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This paper reports a solution to the inverse problem when
using indicators in several calculation functions. Such prob-
lems arise during the formation of a multi-level scorecard; solv-
ing them makes it possible to determine the value of arguments
in order to achieve the specified value of the resulting indica-
tor of each level. Thus, the characteristics of an economic object
can be defined in order to achieve the specified indicators of its
JSunctioning. Optimization models are given in the presence of
various types of conditions for achieving the result. In contrast
to existing methods, the approach based on building nonlinear
programming models makes it possible to solve the inverse prob-
lem for the case where several indicators are used in different
calculation functions. Algorithms for solving the inverse prob-
lem have been constructed, involving the transformation of con-
straints and the use of an iterative procedure based on inverse
calculations. For the case of using coefficients of relative impor-
tance, two techniques of solving the problem have been conside-
red: the formation of a single model for subtasks and the adjust-
ment of the solution to subtasks while minimizing the sum of
squares of argument changes. In comparison with the existing
method, the proposed algorithms have made it possible to derive
a solution with a greater correspondence of the changes in the
arguments to the coefficients of relative importance. A solution to
the inverse problem has been considered related to the formation
of marginal profit of an enterprise in the presence of two points
of sale and three types of products, as well as the joint formation
of revenue and cost. The results of this study could prove useful
to specialists in the field of decision-making in the economy and
to developers of software decision support systems that include
JSunctions for solving inverse and optimization problems
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1. Introduction

When assessing the activities of an economic entity and
choosing ways to achieve a goal set, specialists are faced with
the need to solve problems that, in terms of causation, can be
divided into direct and inverse.

Inverse problems have become widespread in various
fields such as physics [1], astronomy, image processing [2],
economics [3, 4]. Solving such problems in economics makes
it possible to receive information that is useful for specialists
carrying out activities in the field of management. As a re-
sult of solving the problem, a specialist acquires information
about how the predefined state of an entity can be achieved.
Thus, based on this information, measures can be taken to
change the controlled characteristics (price, cost, etc.) to
achieve the target indicators of an entity. Thus, the litera-
ture considers solving inverse problems for managing the
efficiency of a company [5], for the formation of the cost of
an industrial enterprise, for improving the structure of the
credit and deposit base of commercial banks, for managing an
educational institution using a rating system.

Solving inverse problems makes it possible to define the
characteristics of an object required to achieve the specified
values of strategic and operational indicators, which, in turn,

provides for an increase in the quality of management deci-
sions and the efficiency of the functioning of an entity. At
the same time, there is a need to analyze and process a large
amount of information, which is difficult to implement with-
out the appropriate mathematical apparatus and software
tools. In this regard, it is a relevant task to investigate the
development of mathematical and algorithmic toolsets for
solving inverse problems and increasing the speed of deci-
sion-making by automating data processing.

2. Literature review and problem statement

There is a conditional classification of inverse problems in
mathematical physics (retrospective, coefficient, boundary,
geometric) [6], which is based on conditions not specified
in the model (initial values, coefficients, etc.). A given clas-
sification is also reflected in the tasks related to economics.
Thus, if it is necessary to determine the arguments of the
function of calculating an economic indicator, the problem
of forming a characteristic is considered. Once the input
values x and the operation % (x) to process them (Fig. 1) are
defined, then solving a direct problem is to determine the
output value y. Solving inverse problems makes it possible




to define the set of input data x or their changes Ax at the
specified initial values that provide for the predefined value
of the indicator y".

Fig. 1. Building an indicator

The problem to build an indicator can be solved by using
regularization [7] and reverse calculations (Fig. 2) [8].

Build an indicator
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Fig. 2. Classification of problems on building an indicator

Regularization involves the introduction of an additional
component of regularization into the functionality and is used
to solve problems while minimizing deviation from the initial
values [9]. The problem in this statement when using Tikho-
nov’s regularization is considered, for example, in work [10].
However, when using regularization, the task of determining
the regularization parameter arises, the solution to which
can be found in various ways. Thus, one of these techniques
is given in [11] and requires determining the value of a user
constant. As a variant of overcoming this difficulty, the
authors propose iterative algorithms for solving the inverse
problem. Such an algorithm is the Landweber algorithm,
which is given in [12] and is based on a sequential change in
the argument in accordance with the value of the elements
of the gradient vector of the constraint function. However,
a given approach makes it possible to find a solution only tak-
ing into consideration the distance from the initial values and
does not allow one to change the arguments in accordance
with the specified settings in the form of expert information.
In addition, a given algorithm does not take into consider-
ation the presence of additional limitations-inequalities.

