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1. Introduction 

Landslides occur in many regions worldwide in the form of severe hazards (Guzzetti 

et al., 2012). Numerous causalities are caused by landslides, besides damage to buildings and 

resources. The landslide also affects the indirect cost to society, which involves a loss in 

production, a decline in land and buildings valuation, a loss in taxation, and other financial 

implications (Scaioni et al., 2014). It involves the movement of debris or soil down a slope 

(Cruden, 1991).  
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Many researchers have studied various landslide hazardous areas of different parts of 

the globe. The key focus of research studies involves the inventory of landslides, the effect on 

the occurrences of landslides of geographical, topographical, hydrological, and environmental 

factors, and the involvement of triggering factors such as precipitation and earthquake. 

Landslide events depend on various causative factors grouped into different categories, such 

as geomorphology, geology, soil, land cover, and hydrological conditions (Hutchinson, 1995; 

Varnes, 1984). 

In Malaysia, most of the landslides often occur due to heavy rainfall in the annual 

monsoon. It has been observed that much damage has been done in the last decade due to 

landslides in Malaysia (Murakami et al., 2014; Pradhan & Lee, 2010).To mitigate and 

minimize the damage caused by landslides, many research projects have been carried out 

(Gian Quoc et al., 2018; Ya’acob et al., 2019). This is achieved by predicting and minimizing 

hazardous areas by proper action (Lee & Talib, 2005; Pradhan & Lee, 2010; Tay et al., 2014). 

A landslide event can not be predicted in time and space. Therefore, a landslide area is 

considered and categorized into various categories of possible hazards (Varnes, 1984). 

The Geographical Information System (GIS) and remote sensing methods have been 

used to assess landslide hazards. The landslide hazard maps have been produced using a 

variety of mathematical techniques, ranging from conventional statistic methods such as 

frequency ratio (Chen et al., 2020), statistical index and weights-of-evidence (Regmi et al., 

2014), and logistic regression (Lombardo & Mai, 2018; Sun et al., 2018) to more recent 

advanced intelligence methods such as artificial neural network (ANN)  (Shahri et al., 2019; 

Alkhasawneh et al., 2013; Alkhasawneh et al., 2014; Lee et al., 2020; Ortiz & Martínez-

Graña, 2018). ANN is applied to many natural science applications such as speech 

recognition, human face recognition, classification of satellite images, and recognition of 

texture. The key feature of ANN is that it can process data from nominal and ordinal to 

linear, to ratios and any form of data distribution over any measurement scale. It also 

addresses qualitative factors that are usually used from different prediction and classification 

sources in the integrated analysis of spatial data (Kawabata & Bandibas, 2009). Multilayer 

perception (MLP) is a popular feedforward artificial neural network that is mostly used for 

classification and prediction problems.  

Many researchers have studied landslide hazard mapping using either original data or 

frequency ratio data (Catani et al., 2013; Liu et al., 2019), and most research works have been 

limited to these two data configurations of the landslide data. Therefore, this work intends to 

prepare three configurations of landslide causative factor values, i.e., original (OR), 

frequency ratio (FR), and mixed-type (MT), trained by the MLP model. The significant 
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variations in the resulting landslide hazard maps are highlighted, and also insights are 

provided to decide which data configurations perform better. This paper aims to compare 

spatial landslide prediction performance using an artificial neural network (ANN) model 

based on different data input configurations, different numbers of hidden neurons, and two 

types of normalization techniques on the data set of Penang Island, Malaysia. 

 

2. Methods 

This research mainly focused on using various input data configurations for the MLP 

model to produce the landslide hazard map of Penang Island, Malaysia. Different numbers of 

hidden neurons are applied on MLP with the three configurations of input data for landslide 

analysis. Besides, the effects of normalization and the PCA scheme on the input data set are 

evaluated. The complete schematic diagram of landslide hazard analysis using the ANN 

model depicts in Figure 1.  
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Figure 1. The schematic diagram of the study area 
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2.1 Study Area 

Due to heavy rainfall, landslides occurred in different parts of Malaysia, and one of 

the most affected ones in Penang Island. Therefore, it is selected as the study area in this 

research work. Penang is situated on the Peninsula of Malaysia in the North-West part. 

