regime of gas extraction under the condition of 
reservoir depletion by a given time point concerning dimen-
sionless variables and parameters.

This task can be summarized as determining a piecewise 
continuous with discontinuities of the first order and not 
exceeding unity in absolute value in the time interval 0 ≤ t ≤ T 
function of the flow rate q(t) from the minimum condition of 
the functional:

F p x T p x x= ( ) − ( ) ∫ , .0 2

0

1

d  (1)

Here p0(x) is a technologically defined function, p(x, t) 
describes the distribution of gas pressure in the reservoir 
0 ≤ x ≤ 1, which is in the area Q = {0 < t ≤ T, 0 < x < 1} satisfies  
the Leibenson equation:

∂
∂

=
∂
∂

p

t

p

x

2 2

2
,  (2)
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A control that satisfies the above conditions is called ad-
missible. (2) is a nonlinear differential equation of parabolic 
type and describes the process of unsteady filtration of an 
ideal gas in a homogeneous porous medium. 

Condition (3) means that at the initial time the reservoir 
was in an undisturbed state with an initial constant pressure. 
The first condition in (4) shows that the well located at the 
«point» x = 0 is operated with a flow rate q(t), and it is re-
quired to choose this point so that at the end of the process 
the deviation of the pressure distribution p(x, T) from the 
predetermined pressure p0(x) would be minimal. The second 
condition in (4) indicates the impermeability of the bound-
ary x = 1 of the formation.

Following the well-known procedure for studying prob-
lems with a conditional extremum [10], we compose the 
Lagrange function of problem (1)–(4):
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where ψ(x, t) is a Lagrange multiplier. 
Let us give variations of the functions p(x, t), q(t) satisfy-

ing conditions (3), (4). Then:

δp x, ,0 0( ) =  0 1≤ ≤x ,  (6)
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The variation of function (5), which is the main linear 
part of the increment of this function, has the form:
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Taking into account conditions (6), (7), we transform the 
double integral by integration by parts. We will get:
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where δp(x, T), δp(x, t), δp(0, t), δp(1, t) are arbitrary varia-
tions, δq(t) is an admissible variation.

Assuming that:
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from the last equality we have:

δ δL
H

q
q t t

T

=
∂
∂

( )∫ d ,
0

 (11)

where H = –ψ(0, t)q(t) is a Hamiltonian function. 
Expressions (9), (10) determine the boundary conditions 

for the adjoint equation (8). From (11) it can be seen that the 
gradient has the form F ′(q) = –ψ(0, t).

5. 2. Application of iterative methods to the optimiza-
tion problem (1)–(4)

Finding the optimal control for systems with distributed 
parameters using the maximum principle reduces to a boundary  
value problem for partial differential equations. Solving 
boundary value problems for complex nonlinear systems 
often encounters significant computational difficulties and 
requires a lot of computer time. Therefore, of interest are 
methods for solving optimal control problems that could be 
used to circumvent these difficulties.

From the expression of the Hamiltonian functions for 
the considered problem (1)–(4) it can be seen that, without 
solving the optimal control problems (1)–(4), it is possible 
to estimate the structure of the optimal control. Such an esti-
mate often turns out to be useful in the numerical solution of  
problems. For example, in linear optimal control problems, 
i.e., in problems in which equation or boundary conditions 
contain controls of the first order, if the optimal control exists, 
then, formally, when determining the permissible control area 
in the form of inequalities |q(t)| ≤ 1, that optimal control will 
be a relay function, taking alternately the values –1 and 1, i.e.:

q t t( ) = − − ( )( )sign ψ 0, . (12)