To solve problems using expert information, an inverse
computing apparatus has been developed [8]. At the same
time, in the case of an increase in dimensionality, the use
of a classical apparatus is difficult. Thus, it is necessary to
determine the agreed expert information (the directions of
change in indicators and coefficients of relative importance
must correspond to the goal), which is difficult to implement
with a large number of variables, and, otherwise, a solution
could not be found. In addition, in the classical version of

the apparatus, the use of indicators in different problems is
not considered.

The use of arguments in the calculation of several indi-
cators occurs when considering multi-level problems, which
are solved step by step along the direct and inverse path of
the goal tree. The hierarchical structure of such a problem is
reported, for example, in work [5], which considers the for-
mation of cost-effectiveness and the level of competence of
personnel. However, the cited work does not give a method
for solving such problems.

A method for solving problems in which the same argu-
ment is used in the calculation of two indicators is considered
in [13]. The essence of the proposed method for solving such
a problem is to solve two inverse problems sequentially in
order to determine a compromise option. To this end, there is
a change in the indicator participating in the two problems,
in proportion to the resulting values. The search for com-
promise values of the arguments continues until the analyst
decides to stop the calculations and select the obtained
values as a solution to the problem. Thus, a given procedure
requires the involvement of additional expert information in
terms of finding a compromise option. In addition, it is much
more complicated in the case when the number of problems
is greater than two, and the variables participating simulta-
neously in different problems exceed unity.

To eliminate the shortcomings inherent in the known
methods, an approach to solving the problem of building an
indicator based on the representation of the problem in the
form of a conditional optimization problem was devised [14].
Paper [15] discusses the solution to inverse problems repre-
sented as a nonlinear programming problem using the vari-
able substitution method, the Lagrange multiplier method.
Classical methods for solving the conditional optimization
problem are laborious: in the method of Lagrange multi-
pliers [16], additional parameters are determined, which
increases the dimensionality of the problem; in the penalty
method, multiple optimization is required with a sequential
change in the parameter; in the simplex method, a multiple
transition from one basic solution to the constraint system of
the linear programming problem to another is required. Given
such difficulties, algorithms have been developed to solve
such problems, including iterative ones based on inverse
calculations. Work [14] deals with the algorithm for solving
the problem of nonlinear programming; paper [17] considers
the inverse problem while minimizing the sum of models of
argument changes. These algorithms demonstrated efficiency
in solving inverse problems with a single constraint. There-
fore, it is advisable to conduct a study aimed at devising
conditional optimization models and iterative algorithms
for solving the inverse problem when using arguments in the
calculation of several indicators.

3. The aim and objectives of the study

The aim of this work is to study the possibility of using
iterative algorithms to solve inverse problems when using
indicators in several calculation functions. This would make it
possible to derive a solution to the problem with lower compu-
tational resources and with greater correspondence of the speci-
fied expert information in comparison with existing methods.

To accomplish the aim, the following tasks have been set:

— to construct algorithms for solving the problem when
using indicators in several calculation functions for three



options: when minimizing the sum of squares of argument
change, minimizing the sum of modules for changing argu-
ments, using coefficients of relative importance;

— to solve the inverse problems using the algorithms built
and compare the results with the solutions to the problems in
the Mathcad mathematical software.

4. The study materials and methods

To conduct the study, the apparatus of inverse calcula-
tions, optimization methods, and the theory of economic
analysis were used. Previously developed algorithms for solv-
ing inverse problems and nonlinear programming problems
were also employed. The VBA programming language was
applied to implement the algorithms. To check the adequacy
of solving optimization problems, standard functions from
the mathematical software Mathcad were used.

Optimization models were built to solve the tasks set.