Penang is bounded by two states, Kedah (North-East) and Perak (South), and Malaca and 

Sumatra Straits, Indonesia (West). It contains both the island and the mainland coastal strip, 

which is also called Wellesley Province. The study area of this research is the island of 

Penang. Penang island has an area of 285 km2. It is positioned at 5°15′ N to 5°30′ N latitudes 

and 100°10′ E to 100°20′ E longitudes (Huqqani et al., 2019). It is distributed into three 

main regions that are Greenland, forest, and urban. The slope scale ranges from 0° to 87°, and 

the elevation of the terrain is 0 to 820 m above sea level. Penang Island's temperature ranges 

from 29°C to 32°C. The approximate amount of rainfall ranges from 2254 mm to 2903 mm 

yearly. Forests and fruit plantations are the primary sources of vegetation on Penang Island. 

Fault lines also impact this island. Such lines occur from North to South in the middle of the 

island. The location map of the study area is shown in Figure 2. 

 

Figure 2. The location map of the study area 

Study Area 

(Penang Island) 



 

24 

 

Ilyas Ahmad Huqqani et al. / Geosfera Indonesia  6 (1), 2021, 20-39 

 

2.2 Data Preparation 

The study area's data collection is acquired using remote sensing methods and the 

Geographical Information System (GIS). Several images of Penang Island have been 

collected from various government organizations in Malaysia, such as the Department of 

Irrigation and Drainage (DID), the Malaysian Department of Meteorology, the Department of 

Agriculture (DOA), and the Department of Minerals and Geo-Science (JMG). Penang Island 

landslide occurrence points are also collected and transformed into a geographic dataset of 5 m resolution. The island's hilly topography is in the middle of the island and is considered 

the most landslide-prone area. The landslide types comprise shallow slides of rotational 

debris and flows of debris. To understand the primary cause of landslides, the relationship of 

triggering factors with slope failure and the identification of instability should be carried out 

(Guzzetti et al., 1999). Before applying the ANN model, the data sets of landslide influencing 

features are collected and converted into the spatial data set. Twelve landslide influencing 

factors are used to train the MLP model. The topographic database is used to extract a digital 

elevation model (DEM) of 5 m resolutions. DEM elevation is used to calculate the slope's 

angle, the aspect of the slope, and the curvature of the slope. The distances from the road and 

drainage are determined using the profiles of road and drainage. For these line features, the 

buffer zones should be prepared as 50 m (Van Westen et al., 2003; Westen, 1993). The 

distances from the fault lines are split into separations of 100 m. Six types of distinct Penang 

Island granites are covered in the geology profile. The island's soil texture consists of six 

different kinds of soils. Precipitation is the natural triggering factor for landslides on the 

island. The soil dampens, the debris and rocks are washed away due to heavy rainfall. 

Because of limited rain measurement stations on the island, the inverse weight distance 

interpolation method is used to generate the precipitation profile. The landslide influencing 

profiles/maps are generated using the ArcGIS software and shown in Figure 3. 

 

2.3 Data Set Configurations 

The landslide data set consists of twelve landslide influencing factors, with five 

factors having continuous values, while the other seven have categorical/discrete values. The 

categorical data types are qualitative attributes treated as distinct symbols or just the name of 

the attributes. These twelve factors are arranged in three configurations. The first type of 

input data is Original (OR) data, which involves continuous and discrete/categorical values. 

The second type of data is frequency ratio data, and the third one is mixed-type data. The 

Frequency Ratio (FR) data is calculated from the OR data for all the twelve factors based on 

Eq. (1): 
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 𝐹𝑅𝑎𝑏 = 𝐴𝑎𝑏∗𝐴𝑎𝑏 × 𝐴𝐴∗ (1) 

where 𝐹𝑅 indicates the frequency ratio of every factor, 𝐴𝑎𝑏 ∗  is the area of landslides 

occurrence of class 𝑎 factor 𝑏, 𝐴𝑎𝑏 denotes the area of class 𝑎 of factor b, 𝐴∗ and 𝐴 are the 

total areas of the landslides occurrence and study area maps, respectively.  

The mixed-type (MT) data is the combination of the OR and FR data where FR 

factors values are used to replace those factors which are categorical/discrete. Categorical 

values are replaced because they are just the representation or the name of a certain factor and 

do not carry any numerical meaning. The factors in continuous values remain the same as in 

OR data. 