Therefore, it would seem that the whole solution consists 
of the optimal selection of sequences of control intervals 
and their junction points. However, it is important to note 
that the formality of formula (12) lies in the fact that the 
annulment of the expression marked by a sign, generally 
speaking, is possible not only on individual points of the seg-
ment 0 ≤ t ≤ T but also on its entire sections. In this case, the 
maximum principle is not sufficient to determine the optimal 
control – supplementary research is required to identify the 
so-called special controls. In addition, the question of the 
possible number of switching points and their location on the 
segment 0 ≤ t ≤ T remains open. Nevertheless, the solution can 
be obtained by numerical methods. Note that if we exclude 
special controls, the optimal control will be a boundary, 
and the area of admissible controls is a closed and bounded 
domain. When applying the method of successive approxima-
tions, a boundary control will be obtained at each iteration, 
that is, the approximation to the optimal control will be in 
the class of discontinuous boundary controls. When using 
gradient methods based on obtaining functional gradient 
formulas, piecewise continuous control will be approximated 
by continuous functions. 

When finding the optimal control by the above iterative 
methods using the maximum principle, it becomes necessary 
to solve the boundary value problems (2)–(4) and (8)–(10).  
It is not possible to obtain an analytical solution of these 
boundary value problems due to the nonlinearity of equa-
tions (2). At the same time, it is obvious that the most ac-
cessible and simple way is the numerical integration of the 
equations by an implicit difference scheme in combination 
with a sweep or the method of straight lines. However, in this 
case, the question of the convergence of an approximate solu-
tion of a boundary value problem is not always confirmed. 
Without this, it is impossible to prove the convergence of the 
approximate solution of the approximating optimal problem, 
at least in terms of the functional [3].

5. 3. Numerical solution of problem (1)–(4)
The problem is solved in two ways: by the gradient pro-

jection method and the method of successive approximations. 
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Using the method of straight lines, we replace the boundary 
value problem (2)–(4) with the system of equations:

dp

dt h
p p

h
q t1

2 1
2

2
21 1

= − +  − ⋅ ( ),
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2 2 ,

with initial conditions:

pi(0) = 1, i = 1, …, n, (14)

and the conjugate boundary value problem (8)–(10) taking 
into account the conditions ψ0 = ψ1, ψn+1 = ψn substitute by 
the equations:
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2 1 1 ,  i n= −2 1,..., ,  (15)
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dt
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n n

ψ
ψ ψ= − −[ ]−

2
2 1 ,

which boundary conditions have the form:

ψ i i iT p T p x( ) = ( ) − ( ) 2 0 ,  i n= 1 2, ,..., ,  (16)

where pi(t) = p(xi, t), ψi(t) = ψ(xi, t), xi = ih, i = 0.1,…, n+1, 
(n+1)h = 1.

Functional (1) and its gradient, taking into account the 
conditions ψ0 = ψ1, are replaced by expressions:

F h p T p xi i
i

n

= ( ) − ( ) 
=
∑ 0 2

0

,  (17)

F q t/ .( ) = − ( )ψ1  (18)

The gradient projection method in the approximating 
optimal problem is reduced to constructing a sequence qk(t) 
according to the rule:

q t

q t q t q t q t

q t q tk

k k k k
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1 1
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Here:

δ α
ψ

ψ
q t

t

t

k
k

k
( ) = ⋅

( )
( )

1

1max
, k = 0 1, ,...,  (20)

where k is the number of iterations. The parameter α > 0 is 
chosen depending on the sign change of ψ1

k t( ).  The process 
of constructing the sequence qk(t) according to formula (19), 
(20) is carried out until one of the criteria specified in [10] is 
met, in particular, by the number of iterations.

In the method of successive approximations, first, the 
system of equations (13), (14) is solved with a given, based 

on any technological considerations, admissible control qk(t). 
Then equations (15), (16) are integrated for conjugate va-
riables in order to determine the next approximations ac-
cording to the rule:

q t tk k+ ( ) = − ( )( )1
1sign ψ , k = 0 1, ,...  (21)

As can be seen, the above method is very simple from  
a computational point of view, since at each step it requires 
only solving two Cauchy problems and, checking the sign of 
the functions ψ1(t) in the interval 0 ≤ t ≤ T, determining the 
intervals of constancy of controls. However, in contrast to 
gradient methods, the question of the convergence of suc-
cessive approximations remains open even in the case of con-
vergence, and, generally speaking, it is not known whether  
the found control is optimal. The fact is that the maximum 
principle gives only a necessary condition for optimality.