An optimization model for solving the inverse problem
when using arguments in the calculation of 7 indicators can
be represented in the form:

/(Ax)— min,

h(Ax)=y,+ Ay, i=1.r. 1)

i

Here, the objective function is the sum of the squares of

argument changes (f(Ax) = ZAfo, or the sum of the mo-
i=1

dules of changes in the arguments ( f(Ax)= i|Axl |), hi(Ax) is
i=1

the function to construct the i-th indicator.

Minimizing the sum of the squares of argument changes
makes it possible to define the solution in such a way that the
changes in the input variables are as close to zero as possible,
and to ensure a minimal change in the characteristics of an
entity. Minimizing argument change modules would make it
possible to achieve the desired state by changing individual
variables that are selected as the best.

In the case of using coefficients of relative importance,
two ways of solving the problem can be considered.

The first technique is to build the objective function f,
which characterizes the degree of deviation of the ratio of the
received changes in the arguments from the ratio of coeffi-
cients of relative importance established by the expert:

k=1 i=2

n,_y 2
f(Ax):ZZ[quiAxi%) — min,
Oy
h(Ax)=y,+ Ay, i=1.r, 2)

where 7, is the number of arguments involved in the con-
struction of the indicator 7; g is the number of the argument
selected as the base argument.

Thus, a single nonlinear programming problem is formed
for all subtasks. The expression in parentheses is derived
from the equations of the inverse calculation system. The
sign in parentheses indicates the direction of change of the
arguments: the minus sign indicates that the change should
occur in the same direction, the plus sign — in different di-
rections [18]. Each constraint equation corresponds to the
indicator being built.

The second technique is to solve each subtask separately:

i=2 Oy,

i

Ny 2
/. (Ax)= Z(qu + A, %J — min,
h,(&x)=y,+Ay,,
u=1.r. 3)

Next, the arguments are subsequently adjusted while
minimizing the sum of the squares of the argument changes.

3. Results of studying and constructing algorithms
for solving the inverse problem when using indicators
in several calculation functions

3. 1. Construction of algorithms for solving the prob-
lem when using indicators in several calculation functions

To solve the problem when minimizing the sum of the
squares of changes in arguments (1) and using the algorithm
developed earlier for solving the inverse problem [14], it is
necessary to reduce problem (1) to the problem with one
constraint. Consider also the case where there is one inequal-
ity constraint g(Ax)>/< y,; + Ay, in the problem.

The algorithm for solving the problem when minimizing
the sum of the squares of argument changes includes the
following steps:

Step 1. Convert constraints-equalities 2 to one con-
straint A" (x):

I (Ax)= r (h(Ax) -y, - Ay,)

i=1

2

(4)

Step 2. Solve a problem with one constraint (4):

/(Ax)— min,

r

i (Ax)= Y ( (Ax)~y, - Ay} =0,

i=1

To solve the problem, iterative formulas are used (B is
asmall number that provides for a gradual change, ¢ is an indi-
cator of the direction of change, taking the values of —1 or 1):

()
Ax.

i

Av, = A+t ()

Step 3. If the resulting solution Ax satisfies the con-
straint-inequality g, then the algorithm is terminated.

Step 4. Replace the inequality sign with an equal sign and
build one constraint-equality 4":

r

h*(Ax):Z(h;(M)_yi_Ayi)2+(g(m)_yj_Ayi)

i=1

2

Solving a problem with one constraint:

/(Ax)— min,

h*(M)ZZ(hi(M)_yi_Ayi)Q"'(g(M)_yj_ij)Q'

i=1

The solution to the problem is the obtained values Ax.



When minimizing the sum of the modules of argument
changes, a method is used based on the selection of elements
with the largest value of the private derivative of a single con-
straint function [17]. In this case, the number of selected items
is equal to the number of restrictions. Next, the system of equa-
tions is solved with respect to the selected elements.