(a) Elevation (m) (b) Slope angle (deg.) (c) Curvature 

 
 

  

(d) Slope aspect (e) Distance from drainage (m) (f) Distance from road (m) 
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(j) Vegetation cover  (k) Land use cover  (l) Precipitation (cm) 
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(g) Distance from fault lines (meter) 
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 Sandy loam   Sungai ara granite   Mixed farm  Paddy 

 Silty clay   Batu maung granite   Fruit farm  Rubber 

 Urban land   Clay, sand, granite   Oil palm  Others 

(k) Land use cover   Sugarcane  None 

 Forest, bush, swamp   Plains, hills  (l) Precipitation (cm) 

 Vegetation   Buildings   2254-2319  2536-2595 

 Transport   Religious area   2320-2379  2596-2661 

 Settlement   Business   2380-2433  2662-2733 

 Cemetery   Sea, lake, river   2434-2481  2734-2903 

 Mining   Public utility   2482-2535   

 Industry   Livestock      

 Government institution   Education      

 Public facility         
 

 

Figure 3. The profiles/maps of landslide influencing features 

 

2.4 Data set pre-processing 

The normalization technique is employed at the pre-processing stage to transform the 

data set from the existing range into a new range. The input data set is normalized before 

applying PCA and feeding it into the MLP model. It guarantees the stable convergence of the 

MLP model's weights and biases. Two types of normalization methods, i.e., mean-standard 

deviation (Mean-SD) (de Souto et al., 2008; Kotsiantis et al., 2006) and Min-Max (Husin et 

al., 2008; Kaur et al., 2016), are applied on all three data set configurations separately. 

Different normalization techniques behave uniquely on the same data set. The purpose of 

applying two different normalization approaches is to identify the most appropriate technique 

for better results. 

Mean-SD normalization: It gives the standardized values based on the mean (𝑋̅) and standard 

deviation (𝜎) of the data set (𝑋). The mathematical expression of Mean-SD is given in Eq. 

(2). 

 𝑋𝑛𝑜𝑟𝑚 = 𝑋𝑘 − 𝑋̅𝜎  (2) 

where 𝑋𝑘 and 𝑋𝑛𝑜𝑟𝑚  denote the 𝑘𝑡ℎ value of attribute 𝑋 and the normalized values of 𝑘𝑡ℎ 

value, respectively.  

Min-Max normalization: It is a linear alteration of the original data set (𝑋) based on the 

minimum value  (𝑋𝑚𝑖𝑛) and maximum value  (𝑋𝑚𝑎𝑥) of the data. Eq. (3) demonstrates the 

relationship of Min-Max normalization. 

 𝑋𝑛𝑜𝑟𝑚 = 𝑋𝑘 − 𝑋𝑚𝑖𝑛𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛 (3) 
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where 𝑋𝑘 and 𝑋𝑛𝑜𝑟𝑚  denote the 𝑘𝑡ℎ value of attribute 𝑋 and the normalized values of 𝑘𝑡ℎ 

value, respectively.  

Principal component analysis (PCA): The landslide data is in large dimensions and 

comprises multiple factors. Some of these factors may be correlated with each other and 

overlapping. It may degrade the performance of the MLP model during the training phase. 

The principal component analysis (PCA) is applied to the normalized data set to overcome 

the performance degradation issue. The main goal of PCA is to project the original data onto 

the new data space, which generate the principal components in descending order of the 

variance. The first principal component represents the maximum variance in the data, while 

the second principal component denotes the maximum of the remaining amount of variance 

and the cycle goes on. These components are orthogonal with each other and uncorrelated. 