It is important to note that when solving problems 
(13), (14), (17) it is necessary to store in the memory of 
the machine the solutions of system (13), (14), which are 
obtained by counting «from left to right» and use them when 
integrating system (15), (16). Instead of storing solutions of 
system (13), (14), from the perspective of saving computer 
memory, it is possible to integrate system (13), (14) with 
system (15), (16) by the count «from right to left», setting 
as the initial conditions pi(T) values obtained by solving the 
system (13), (14) «from left to right». However, in this case, 
the counting process often becomes unstable. 

Computer programs that implement the methods de-
scribed above have been compiled. The program for each 
of the methods differs only in a few small blocks. The 
problem is solved at T = h = 0.2, λ = 0.1. The systems of equa-
tions (13), (14), and (15), (16) are integrated with a constant  
step t = 0.01. To check the optimality of the found control,  
as p0(xi) we take pi(T) of the problem (13), (14) correspond-
ing to the control:

q t
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t
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, / .
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The function:
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, / ,

, /

if

if
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was chosen as the initial approximation.
Obviously, the values of the functional in this case are 

equal to zero, however, the approximately optimal control 
obtained over twelve iterations using the gradient projection 
method at the beginning of the time interval 0 ≤ t ≤ T still 
differs significantly from q*(t) but coincides with q*(t) at  
the end of it. 

The convergence of the process is shown in Table 1.
It can be seen from the table that the values of the func-

tional are practically equal to zero. Note that, with a further 
increase in the number of iterations, the qualitative picture 
of the results did not change. In the course of solving the 
problem, it turned out that:

max .
∂
∂

≈ −H

q
10 2

This condition gives grounds to assert the existence of  
at least one local optimal control.
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Table 1

Process convergence using the gradient projection method

Number of iterations F max(–ψ1(t))

0 3.0857∙10–2 10.7524∙10–2

1 2.8463∙10–2 8.3205∙10–2

2 2.4961∙10–2 6.0953∙10–2

3 1.9759∙10–2 4.2640∙10–2

4 1.2711∙10–2  3.0800∙10–2

5 7.1281∙10–2 2.6143∙10–2

10 1.4872∙10–2 –3.2931∙10–3

11 1.3036∙10–2 6.3386∙10–2

12 9.1986∙10–2 1.9638∙10–2

Fig. 1 shows the time dependence of the optimal control. 
It is illustrated that for some intermediate iterations, as the 
number of iterations increases, the sequence of controls ap-
proaches the optimal control q*(t). 

Fig. 2 shows the convergence of the method of successive 
approximations. After the initial and first approximation, all 
subsequent approximations coincide with the upper bounds 
of the admissible control.
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Fig. 1. Sequence of controls during iterations

Fig. 2. Controls for successive approximations
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The values of the maxima of the functions H = –ψ(0, t)q(t) 
with successive approximations were as follows:

H0 = 0.1075,

H1 = 0.4485, 

H2 = 0.5541.

It is important to note that the sequence of controls 
found from the condition of the maximum of the Hamilto-
nian functions has a character that differs significantly from 
the optimal control q*(t) and does not approach it.

The approaches outlined in the study can be applied to 
obtain a numerical solution to wide classes of problems on 
described processes’ optimal control by general nonlinear 
boundary value problems of parabolic type. However, due 
to the nonlinearity of the boundary value problems, and, 
consequently, the impossibility of obtaining an estimate of 
the remainder term in the formula for the increment of the 
functional, it is not possible to prove the maximum principle.  
Therefore, usually, for practical purposes, it is limited to 
receiving some procedure for obtaining a numerical solution 
to the problem.

6. Discussion of the results of the problem on determining 
the optimal technological mode of depleted gas deposits’ 

exploitation

The paper identified and analyzed a specific problem, 
which was the study of problems considering the optimal 
control of the technological regime of gas deposits’ operation 
under the condition of their depletion by a given time point. 
A necessary condition of an optimal strategy for managing 
the operation of a gas reservoir in the case of its depletion  
is presented.