The algorithm for solving a problem when using importance
coefficients (2) and building a single objective function also in-
cludes its transformation into a problem with one constraint and
the use of iterative formulas. In this case, there is a change in Ax,
at a certain step; for each of the variants, they are solved accord-
ing to iterative formulas. In this case, the initial values of Ax used
are the values obtained by unconditional optimization of the
objective function, which can be calculated from the formulas:

Axi =F qu %
o,
In iterative formulas (5), it is necessary to take into con-
sideration the effect of changing the argument on the change
in the objective function [14, 19]:
oh(Ax,)
Ax
N 1t

9f* (Ax,)’

oAx

The algorithm for solving the problem when using coef-
ficients of relative importance and while separately building
each indicator (3) includes the following steps:

Step 1. Solve the inverse problem for each indicator built
to determine x” (a problem with one constraint) (3).

Step 2. Solve the problem of determining argument
changes:

R 2 .
f(Ax ):2(&(}) — min,
=

hi(Ax*)z y;, i=1.r,
where 7 is the total number of characteristics involved in the
construction of indicators.

The initial values of x are the values obtained in step 1;
for the values that were calculated in several subtasks, the
average value is determined.

3. 2. Solving inverse problems by using the built al-
gorithms

As an example of the use of the built algorithm, solving the
problem of forming a marginal profit, which is the most im-
portant indicator of an enterprise’s activity, is considered [20]:

L=p,
j=1

where L is the total marginal profit; p is the marginal profit of
the j-th point of sale.

The marginal profit of an individual point of sale is calcu-
lated from the formula:

n
;=28
i=1

where s;; is the share of the distribution of the i-th product
for the j-th point of sale; w; is the volume of purchase of the

i-th product; 7; is the marginal profit from the sale of a unit
of the i-th product.

The problem is to determine the volume w; of the pur-
chase of each type of product to achieve the predefined value
of the total marginal profit. At the same time, there is a limi-
tation on the procurement budget Q:

szwj'q,w
i=1

where ¢; is the cost of purchasing a product of the i-th type.
Consider solving a problem for two points of sale and
three types of products. The goal tree is shown in Fig. 3.

L+AL

witAw watAwz watAws witAw watAws witAw;

Fig. 3. Goal tree of the profit margin formation problem

Thus, solving the problem includes two stages:

1. Determine a change in profit Apy, Ap, at two points of
sale to achieve the predefined value of the total profit L+AL.

2. Determine a change in the volume of purchases Awy,
Awy, Aws of products of the first, second, and third types
in order to achieve the profit values of the first and second
points of sale obtained at the previous stage.

Initial data on products are given in Tables 1, 2; the initial
value of the marginal profit is 665 monetary units; the set
value of the marginal profit is 720 monetary units; the limit
on the procurement budget is 1,600 monetary units.

Table 1
Initial data on products
Indicator Product1 | Product2 | Product3
Marginal profit, r 2 3 2.5
Purchase amount, w 100 80 90
Purchase cost, g 6 5 5.5
Table 2

Initial data on the scheme of distribution
of products among points of sale

Point of |Distribution share|Distribution share|Distribution share
sale No. of product 1 of product 2 of product 3

1 0.3 0.1 0.5

2 0.7 0.9 0.5

The initial profit margin values for the first and second
points of sale are, respectively, 196.5 monetary units, and
468.5 monetary units:

100-0.3-2+80-0.1-3+90-0.5-2.5=196.5,

100-0.7-24+80-0.9-3+90-0.5-2.5=468.5.



The problem of the first stage is to be solved with coef-
ficients of the relative importance of 0.427 and 0.573 and
a positive direction of change in indicators. For the first
and second points of sale, respectively, the values of chan-
ges in profit Ap would equal (720-665)-0.427=23.5 and
(720-665)-0.573=31.5. Accordingly, the new profit margin
values for the first and second points of sale are 220 monetary
units and 500 monetary units.

At the second stage, the problem is represented in the
form of an optimization one:

f(Ax)= iAw? — min,
=

h (Aw)=(100+ Aw,)-0.3-2+
+(80+Aw,)-0.1-3+(90+ Aw,)-0.5-2.5 = 220,

h, (Aw)=(100+ Aw,)-0.7-2+
+(80+ Aw,)-0.9-3+(90+ Aw, )-0.5-2.5= 500,

g(Aw)=(100+ Aw, )-6+
+(80+ Aw,)-5+(90+ Aw, )-5.5<1,600.