 

2.5 Artificial neural network (ANN) model 

The ANN, inspired by biological neural networks, is the most efficient and powerful 

intelligence learning model. ANN can follow the variation in the hidden layer during the 

learning process, and it is used in various applications because of its good non-linear 

mapping ability, high learning accuracy, and robustness (Sheela & Deepa, 2013). There are 

two types of ANN, i.e., feedforward and feedback. The MLP model is the most common type 

of feedforward ANN, which is used for the classification and forecasting of complex 

problems. There are three adjoining layers in the basic architecture of MLP, i.e., input layer, 

hidden layer, and output layer (Haykin, 1994), as illustrated in Figure 4. 
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Figure 4. The architecture of MLP model 
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These layers have independent processing units named neurons. The input layer’s 

neurons are linked to successive layer’s neurons of the MLP model through weights. During 

the backpropagation learning process, these weights are adjusted, and the MLP model 

establishes a mapping function between inputs and outputs (Garrett, 1994). The input neurons 𝑥1, 𝑥2, … , 𝑥𝑁take the data from the external environment and pass the data through the input 

weights,𝜔11, 𝜔21, … , 𝜔𝑖𝑗 to the hidden neurons in the learning process. The hidden neurons' 

values are mapped by weights (𝜔𝑗𝑘) and function as input values to the output layer for all 

neurons. The predicted output𝑦1, 𝑦2, … , 𝑦𝑘 values are achieved at output neurons. The error of 

the MLP model is measured by taking the difference between predicted output and actual 

input. The training process is halted when an acceptable small error is attained. In MLP, 

landslides influencing factors are considered independent variables at the input nodes, 

whereas the hidden layer processes the input data's weightage computation. There are two 

stages in MLP neural networks, i.e., the training stage and the classification stage. In the 

training stage, the internal weights are adjusted. The backpropagation algorithm is used in the 

MLP neural network model until minimum error is reached between the original and desired 

output values. After completing training, the network is ready to be utilized as a feedforward 

structure that produces a classification for the overall data (Paola & Schowengerdt, 1995). 

This study investigates different input data configurations with pre-processing on the 

MLP model for landslide prediction. The total landslide occurrences in the study area include 

382 locations with 68,786 pixels. For the MLP model, the total samples 137,572 are extracted 

from the data set. Half of them (68,786) is the landslide samples and denoted by '1', and the 

remaining samples (68,786) are the non-landslide occurrence represented by '0'.  Those 

samples are taken from each data configuration after the pre-processing stage, and they are 

divided into three subsets, 50% for training, 25% for validation, and 25% for verification, 

respectively. Every subset is randomly selected, with the ratio remains the same. By 

increasing the number of hidden neurons from 5 to 120 with an increased interval of 5, the 

MLP model is trained five times for each data configuration with different random initial 

weights and biases. The highest validation accuracy model is chosen from the five repetitions 

at a given number of hidden neurons. The MLP model is also trained with cross-validating 

the training and validation samples to avoid overfitting. The learning rate is set to 0.001, and 

the initial weights are selected randomly. The maximum epochs are set to 1000, the 

momentum parameter is 0.9, and 0.01 means squared error (MSE) value is used as stopping 

criteria.  
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One of the MLP model's main challenges is to estimate the number of neurons in the 

hidden layer of MLP structure because there is no analytical method to identify the optimal 

structure in advance. Therefore, Akaike Information Criterion (AIC) is used to determine the 

number of hidden neurons (Akaike, 1974). AIC is an asymptotically unbiased estimator of in-

sample prediction error used to assess the goodness of the mathematical model. Many other 

models can be ranked according to their AIC, with the best for a data set being the one with 

the lowest AIC. The goodness of a model's parameters can be determined by the expected 

log-likelihood (Cousineau & Allan, 2015; Panchal et al., 2010). The AIC’s mathematical 

expression is based on the likelihood function and free parameters of the model (𝑝) as shown 

in Eq. (4). The likelihood function is defined in terms of sum of the squared error (SSE). For 

a set of data, 𝑛 is the number of data points (observations), and SSE is the sum of the squared 

errors of the data points. Eq. (4) is simplified to Eq. (5). 