In addition to the result, which implies the calculation of 
the variation of the functional using the Lagrange function 
applied to the problem (1)–(4), and the numerical solu-
tion of the problem under study, the following results are  
also reflected:

1. To solve the problems of determining the optimal 
technological regime of gas extraction under the condition of 
reservoir depletion, a rather promising approach is described, 
based on the approximation of boundary value problems by 
ordinary differential equations and the use of optimization 
methods based on the Pontryagin’s maximum principle. This 
result was obtained as an attempt to apply some currently 
known methods for studying optimal controls to the problem 
under consideration. These methods have the most complete 
form for systems described by ordinary differential equations. 
In this paper, we limited ourselves to the consideration of 
nonlinear systems with distributed parameters.

2. Using heuristic considerations, an adjoint equation 
with initial and boundary conditions is composed, which 
plays an important role in deriving the gradient formula and 
obtaining the necessary optimality condition.

3. The solution of the above problem is presented by two 
methods – the gradient projection method and the method 
of successive approximations, and a comparative analysis of 
the results of applying these methods is given. The reason 
why we have chosen these particular optimization methods 
are the following conclusions: the advantages of the gradient 
optimization method in comparison with other methods 
increase in the case of organizing the descent process with  
a special step; the method of successive approximations is 
used to solve equations or systems of equations in cases 
where the required parameters cannot be expressed explicitly.
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We emphasize that the above arguments, of course, cannot 
be considered rigorous and are only useful considerations in 
obtaining the adjoint boundary value problem, deriving the 
gradient formula, and the necessary optimality condition. For 
complete stringency, it is also necessary to define what is meant 
by the solution of the original and adjoint boundary value 
problems, to investigate the issues of their solvability, to give an 
estimate of the remainder term in the formula for the increment 
of the minimized functional. It is not possible to answer some 
of these questions in the case of nonlinearity of boundary value 
problems. Therefore, some authors, in order to obtain a solution 
to specific applied control problems, usually limit themselves 
to using some procedure for finding approximate solutions.

This study can be developed by looking at production 
constraints for geological and technological reasons when 
there is a gradual decrease in the rate of upward gas flow at 
existing tubing diameters; in case of precipitation and depo-
sition of a certain part of solid mechanical impurities at the 
bottom and in the wellbore; with an increase in depression 
and filtration resistance; when considering the processes of 
development of multi-layer fields, taking into account the 
gas-dynamic connection between the layers.

It should be noted that using the proposed methods, 
the need to restore pressure between modes to a stable one 
requires almost the same time as when the pressure and flow 
rate are completely stabilized in the modes themselves.

In conclusion, we highlight some unsolved problems that 
may be of interest to researchers in this scientific field:

1. Although the calculation formulas that implement the 
methods of gradient projection and successive approxima-
tions are quite simple and convenient for use on a computer, 
however, the derivation of these formulas is associated with 
difficulties in estimating the residual term:

η δ
δ ψ

= ( )( ) +
∂( )

∂
⋅
∂
∂∫ ∫∫p x T x

p

x x
x t

T

, ,
2

0

1 2

00

1

d d d

in the functional increment formula (1).
2. More difficult and cumbersome is the study of optimal 

control problems for systems described by general nonlinear 
parabolic equations with yet complex functionals, boundary 
conditions, and restrictions on controls. It is necessary to 
give a strict derivation of the formula for the increment of the 
functional with an estimate for the residual term.

3. When integrating boundary value problems numeri-
cally, it is not possible to use automatic step selection, since 
the solution to the original and adjoint problems will be cal-
culated at different points, and when integrating boundary 
value problems simultaneously in the opposite direction, the 
counting process often becomes unstable.