Consider the use of the above algorithm to solve the
problem. At the initial stage, a problem with one limita-
tion is built:

f(Ax)= zn:Aw? — min,
j=t
(100+Aw,)-0.3-2+(80+Aw,)x )
h(Aw)=
x 0.1-3+(90+ Aw,)-0.5-2.5-220
(100+Aw,)-0.7-2+(80+ Aw,)x )
x 0.9-3+(90+ Aw,)-0.5-2.5-500 |

The problem is solved using an iterative algorithm. Thus,
the iterative formula for changing arguments takes the form:

oh(x)
=1, _{54.64x1 +7.92x22 +5x, —116.47
R 7.92x, + 14.76x§ +7.5x,— 184.2
x, =1, Xt TS, +f23-25x3 ~1375

A solution to the problem (B=10"): Aw;=6.538,
Awy=1.154, Aw3=15.385.

The constraint g is not met, so a new constraint function
is constructed:

(100+ Aw,)-0.3-2+(80+ Aw,)x )
h(Aw)=
x 0.1-3+(90+ Aw,)-0.5-2.5 - 220
(100+Aw,)-0.7-2+(80+ Aw,)x )
x 0.9-3+(90+ Aw,)-0.5-2.5—500
(100+ Aw,)-6+(80+ Aw,)x )’
x 5+(90+Aw,)-5.5-1,600 |

A solution to the problem using an iterative algorithm:
Aw1=—5, Aw2=5, Aw3=20.

The value of the objective function fis 449.9994. The va-
lue of the objective function when solving the problem using
the Mathcad mathematical software was 450.002.

Next, consider the case of profit formation taking into
consideration the coefficients of relative importance. The
initial data for the problem are given in Table 3. The direction
of change of arguments: positive for the volume of output;
negative for the cost and price.

Table 3
Initial data for the problem of profit formation
using importance coefficients

Indicator Initial Formed
value value

Product unit cost, monetary units, x» 2 —
Output volume, arbitrary units, x 10 -
Price, monetary units, x3 5 -

Sale cost, monetary units 20 15
Revenue, monetary units 50 47
Importance coefficient Bis 0.2 -
Importance coefficient By 0.8 -
Importance coefficient By 0.7 -
Importance coefficient B3 0.3 -

To solve the problem with the first technique, it is neces-
sary to build an objective function; the optimization problem
takes the form:

2 2
f(Ax)z(Ax1+Ax2 %J +(M1+Ax3%) — min,
(x1+Ax1)-(x2 +Ax2)=15,

(o, + Axy)- (a0, + Ay ) = 47. (6)

A solution to the problem by transforming constraints
and changing the argument Ax; in increments of 0.1: Ax{=2.6;
Axy=—0.81; Avs=—1.26.

Fig. 4 shows a plot of change in the objective function
when increasing Ax;.

When using the second technique, the following values
are obtained in the first step:

— the problem of cost formation: Axq 1=3.583; Axy=—0.896;

—the problem of revenue generation: Axy,=1.212;
Ax3=-0.81.

45
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Fig. 4. Change in the objective function



Next, the optimization problem is solved while minimiz-
ing the sum of argument changes:

J/(&x)=(Ax)) +(Ax;) +(Ax;) - min,

(% 4 MM ‘;Mu

+Ax;‘)-(x2+Ax2+Ax§)=15,
Ax, +Ax, . “\_
xﬂrf+mc1 -(x3+Ax3+Ax3)—47. )

A solution to the problem: Ax1 =-0.103; sz =-0.116;
Ax, =-0.36.

Table 4 gives a solution to the problem when using two
algorithms and when applying the mathematical software
Mathcad. A solution obtained using a simulation algorithm
reproducing the actions of a specialist according to the algo-
rithm given in [13] is also given.