 𝐴𝐼𝐶 = −2 ln(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2𝑝 (4) 

 𝐴𝐼𝐶 = 𝑛 ln (𝑆𝑆𝐸𝑛 ) + 2𝑝 (5) 

The important metric for the ANN model evaluation is the validation accuracies. These 

accuracies are computed by using the Eq. (6), which is the ratio between correct outputs to 

the total number of data samples. The correct outputs are the sum of true positive (𝑇𝑃) and 

true negative (𝑇𝑁), that the MLP model classified successfully. While the total data sample 

number is the sum of correct outputs and incorrect outputs (false positive, 𝐹𝑃 and false 

negative,𝐹𝑁). 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁 (6) 

Another metric for verification of the model is Receiver Operating Characteristic 

(ROC). The entire Penang Island data set of the three data configurations after normalization 

and followed by the PCA technique are applied on the trained MLP model to compute the 

accuracy, i.e., area under the curve (AUC) of Receiver Operating Characteristic (ROC) of 

landslide hazard maps separately.  For validating the hazard maps, there are two assumptions 

taken, i.e., on geographic data and triggering factors. The landslides are associated with 

geographic data of landslide causative factors such as topography elevation and slope angle. 

The triggering factors, like precipitation, influence future landslides(Chung & Fabbri, 1999). 

The ROC is to group the landslide hazard index (LHI) from the trained MLP model in 

descending order. The LHI indexes are split into one hundred sub-levels on the y-axis with 

1% gaps on the x-axis (Pradhan & Lee, 2010). The ROC curve indicates the efficiency of the 
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methods, and the accuracy is achieved by measuring the area under the curve (Begueria, 

2006; Chung & Fabbri, 1999). In this study, the MLP model is carried out using the three 

input data configurations, with and without pre-processing. The MLP model is implemented 

in MATLAB on a machine with the specification Core i7 3.40 GHz processor and installed 

RAM of 16 GB. 

 

3. Results and Discussion  

In this study, different numbers of hidden neurons are applied on MLP with the three 

configurations of input data. The implementation of MLP is carried out with and without pre-

processing of normalization and the PCA scheme. AIC and ROC are used to evaluate the 

performance of the MLP. 

Figure 5 shows the accuracies of validation and AIC during the MLP model's learning 

phase at different numbers of hidden neurons of three input data configurations without pre-

processing. If the number of hidden neurons increases, the validation accuracies of all three 

data configurations also increase. The AIC values also decrease as the number of hidden 

neurons increases. The AIC comparison shows the lowest value for OR and FR data 

configuration is at 105 hidden neuron numbers, whereas the MT data configuration has the 

lowest AIC value at 100 hidden neuron numbers. The validation accuracy of OR and FR data 

configurations reaches maximum at 105 hidden neurons, which are 93.55% and 91.00% 

respectively, while the validation accuracy of MT data configuration is higher, i.e., 94.21%, 

at 100 hidden neurons.  

The MT data configuration performs better than the other two data configurations 

because all MT data variables are either continuous data or frequency ratio, which gives a 

better range of variation. It also provides a better and meaningful representation of landslide 

data. Contrary to FR data configuration, all variables are completely in frequency ratios 

which have minor variations. That is why FR data has lower validation accuracies. All 

variables of OR data configuration are a mixture of continuous and categorical/discrete 

values. However, this data has relatively more variations and produces higher validation 

accuracy than FR data configuration but slightly lower validation accuracy than MT data 

configuration. Furthermore, all three data configurations are processed through pre-

processing, i.e., normalizations followed by the PCA technique before feeding into the MLP 

model to improve accuracy and eventually produce the hazard maps. 
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Figure 5. The validation accuracies and AIC with respect to hidden neurons of three data 

(without pre-processing) 

 

The results obtained by the MLP model with Mean-SD normalizations with PCA 

technique of three data configurations are shown in Figure 6(a). It is clearly shown that the 

validation and AUC of ROC accuracies of Mean-SD normalization with PCA of MT data 

configuration are higher than the FR and OR data configurations. The FR data configuration 

is not in good agreement with others and hence shows the lowest validation and AUC of 

ROC accuracies. The maximum validation and AUC of ROC accuracy, which is 94.78% and 

96.72%, are achieved at 100 hidden neuron numbers of MT data configuration, where the 

AIC also shows the most negligible value. The other two configurations have the least values 

of AIC at 105 hidden neuron numbers.  