7. Conclusions

1. The paper considers the possibility of using iterative 
methods, the proof of convergence of which is substantiat-
ed on the basis of the calculations performed. The gradient 
projection method proposed in this paper with a specially 
chosen step provides a monotonous decrease in the values of 
the functional and gives, even for ill-posed problems, a con-
vergent sequence of controls. All other known approximate 
methods for solving the nonlinear equation (2) are not suit-
able from the point of view of the theory of optimal control, 
that is, the choice of the method of straight lines is effective 
both as a technique for solving parabolic boundary value 
problems and as a process for studying optimal control with 
respect to systems with distributed parameters. 

2. The method of successive approximations, which fol-
lows from the maximum principle, is very simple from the 
computational point of view since at each iteration step it 
requires only the solution of two boundary value problems. 
Since the method uses the maximum principle, it can be used 
to solve both classical variational problems in which the op-
timal control is continuous and problems with discontinuous 
optimal control. For linear systems, the application of this 
method in the second approximation will give an exact solu-
tion, which allows us to hope that the method converges for 
some nonlinear problems as well. 

3. Although for linear systems the method of successive 
approximations gives a solution in two iterations, however, 
as the calculations confirm, it is possible that the conver-
gence of the approximate solution of the approximating 
optimal problem, at least in terms of the functional, is not 
observed, or the convergence of this solution to the optimal 
one is not confirmed, since the maximum principle gives only  
a necessary condition for optimality. Calculations show that 
the sequence of controls found from the maximum condition 
converges, however not to the optimal control. 
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In a variety of engineering, scientific challenges, mathema-
tics, chemistry, physics, biology, machine learning, deep learning, 
regression classification, computer science, programming, artifi-
cial intelligence, in the military, medical and engineering indus-
tries, robotics and smart cars, fuzzy nonlinear equations play  
a critical role. As a result, in this paper, an Optimization Algorithm 
based on the Euler Method approach for solving fuzzy nonlinear 
equations is proposed. In mathematics and computer science, the 
Euler approach (sometimes called the forward Euler method) is 
a first-order numerical strategy for solving ordinary differential 
equations (ODEs) with a specified initial value. The local error is 
proportional to the square of the step size, while the general error 
is proportional to the step size, according to the Euler technique.  
The Euler method is frequently used to create more complica-
ted algorithms. The Optimization Algorithm Based on the Euler 
Method (OBE) uses the logic of slope differences, which is compu-
ted by the Euler approach for global optimizations as a search 
mechanism for promising logic. Furthermore, the mechanism of 
the proposed work takes advantage of two active phases: explo-
ration and exploitation to find the most important promising areas 
within the distinct space and the best solutions globally based on 
a positive movement towards it. In order to avoid the solution of 
local optimal and increase the rate of convergence, we use the ESQ 
mechanism. The optimization algorithm based on the Euler me- 
thod (OBE) is very efficient in solving fuzzy nonlinear equations 
and approaches the global minimum and avoids the local minimum. 
In comparison with the GWO algorithm, we notice a clear supe-
riority of the OBE algorithm in reaching the solution with higher 
accuracy. We note from the numerical results that the new algo-
rithm is 50 % superior to the GWO algorithm in Example 1, 51 % in 
Example 2 and 55 % in Example 3
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intelligent techniques, nonlinear equations, numerical optimiza-
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1. Introduction

The paper [1–3] developed the concept of fuzzy numbers 
and arithmetic operations on them, which was expanded 
in [4]. Later, the work [5] contributed significantly by de-
veloping the main thought of LR fuzzy numbers and then 
presented a computational formula toward fuzzy number 
operations. The solution of the mentioned equations, the 
main parameters of which are fuzzy numbers has emerged as 
one of the key areas for the application of fuzzy numbers as 
the theory of fuzzy numbers has progressed. The solution of 

fuzzy equations is necessary in diverse fields such as chemis-
try, economics, physics, and others.

Take a look at the set of j nonlinear equations:

gd jχ χ χ1 2 0, , , ,…( ) =  d j= …1 2, , , .

The general form of the nonlinear equation for j = 1 can be 
stated simply according to a value for the variable x, which is 
computed as follows:

G χ( ) = 0, (1)