Table 4
Results of solving the problem of profit generation

Algorithm Xy X9 X3

Building a single problem for two
subtasks, =107

Minimizing the deviation from the
solution to each problem, B=10"7

12.6 1.19 3.73

12.29 1.22 3.82

11.21 11 4.19
12.61 1.19 3.73
12.29 1.22 3.82

Simulation algorithm

Using Mathcad to solve problem (6)

Using Mathcad to solve problem (7)

Fig. 5 shows the value of the Euclidean norm for de-
viations of the obtained ratio of argument changes from
the established coefficients of relative importance for the
three algorithms.

0.3
g 0.25
E 0.2
30.15
= 01
=3
200 ]
Build one Minimize the Simulation
problem for two deviation from algorithm

the solution to
each problem

Problem-solving algorithm

subtasks

Fig. 5. Value of the Euclidean norm for problems

According to the values shown in Fig. 5, the algorithm
based on the construction of a single problem provides the
best correspondence to the predefined coefficients of relative
importance.

6. Discussion of results of building algorithms
for solving inverse problems

The proposed algorithms for solving inverse problems
of economic analysis when using indicators in several cal-
culation functions provided for a solution corresponding

to the solution derived when using mathematical soft-
ware (Table 4). This is explained by the used rule of move-
ment to the final solution based on the values of the elements
of the gradient vector of the constraint function and the
second partial derivatives of the objective function.

When using coefficients of relative importance, two ways
to solve the problem have been considered: the construc-
tion of a single optimization problem for subtasks and the
adjustment of the solution to the subtasks while minimizing
the sum of the squares of argument changes. The method,
based on the construction of a single optimization problem,
produced a lower value of the Euclidean metric characteriz-
ing the deviation of argument changes from the established
values of importance coefficients (Fig. 5). This is due to the
expression of the objective function, minimizing the devia-
tion from the specified expert information. The algorithm for
solving the problem by correcting the solution to subtasks
does not require building an objective function based on
these subtasks and, therefore, is easier to implement.

The proposed algorithms provided a lower value of the
Euclidean metric of deviations of argument changes from
the established values of importance coefficients compared
to the existing method of solving the problem (Fig. 5). The
Euclidean norm when using the method reported in [13],
based on the sequential solution of two inverse problems
in order to determine the compromise option, was 0.25.
This value is 5.25 and 3.7 times greater than the Euclidean
metric when using an algorithm based on the construction
of a single problem and an algorithm based on an isolated
solution to subtasks, respectively. In addition, the proposed
algorithms do not require movement through the network
from one indicator to another and the repeated solving of
the inverse problem based on the information received from
the specialist. In addition, unlike the existing method, the
algorithms make it possible to define a solution to the prob-
lem when using more than one argument in the calculation
of several indicators.

The disadvantages of algorithms include the need to
calculate the gradient and second partial derivatives, which
increases the complexity of the implementation. The limi-
tations of the algorithms are associated with the inability
to solve problems in which there are several limitations-
inequalities.

Further research could involve studying those inverse
problems, in which there are several constraints-inequalities,
and both expert information and minimization of deviation
from the initial values of the arguments are used simulta-
neously. In addition, further work would aim at devising
iterative algorithms and their application for solving linear
programming problems.

7. Conclusions

1. Algorithms for solving the inverse problem when
using indicators in several calculation functions have been
proposed. A feature of the proposed approach is the represen-
tation of the inverse problem in the form of an optimization
problem with one limitation using iterative algorithms for
the case of minimizing the sum of the squares of changes in
arguments and using coefficients of relative importance. The
approach used ensures a greater correspondence of the ob-
tained solution to the coefficients of relative importance: the
Euclidean norm in the example considered is more than three



times less than in the existing method of solving the problem.
In addition, the proposed algorithms can define the solution
when several indicators participate in different subtasks and
do not require the involvement of additional expert infor-
mation. The use of iterative algorithms in comparison with
classical methods of nonlinear optimization makes it possible
to determine a solution to the problem without the need to
build and optimize the modified function.

2. The solution to two inverse problems of profit forma-
tion was derived with the help of the developed algorithms:
when minimizing the sum of the squares of changes in argu-
ments and when using coefficients of relative importance.
The results of numerical problem solving are consistent with
the results of using the standard function from the Mathcad
mathematical software; the absolute difference in the values
of the objective function ranged from 2.6-10~3 to 2.8-1072.
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