Figure 6(b) displays the results of the Min-Max normalization with PCA scheme of 

three data configurations. It is observed that the maximum validation and AUC accuracies of 

MT data configurations are 94.54% and 96.38% respectively. These accuracies are acquired 

at 105 hidden neuron numbers, whereas the validation and AUC accuracy of OR (94.31% and 

96.13%) and FR (90.92% and 93.60%) configurations are at 105 and 110 hidden neurons, 

respectively. Similarly, the MT data configuration with Min-Max + PCA scheme gives the 

best results than other configurations. The FR configuration achieves lower accuracies 

compared to OR and MT configurations.  
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(a)  

 
(b) 

 

 

Figure 6. The accuracies and AIC of three data configurations (a) Mean-SD with PCA 

scheme (b) Min-Max with PCA scheme 

 

It is also observed that the Mean-SD with PCA scheme performs better than the Min-

Max with PCA scheme. The Mean-SD + PCA scheme of MT data configuration stables and 

converges at the lowest number of hidden neurons, i.e., 100, and also gives better results than 

the FR and OR configurations, as well as the Min-Max + PCA scheme of MT, FR, and OR 

configurations. In Min-Max with PCA scheme, the OR, MT, and FR configurations converge 

at 105, 105, and 110 number of hidden neurons, respectively; therefore, this scheme is more 

complex, which degrades the generalization of the MLP model. The FR data configuration 

indicates lower accuracies for both schemes. 

Finally, the study area's entire data is applied to the trained MLP model to obtain the 

LHI. This LHI is used to generate the landslide hazard maps. It is split into four main classes, 

i.e., highly hazardous area, hazardous, moderately hazardous area, and non-hazardous area.  

The ‘highly hazardous area’ class belongs to the most vulnerable area to landslide and 10% 
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of the maximum LHI values (90-100%). The ‘hazardous’ class is also associated with the 

more landslide-prone region, and the values are the next 10% of LHI values (80-90%). The 

third class is the 'moderately hazardous area', which relates to the following 20% of LHI (60-

80%), and the fourth 'non-hazardous area' class is for the remaining 60% of LHI values (0-

60%). The resulting landslide hazard maps of the study area produced using Mean-SD with 

PCA and Min-Max with PCA schemes of MT data configurations at 100 and 105 hidden 

neurons are shown in Figure 7(a) and (b), respectively. 

 

 
(a) 

 
(b) 

 

Figure 7. Landslide hazard maps of MT data configuration with (a) Mean-SD and PCA (b) 

Min-Max and PCA 

 

The present study implements the advanced intelligence technique (ANN based MLP 

model) using different configurations of landslide causative factors to map landslide hazards 

in Penang Island, Malaysia. Several statistical metrics such as accuracy, AIC, AUC, TRP, 

FRP and RMSE have been utilized by many researchers in order to evaluate the model's 

performance (Nhu et al., 2020; Tien Bui et al., 2020). The results obtained from the MLP 

model of AUC of ROC are compared with other related studies as shown in Table 1. 
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Table 1. Comparison of results of MLP model with other related studies 

References AUC (%) Data Configuration 

Bui et al., 2018 87.50 Time series 

de Oliveira et al., 2019 92.25 OR 

D. T. Bui et al., 2020 87.25 FR 

Sahana et al., 2020 83.60 FR 

Nhu et al., 2020 86.60 FR 

Abbaszadeh Shahri et al., 2019 80.10 FR 

Present study 96.72 MT 

 

The MLP model contains one hidden layer between input and output layers and its hidden 

neurons play a vital role in predicting the landslide hazards. Besides, MT data configuration 

has an advantage to acquire better accuracy at lower number of hidden neurons. It is, 

therefore, observed that the performance of MLP model of present study shows higher AUC 

than the others. 

 

4. Conclusion  

The MT data configuration produces good validation accuracy at a lower number of 

hidden neurons than OR and FR data configurations, with and without pre-processing. The 

MT data configuration represents more meaningful information for the MLP to interpret than 

the other two data configurations. Pre-processing with normalization techniques and PCA 

improves the performance of the output. The best AUC of ROC of both Mean-SD and Min-

Max with PCA schemes are 96.72% and 96.38%, respectively. The MT data configuration 

with Mean-SD normalization with PCA scheme gives the best results with good accuracies, 

as well as a smaller number of hidden neurons. The Mean-SD with PCA scheme shows the 

smaller complexity of the MLP model with a smaller number of hidden neurons. Therefore, 

MT data configuration with the Mean-SD normalization and PCA scheme is more robust and 

stable in the MLP model's training for landslide prediction. 
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